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The distribution of firms’ growth and firms’ sizes is a topic under intense

scrutiny. In this paper, we show that a thermodynamic model based on the

maximum entropy principle, with dynamical prior information, can be

constructed that adequately describes the dynamics and distribution of

firms’ growth. Our theoretical framework is tested against a comprehensive

database of Spanish firms, which covers, to a very large extent, Spain’s econ-

omic activity, with a total of 1 155 142 firms evolving along a full decade.

We show that the empirical exponent of Pareto’s law, a rule often observed

in the rank distribution of large-size firms, is explained by the capacity of econ-

omic system for creating/destroying firms, and that can be used to measure

the health of a capitalist-based economy. Indeed, our model predicts that

when the exponent is larger than 1, creation of firms is favoured; when it is

smaller than 1, destruction of firms is favoured instead; and when it equals

1 (matching Zipf’s law), the system is in a full macroeconomic equilibrium,

entailing ‘free’ creation and/or destruction of firms. For medium and smaller

firm sizes, the dynamical regime changes, the whole distribution can no longer

be fitted to a single simple analytical form and numerical prediction is

required. Our model constitutes the basis for a full predictive framework

regarding the economic evolution of an ensemble of firms. Such a structure

can be potentially used to develop simulations and test hypothetical scenarios,

such as economic crisis or the response to specific policy measures.
1. Introduction
Many natural, social and economic phenomena follow power laws. Their ubiquity

has been previously ascertained in the distribution of financial or econometric

values such as wealth and income, [1–8], or the size of cities [9–13], and even in

human language and frequency of words [14–16], Internet networks [17] or scien-

tific publications and citations [18–21], among many other human-related

measurable observables. Finding a complete theory for describing this kind of

systems seems an impractical task, given the huge amount of degrees of freedom

involved in discussing these social systems. This notwithstanding, remarkable

regularities were reported and studied, such as Zipf’s law [22–25], or the cele-

brated Gibrat’s law of proportional growth [26], which constitute important

milestones on the quest for a unified framework that could mathematically

describe predictable tendencies [7,10,27–29].

Firm size distributions (FSDs) are the outcome of the complex interaction

among several economic forces. Entry of new firms, growth rates, business

environment, government regulations, etc., may shape different FSDs. The under-

lying dynamics that drives the distribution of firms’ sizes is still an issue under

intense scrutiny. According to Gaffeo et al. [30], there is an active debate going

on among industrial organization scholars, in which lognormal, Pareto, Weibull

or a mixture of them compete for the best-fitting distributions of FSDs. One of
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the controversial issues is the very definition of ‘size’, which

can be measured by different proxies, such as annual sales,

number of employees, total assets, etc.

The seminal contribution by Gibrat [26] initiated a research

line concerning the formal model that governs firms’ sizes and

industry structure. The introduction of a theoretical model that

would underlie the industrial demography could be of great

help for authorities interested in maintaining fair competence

and antitrust policies or tracking wealth inequality [3,7].

Hart & Prais [31] find, using a database of large firms, that

average growth rates and sizes are independent variables.

Quandt [32] states that Pareto’s distribution is often rejected

when analysing industry subsectors. Other independent

empirical studies, carried out by Simon & Bonnini [33], Mans-

field [34] and Bottazzi & Secchi [35], among others, confirm

that firms’ growth rates are not related to firm size and that

FSDs follow a lognormal distribution. Jacquemin & Cardon

de Lichtbuer [36] study the degree of firms and industry

concentration in the UK using Fortune’s 200 largest industrial

companies outside the USA, ranked according to sales. This

study detects an increasing degree of concentration.

Kwasnicki [37] asserts that skewed size distributions

could be found even in the absence of economies of scale,

and that the shape of the distribution is the outcome of inno-

vation in firms. In particular, according to his simulations,

cost-improving innovations generate Pareto-like skewed dis-

tributions. This work also reconciles the finding by Ijiri &

Simon [38] about the concavity towards the origin of log–

log rank size plots. Such concavity could be produced by

evolutionary forces and by innovation. Jovanovic [39] finds

that rates of growth for smaller firms are larger and more

variable than those for bigger firms. Similar results are

found empirically for Dutch companies by Marsili [40]. On

the contrary, Vining [41] had argued that the origin of the

concavity is the existence of decreasing returns to scale.

Segal & Spivak [42] develop a theoretical model in which,

under the presence of bankruptcy costs, the rate of growth of

small firms is prone to be higher and more variable than that

of larger firms. The same model also predicts that, for the lar-

gest firms, the sequence of growth rates is convergent,

satisfying Gibrat’s law, namely

_xiðtÞ ¼ viðtÞxiðtÞ, ð1:1Þ

where xi(t) is the size of the ith firm at time t, _xiðtÞ its change in

time, and vi(t) a size-independent growth rate. This model is

consistent with some previous empirical evidence, as that

of Mansfield [34]. Sutton [43] has published a review of the

literature on markets’ structure, highlighting the current

challenges concerning FSD modelling. During the 1990s, the

interest in FSD increased with the availability of new data-

bases. A drawback of early studies was a biased selection of

firms. Typically, data comprised only publicly traded firms,

i.e. the largest ones. In recent years, new, more comprehensive

data sources became available.

Stanley et al. [44], used the Zipf-plot technique in order to

verify fittings of selected data for US manufacturing firms

and find a non-lognormal right tail. Shortly afterwards, Stanley

et al. [45] encountered that the distribution of growth rates has

an exponential form. Kattuman [46] studies intra-enterprise

business size distributions, finding also a skewed distribution.

Power-law decays were reported by Plerou et al. [47], looking

for similarities between university research growth and

business firms. Axtell [48], using census data for all US firms,
encounters that the FSD is right-skewed, giving support for

the workings of Pareto’s law. A similar finding is due

to Cabral & Mata [49] for Portuguese manufacturing firms,

although a lognormal distribution underestimates the skew-

ness of the distribution and is not suitable for its lower tail.

In this line, Stanley and co-workers [50,51] find that, for

pharmaceutical firms in 21 countries, and for US publicly

traded firms, growth rates exhibit a central portion distributed

according to a Laplace distribution, with power-law tails.

Palestrini [52] agrees with a power-law distribution for firm

sizes, although he models firm growth as a Laplace distri-

bution, which could change over business cycles. Zhang et al.
[53] find Zipf’s distributions for the biggest Chinese compa-

nies, and propose an explanation based on an AK model of

economic growth [54].

According to Riccaboni et al. [55], the simultaneous study of

firm sizes and growth presents an intrinsic difficulty, arising

from two facts: (i) the size distribution follows a Pareto law

and (ii) firms’ growth rate is independent of firm size. This

latter property is known as the ‘law of proportionate effect’.

Growiec et al. [56] study firms’ growth and size distributions

using firms’ business units as units of measurements. This

study reveals that the size of products follows a lognormal

distribution, whereas firm sizes decay as a power law.

Gaffeo et al. [30], using data from 38 European countries,

find that log mean and log variance size are linearly related

at sectoral levels, and that the strength of this relationship

varies among countries. Di Giovanni et al. [57] find that the

exponent of the power law for French exporting firms is

lower than that for non-exporting firms, raising an argument

on the influence of firms’ heterogeneity in the industrial

demography. Additionally, Gallegati & Palestrini [58] and

Segarra & Teruel [59] show that sampling sizes influence

the power-law distribution.

One can fairly assert that the concomitant literature has

not yet reached a consensus regarding what model could

best fit empirical data. An overview of several alternative

models is detailed in [60], and references therein. As shown

in the above literature review, previous attempts to model

growth and sizes of firms have not been entirely successful.

In particular, there is a dispute concerning the underlying

stochastic process that steers FSD.

A possible solution in terms of agent-based models was

proposed [61]. These models are remarkable as descriptive

tools, but they do not furnish an overall panorama because

they are single-purpose models. Besides, they are sensitive

to the initial conditions, and, in some cases, their outcome

depends on the length of the simulation time. Recently, suc-

cess and failure of firms were studied by Daepp et al. [62],

showing that mortality rates are independent of firms’ age.

The aim of this paper is twofold. First, to develop a thermo-

dynamic-like theoretical model, able to capture typical features

of firms’ distributions. We try to uncover the putative universal

nature of FSD, which could be characterized by general laws,

independent of ‘microscopic’ details. Second, to validate

our theoretical model using an extensive database of Spanish

manufacturing firms during a long time period.

This paper contributes to the literature in several aspects.

(i) It shows how first dynamical and thermodynamic

principles, extensively used in physics, can be applied to

economic systems. (ii) It presents a general mathematical

framework that provides explanations for the stochastic distri-

bution of firms’ sizes. The understanding of FSD is relevant for
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economic policy because it deals with market concentration,

and thus with competition and antitrust policy measures—

for example, Naldi [63] exhibits a relationship between Zipf’s

law and some concentration indices, and deviations from

Zipf’s law in the FSD can be used for policy diagnostics [64].

(iii) Additionally, our model is tested with an extensive

sample of Spanish firms during 10 years, displaying interesting

empirical properties of the Spanish economy.

The paper is organized as follows. First, we present the

theoretical framework and perform numerical experiments

to validate our analytical approach. Afterwards, we under-

take empirical applications to Spanish firms. Finally, we

draw some conclusions from our work.
ne
g

year

T –
1

Figure 1. Conceptual sketch of firms’ dynamics: heaven (Tþ1=2 and Tþ1 regi-
mens), hell (T�1=2 and T�1 regimens) and purgatory (T0 regimen, both positive
and negative), according to equations (2.1) and (2.2). Firms (represented here
by dots) evolve as random walkers in time—similar to particles in a gas—
according to the regime defined by their earnings (delimited by dashed hori-
zontal lines) and the empirical temperature at that regime: linear growth at
purgatory, and proportional growth at heaven and hell with a variance
defined by the temperature in each case. Brown solid arrows show the
path for two of the firms who eventually evolve from purgatory at their
birth to heaven and hell respectively at the present time.

c.Interface
12:20150789
2. Theoretical framework
Our theoretical framework is based on two fundamental

hypotheses:

(1) a microeconomic dynamical hypothesis for individual

firm growth and

(2) the use of the maximum entropy principle, with dynami-

cal prior information, for describing macroeconomic

equilibrium.

2.1. Microdynamics
As our microeconomical hypothesis, we use the earnings before
interest, taxes, depreciation and amortization (EBITDA) indicator

as proxy for the size of a firm, and Gibrat’s law of proportional

growth (equation (1.1)) as the main mechanism underlying

firms’ size evolution. A finite-size term (FST) owing to the central

limit theorem [65] becomes dominant for medium and

small sizes, being proportional to the square root of the size. In

addition to these two terms, we also assume that non-

proportional forces become eventually effective for the smallest

values. Thus, our full dynamical equation is written as

_xiðtÞ ¼ v1iðtÞjxiðtÞj þ v1=2iðtÞjxiðtÞj1=2 þ v0iðtÞ, ð2:1Þ

where vqi(t) (q ¼ 1, 1/2 and 0) are independent growth rates. It is

expected that the growth rates will be of a stochastic nature.

Thus, a temperature can be defined from their variance Tq ¼

var[vq]. Accordingly, assuming that the variation in the growth

rates is much larger than the variation in the observable x—as

done in [12,28]—the variance of the growth for seve-

ral realizations for positive (þ) and negative (2) values of x,

respectively, becomes

Var½ _x� ¼ T+
1 jxj

2 þ T+
1=2jxj þ T+

0 : ð2:2Þ

This equation defines six regimes (three for negative and

three for positive EBITDA) according to the size: small sizes

jxj , T+
0 =T+

1=2; medium sizes T+
0 =T+

1=2 , jxj , T+
1=2=T+

1 ; and

large sizes T+
1=2=T+

1 , jxj: Because of the existence of the

non-proportional term, x is allowed to move across negative

and positive values. In principle, we will assume that the

set of temperatures at the negative domain is independent

of that at the positive one. Because all these temperatures

can be measured from the raw data, their properties can be

empirically determined. In figure 1, we display a conceptual

sketch of the ensemble of firms evolving in time as random

walkers along the different regimes, with a corresponding

temperature and dynamics for each of them.
2.2. MaxEnt principle
For an ensemble of firms following equation (1.1), we assume

that dynamical equilibrium is asymptotically reached when

some macroscopic constraints are obeyed. As such con-

straints, we cite here the average total number of firms N
and the typical wealthiness of a given particular region, or

any other objective observable. In view of the success of an

entropic procedure for describing equilibrium distributions

in other social systems (e.g. city population distributions),

we take as our macroeconomic hypothesis the principle of

maximum entropy (MaxEnt) with dynamical prior infor-

mation [12,65–67] to predict the equilibrium density of the

system. We focus our analytical derivation on that particular

regime that has received greatest attention in the literature:

the proportional growth one: T+
1=2=T+

1 , jxj for the largest

sizes. According to [12], the entropy of a system following

Gibrat’s law is measured in terms of the new dynamical vari-

able uðtÞ ¼ log½jxðtÞj=x+
c � (independently for positive and

negative domains, and where x+
c is some reference value,

in our case, the transition size x+c ¼ T+
1=2=T+

1 ) which line-

arizes the dynamical equation as _uiðtÞ ¼ v1iðtÞ: Thus,

we write the macroscopic entropy for the system’s density

distribution r(u) for N firms as

S½r� ¼ �
ð

durðuÞ log
rðuÞ
N

� �
: ð2:3Þ

The equilibrium density is obtained by extremizing S under

the empirical constraints [66,67], such as the total number

of firms and the minimum size of a firms, among others.

Lacking them, as sometimes happens in physics, we will

use a symmetry criterion [68]: employ constraints that pre-

serve a symmetry of scale of x(t), i.e. translation symmetry
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in u(t). For this purpose, we define an energy function, E½r�,
that depends on powers of the dynamical variable u, namely

E½r� ¼
X

n
ln

ð
durðuÞðu� kulÞn :¼

X
n

lnmn, ð2:4Þ

where mn are the central moments of r and ln the coupling

constants. The maximization problem is written as

drðS½r� � bE½r�Þ ¼ 0, where b is a Lagrange multiplier (b, ln

become then the multipliers for each term), and the general

solution is of the form

rðuÞ ¼ N exp �1� b
X

n
lnðu� kulÞn

" #
: ð2:5Þ

The values of the multipliers are obtained by solving the

system of Lagrange equations, mn ¼
Ð

durðuÞðu� kulÞn for

the distribution of equation (2.5).

2.3. Connection with thermodynamics
We consider, for simplicity and separately for negative and

positive domains (no super-indices are used for the tempera-

ture), only the first two moments n ¼ 0 (a constraint on the

average total number of firms m0 ¼ N ) and n ¼ 1 (a constraint

on the mean value kul written as m1 ¼ 0). Because the

equations are formally equivalent to those found in thermo-

dynamics, and traditionally the multipliers associated with

these constraints are [69,70] b :¼ 1=T1, l0 :¼ �m, l1 :¼ l,

we have a thermodynamic potential

V ¼ �T1S� mN þ lU, ð2:6Þ

where U ¼ ku� kull: The variational problem becomes

drV½r� ¼ 0: We obtain the distribution

rðuÞ ¼ Ne�ðlu�mÞ=T1 : ð2:7Þ

The distribution is cast in terms of the observable x as

rXðxÞdx ¼ Nem
� xl�

c

x1þl� dx, ð2:8Þ

where m� ¼ m=T1 and l� ¼ l=T1: Accordingly, we obtain a

power-law density. Useful for analysing the empirical data

is the complementary of the cumulative distribution

N � PðxÞ ¼
Ð x

xc
dx0rðx0Þ, that reads

N � PðxÞ ¼ N
xc

x

� �l�
: ð2:9Þ

The solutions of the Lagrange equations lead to

e�m
� ¼ kul and l� ¼ 1

kul
, ð2:10Þ

and to the equation of state

em
� ¼ l�: ð2:11Þ

This is the relevant equation for interpreting the empirical

data, because l* can be measured from the data and m* can

be interpreted, thanks to the thermodynamic analogy.

Indeed, comparing our results with those of a physical

system, one can identify m with the chemical potential. We

interpret m as the ‘cost’ for including/creating or exclud-

ing/extinguishing firms in the proportional large-size

regime. Following MaxEnt [12,65,66], the system is in contact

with a reservoir of firms, and tends to minimize V. Because

@V=@N ¼ �m, V decreases for m . 0 when a new firm

enters in the proportional regime, and thus making more
likely the emergence of a flow of firms entering the system.

However, for m , 0, any new firm will increase the value of

V, allowing for a flow of firms exiting the system. In the par-

ticular case m ¼ 0, there is no cost for the flow of firms,

in what we expect to be an equilibrium, stable and healthy

situation for a capitalist economy.

The thermodynamic variable l defines the exponent of the

distribution, and can be interpreted as a measure of the typical

wealth of a region. Specifically, it determines the scale of the

size of firms, because it constrains the geometrical mean of x
at the proportional regime. Indeed, the use of the geometrical

mean instead of the mean is common for systems with scale

invariance, where long-tailed distributions have undefined

moments but well-defined log moments [71,72]. This value

will change from one economy to another.

Thanks to the equation of state, equation (2.11), we

can provide an intuitive, physically based interpretation of

that exponent:

— for l* , 1 (m* , 0), the system favours the extinction of

firms;

— for l* . 1 (m* . 0), the system favours the creation of

firms; and

— for l* ¼ 1 (m* ¼ 0), the system freely creates and

extinguishes firms.

This last particular case corresponds to the Zipf law

distribution, namely

N � PðxÞ ¼ N
xc

x
: ð2:12Þ

3. Numerical experiments
With the aim of testing our theoretical procedure, we have

performed numerical experiments in terms of random walk-

ers via a Monte Carlo (MC) simulation. At the initial time,

the N random walkers are randomly located using a uniform

distribution. We assume independent stochastic Wiener

coefficients for different firms, within each of the regimes, or

kvqiðtÞvq0jðt0Þl ¼ Tqdijdqq0dðt� t0Þ, ð3:1Þ

where q defines the specific dynamical regime as in equation

(2.1). In order to make explicit the mechanisms that govern

the dynamics, we will use a reduced approach where the

walkers evolve following only the dominant term according

to the size x. Therefore, instead of simulating the whole

dynamics, i.e. equation (2.1), we aim to understand the

particular contribution of each term in that equation. Hence-

forth, we will focus on the interplay between the linear and

proportional growth regimes, disregarding the intermediary

regime. To achieve this goal, we use the following equation

for the microscopic dynamics:

_xiðtÞ ¼
v0,iðtÞ, for x , xc,

v1,iðtÞxiðtÞ, for x . xc,

�
ð3:2Þ

where xc defines the border between the linear and the

proportional regimes. Because the number of walkers in

the proportional regime is not constrained, we follow here

the well-known recipe for a grand canonical ensemble

[69,70], where m is fixed and the fluctuation in the number of

walkers is determined by the probabilities of including (Pþ)

or extracting (P2) a walker as

Pþ / em
�

and P� / e�m
�
: ð3:3Þ
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According to these probabilities, in an ensemble withm* ¼ 0

any walker may leave or enter the system without any restric-

tion. Additionally, following equation (2.10), the constraint

kul ¼ klnðx=xcÞl ¼ 1 should be obeyed. We have performed sev-

eral realizations with different initial conditions, and let the

system evolve until reaching equilibrium. In figure 2, we

show the size distribution equation (2.9) for different simulation

times measured in MC steps. Here, we choose xc ¼ 100. We see

that the equilibrium distribution (for approx. 3000 MC cycles)

follows Zipf’s law: for large values, the complementary of the

cumulative distribution follows equation (3.3), as predicted by

our thermodynamic framework. The distribution deviates

from the analytical result as the size of x reaches the transition

critical valued xc. Remarkably, we find that the equilibrium

does not depend on the initial conditions.

For an independent measurement of the chemical poten-

tial directly from the distribution—for both validating the

theoretical approach and testing the measure procedure for

empirical data—we proceed as follows: (i) we compute the

derivative of ln½N � PðxÞ� in equation (2.9) to obtain a

measure of l* and (ii) we use the equation of state (2.11) to

obtain m*. This measurement only has sense in the pro-

portional growth regime xc , jxj. One expects m* to be

constant in this domain (up to numerical fluctuations) and

diverge outside it. We show in figure 2 the chemical potential

for the walkers’ equilibrium distribution. We see that, up to

some fluctuations, the constraint m* ¼ 0 is respected for the

proportional growth regime and blows up after the transition

jxj , xc. In view of these results, we succeeded in numerically

validating our analytical procedure.
4. Empirical application
In order to empirically verify our theoretical model, we

consider the Spanish SABI database [73,74], which is a compre-

hensive one for all firms that have the obligation to disclose

balance sheets in the Spanish Mercantile Register. Our

sample consists of 1 155 142 firms along a decade, with more

than 500 000 firms per year. We select those firms which have

been active at any time during the past 10 years and use, as

our observable xi(t) for the ith firm at year t, the reported
value for EBITDA. Indeed, this quantity is widely employed

for assessing companies’ performances. It is homogeneous

across companies and is not affected by different forms of

financing. We believe that our proxy for size is a clear indicator

of both corporate performance and size.

4.1. Microdynamics
We first test our microscopic dynamical hypothesis by measur-

ing the variance of the EBITDA growth for each year and

separately for positive and negative domains. We first analyse

all the Spanish firms in the same set, displaying in figure 3 the

dependence of the growth variance on the EBITDA for the year

2009. We find a remarkable match to equation (2.1) for both

positive and negative domains. The transition to proportional

growth takes place, in this case, at xþc ¼ Tþ1=2=Tþ1 ¼ 110� 103

euros and x�c ¼ T�1=2=T�1 ¼ 41� 103 euros. Additionally, in

both domains, the linear regime temperature T+
0 has approxi-

mately the same value within the error bars (1190+200 versus

1500+500 (� 103 euro per year)2). As shown in the electronic

supplementary material, all the available data for 10 years

match equation (2.1), with slightly changing temperatures.

A similar analysis, made per each Spanish autonomous com-

munity, shows that the dynamics is also obeyed individually

by regions, as shown in figure 4. We do not find any exception

in all the 15 Spanish autonomous communities during these

10 years. In view of these results, we empirically confirm the

validity of the dynamical equation (2.1). Additionally, we

find that the temperatures T�1 and T�1=2 are significantly

higher than those at the positive regime. Remarkably, as

shown in figure 5, T+
0 can be, in general, considered the

same for positive and negative EBITDA, indicating that

the same non-proportional regime is connecting both domains.

4.2. Macroequilibrium
Once the dynamical equation has been validated, we pass

to EBITDA distributions. We plot in figure 6 the complemen-

tary cumulative function N � PðxÞ for all Spanish firms in

2009, including those with positive and negative EBITDA.

We observe that for large values the power-law equation

(2.12) is followed, as predicted by our thermodynamic equili-

brium hypothesis, with an exponent very close to that of

Zipf’s law l ¼ 1. For smaller values, the distribution deviates
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from the power law. We have checked that this deviation sys-

tematically takes place at about the same transition value

x+c ¼ T+
1=2=T+

1 , as predicted by our numerical experiments.

This is compelling evidence for the relation between the
dynamics and the distribution given by our theoretical frame-

work. We also measure the chemical potential m* as we did

in the numerical experiment with walkers. This chemical

potential is, in general, with some deviations, close to m ¼ 0,
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a value for which the creation/extinction of firms has no cost

for the energy potential function E: Remarkably, transition

threshold x+c is again the point where the chemical potential

blows up, exhibiting agreement between the macroequilibrium

distribution and the microdynamical variances.

We find the same picture when studying the firms’ distri-

bution per each community. In general, all distributions are

very close to the Zipf regime where creation and destruction

have no cost to the system. In view of these results, we consi-

der that our theoretical framework properly describes the

dynamics and equilibrium of the ensemble of Spanish firms.
5. Discussion
Some interesting assertions can be made with regards to our

theoretical framework. The most relevant is the thermodyn-

amic interpretation of the exponent l* of the long tail of

size distributions. Thanks to the equation of state equation

(2.11), we provide for the first time, to the best of our knowl-

edge, a clear explanation for this exponent, linking this

dimensionless number with a dynamical, intuitive mechan-

ism as the cost to the system of creating or extinguishing a

firm, measured by the chemical potential m*. This interpret-

ation can be used to measure the macroscopic effect of

particular economical policies, and to measure how healthy

is a capitalist-based economy. We find that, in general, the

value of m* in Spanish regions can be considered as zero

within the given confidence level—as shown in figure 6—

indicating the freedom of creating or extinguishing a firm.

We expect that other datasets from other regions around

the world, where the economy exhibits large deviations

from the exponent value l* ¼ 1, can be used to quantitatively

display this correlation with the creation/destruction of

firms. Indeed, using (i) some of the tools used in [62] for ana-

lysing the success and failure rates of given firms and (ii) an

analysis of the dynamical time correlations as done in [28,75]

for population dynamics, the cost to the system for creating/

destroying a firm can be estimated and correlated with the

Zipf exponent. Remarkably, the derivation of equation

(2.11) has been made just under the assumptions of pro-

portional growth and two simplest forms of constraints,
implying that any stochastic system under the same dynami-

cal conditions—and not only an ensemble of firms—can

potentially be described at the macroscopic level by this

thermodynamic approach.

In addition to the macroscopic description, we establish

here the form of the microscopic dynamics and its dependence

on size by equation (2.1). Contrary to other social systems

following proportional growth [12,28,76], there exists, here,

the possibility of negative values. This requires an additional

dynamical mechanism for the evolution of firms, which is suc-

cessfully included in our current approach as a linear term

dominant for small sizes. Firms can be classified according to

the dynamical regime, no matter whether they are in the nega-

tive (losses) or positive (gain) domain. In a pictorial fashion, we

can talk about heaven (positive proportional regime, where rich

get richer), hell (negative proportional regime, where poor get

poorer) or purgatory (linear regime). The fact that the tempera-

tures in the positive domain are systematically smaller than in

the negative one, as illustrated in figure 5, can be described

by stating that hell is warmer than heaven. Thus, a firm in hell
loses money in a faster fashion than it would equivalently

earn it in heaven.

We also find useful as a macroeconomic indicator the

position of the transition zone between medium and pro-

portional growth regime in the negative domain that gives

an estimate of the minimum losses a firm can afford before

going bankrupt—or metaphorically, hell’s gate. Similarly, the

same transition but in the positive domain provides an esti-

mation of the success region for firms—that we might wish

to call heaven’s door. Figure 7 shows both transition values

from 2003 to 2012 as measured by the respective temperature

ratios T+
1=2=T+

1 : We observe that, before the 2008 global finan-

cial crisis, both transitions were approximately equivalent in

size, exhibiting a symmetry between positive and negative

regimes. Right before this crisis, the negative value reached

its maximum, indicating some abnormal economic growth,

potentially related with the speculative bubble. The confi-

dence interval for this specific year is higher than the

absolute value, indicating that this phenomenon did not

happen with the same intensity among all the autonomous

communities. Finally, in the succeeding years, the negative

value was reduced to a half, augmenting the probability
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of firms to go bankrupt, whereas the positive transition

also decreased, although not as rapidly as in the negative

domain. After the burst of the crisis, both transitions tend

to converge again to a similar value, but lower than before

the crisis. Because the equation of state equation (2.11) and

the constrained value of kul, this lower value reflects a gen-

eral reduction of the wealth in the whole system, because it

diminishes, on average, the scale of the successful firms at

the proportional regime.

As a final remark, the numerical simulation provided here,

based on walkers and the grand canonical ensemble, opens the

possibility of developing simulation tools where economical

forces can be introduced in the same fashion as one does for

physical forces in gases and liquids. Indeed, we open a

bridge between the mathematical tools used in statistical mech-

anics and firms’ dynamics. Our analytical and numerical

procedures can be used to analyse the empirical data measur-

ing and parametrizing the economic forces in play, and

develop a full quantitative theory concerning the dynamics.

Alternatively to walkers, the system can also be described in

terms of the Fokker–Planck equation, as done by Yakovenko

and co-workers [3,4,7] for household income and wealth.

Indeed, if all the terms of the dynamical equation (2.1) are cor-

rectly introduced into a Fokker–Planck form, we should obtain

equivalent solutions for the shape of the density distribution.

Work in this direction is currently in progress.
6. Conclusion
We advanced in this paper a complete thermodynamic

structure that accommodates the FSD of a given region.

We attempted an empirical proof of a microscopic dynamical

hypothesis, and showed how firms obey the maximum

entropy principle at the macroscopic level. We analytically

proved the connection between microscopic dynamics and

equilibrium FSDs via MaxEnt, and formulated the equation

of state that relates the exponent of size distributions with

a well-known thermodynamic observable, namely the chemi-

cal potential. This leads to a clear and intuitive interpretation

of the exponents, showing that they can be used as indicators

of the health of an economy. Indeed, the emergence of Zipf’s

law is associated with the free cost (to the system) of creating

and extinguishing firms, as expected in a capitalist-based

economy. All these theoretical considerations have been vali-

dated by comparison with empirical data concerning Spanish

firms, in a window of a decade.

Summarizing, this work contributes to the modelling of

economies and to quantitative economics in three ways.

(i) The systematic use and application of a thermodynamic

principle, the maximum entropy one, to ensembles of

firms, taking into account dynamical symmetries like

proportional growth.

(ii) The development of a formal mathematical structure,

that of the thermodynamics of firms’ growth, that exhi-

bits predictive power. More than a mere model, we are

erecting into which other mechanisms and forces can be

easily accommodated by following recipes borrowed

from physics. Indeed, other forces—those representing

special policies or special economic situations—can be

included as additional constraints and one can predict

their effect in the EBITDA distributions.

(iii) Additionally, we also present in the electronic sup-

plementary material an exhaustive analysis of Spanish

firms’ data that can be used for empirical testing.

We expect this work to be just a first step towards the for-

malization of a theory of the evolution of firms that will

yield a better understanding of underlying forces and laws

of evolution.
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Stanley HE. 2011 Asymmetric Lévy flight in
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