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Abstract. We analyze meson properties within an SU(2) chiral quark model that includes
nonlocal four fermion couplings with wave function renormalization. Model parameters are
determined from meson phenomenology, considering different nonlocal form factor shapes. We
concentrate in the description of basic features of nonstrange vector and axial vector mesons,
considering nonlocal form factors that are based in lattice QCD results for effective quark
propagators.

1. Introduction
Given the nonperturbative character of QCD in the low energy regime, the analysis of hadron
phenomenology starting from first principles still represents a challenge for theoretical physics.
Although a significant progress has been achieved in this sense through lattice calculations, this
approach is not free of difficulties, e.g. when dealing with small quark masses or nonzero chemical
potentials. Alternatively, low energy hadron phenomenology can be analyzed in the framework
of effective models based on QCD symmetry properties. For two light flavors QCD supports
an approximate SU(2) chiral symmetry which is dynamically broken at low energies, and pions
play the role of the corresponding Goldstone bosons. A simple scheme including these properties
is the well known Nambu−Jona-Lasinio (NJL) model [1, 2], in which quarks interact through
a local, chiral invariant four fermion coupling. Due to the local nature of this interaction,
the corresponding Schwinger-Dyson and Bethe-Salpeter equations become relatively simple.
However, the main drawbacks of the model are direct consequences of the locality: loop integrals
are divergent (and therefore have to be somehow regulated), and the model is nonconfining. As
a way to improve upon the NJL model, extensions which include nonlocal interactions have been
proposed [3]. In fact, nonlocality arises naturally in quantum field theory, in particular, in several
well established approaches to low energy quark dynamics, as e.g. the instanton liquid model
and the Schwinger-Dyson resummation techniques [4, 5]. Effective nonlocal interactions are also
supported by lattice QCD calculations, which lead to a given momentum dependence of both
the mass and the wave function renormalization (WFR) in the effective quark propagators [6, 7].
In addition, it has been argued that nonlocal extensions of the NJL model do not show some
of the problems of the local theory. For example, nonlocal form factors regularize the model in
such a way that the effective interaction is finite to all orders in the loop expansion and there is
no need to introduce sharp cutoffs.

XIII International Workshop on Hadron Physics IOP Publishing
Journal of Physics: Conference Series 706 (2016) 042013 doi:10.1088/1742-6596/706/4/042013

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301099179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Previous works on nonlocal NJL-like models can be found in the literature, focusing on
different aspects of strong interaction physics [8, 9, 10, 11, 12, 13, 14, 15]. In particular,
some works consider models that lead to momentum-dependent mass and WFR in the quark
propagators, thus it is possible to choose nonlocal form factors so as to reproduce the behavior
obtained through lattice QCD calculations [13, 15]. Here we consider a model of this type,
concentrating in particular in the description of the vector meson sector. Therefore we include
couplings between vector and axial vector nonlocal quark currents that satisfy the proper
symmetry requirements, and analyze possible form factor choices and parametrizations in order
to describe the basic properties of low energy vector meson phenomenology.

The article is organized as follows. In Sect. 2 we introduce the model, and in Sect. 3 we
describe how to obtain the physical vector and axial vector meson states in the mean field
approximation. In Sect. 4 and 5 we briefly sketch how to calculate some basic phenomenological
quantities, namely the fπ and fv decay constants and the ρ → ππ decay width. In Sect. 6
we describe the parametrizations considered and quote the corresponding results for meson
observables. Finally in Sect. 7 we present our conclusions.

2. Model
We consider a nonlocal chiral quark model than includes two light flavors. The corresponding
Euclidean effective action is given by

SE =

∫
d4x

{
ψ̄(x)

(
−i/∂ + m̂

)
ψ(x)− GS

2

[
jS(x)jS(x) + jaP (x)j

a
P (x) + jM (x)jM (x)

]
−GV

2

[
jµa
V (x)jaV µ(x) + jµa

A (x)jaAµ(x)
]}

, (1)

where ψ(x) is the Nf = 2 quark doublet ψ = (u d)T , and m̂ = diag(mu,md) is the current quark
mass matrix. We will work in the isospin symmetry limit, assuming mu = md, which will be
called from now on mc.

The fermion currents in Eq. (1) are given by

jS(x) =

∫
d4z g(z) ψ̄

(
x+

z

2

)
ψ
(
x− z

2

)
,

jaP (x) =

∫
d4z g(z) ψ̄

(
x+

z

2

)
iγ5τ

a ψ
(
x− z

2

)
,

jM (x) =

∫
d4z f(z) ψ̄

(
x+

z

2

) i
←→
/∂

2κP
ψ
(
x− z

2

)
,

jaV µ(x) =

∫
d4z h(z) ψ̄

(
x+

z

2

)
γµτ

a ψ
(
x− z

2

)
,

jaAµ(x) =

∫
d4z h(z) ψ̄

(
x+

z

2

)
γµγ5τ

a ψ
(
x− z

2

)
. (2)

where τa, a = 1, 2, 3, are the Pauli matrices, while the functions f(z), g(z) and h(z) are covariant
form factors responsible for the nonlocal character of the interactions. The coupling of the
“momentum” current jM (x) will be responsible for a momentum dependent WFR of the quark
propagators.

We proceed by performing a standard bosonization of the theory. This is done by introducing
scalar (σ1, σ2), pseudoscalar (π⃗), vector (v⃗

µ) and axial vector (⃗aµ) meson fields, and integrating
out the quark fields. Then we consider the mean field approximation (MFA), in which we expand
the boson fields around their vacuum expectation values. From QCD symmetry considerations
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only nonzero VEVs for the scalar fields, say σ̄1 and σ̄2, are allowed. Thus the bosonized effective
action can be rewritten through an expansion in powers of meson fluctuations. Details of this
procedure (for a nonlocal model that does not include the vector meson sector) can be found
e.g. in Ref. [13].

3. Quadratic fluctuations
The meson masses can be obtained from the terms in the Euclidean action that are quadratic
in the bosonic fields. In particular, in the vector meson sector the quadratic piece has a form

Squad
E (v⃗µ) =

1

2

∫
d4p

(2π)4
Gµν

v (p2) δv⃗µ(p) · δv⃗ν(−p) . (3)

Here the tensor Gµν
v (p2) can be written as

Gµν
v (p2) = Gρ(p

2)

(
gµν − pµpν

p2

)
+ L+(p

2)
pµpν

p2
, (4)

where Gρ(p
2) and L+(p

2) are one loop integrals arising from the fermion determinant in the
bosonized action. We obtain

Gρ(p
2) =

1

GV
+ 8NC

∫
d4q

(2π)4
h2(q)

z(q+)z(q−)

D(q+)D(q−)

[
−q2

3
− 2(p · q)2

3p2
+
p2

4
−m(q−)m(q+)

]
,

L+(p
2) =

1

GV
+ 8NC

∫
d4q

(2π)4
h2(q)

z(q+)z(q−)

D(q+)D(q−)

[
−q2 + 2(p · q)2

p2
− p2

4
+m(q−)m(q+)

]
, (5)

where NC is the number of quark colors, and we have used the definitions z(p) = [1− σ̄2f(p)]−1,
m(p) = z(p) [mc + σ̄1 g(p)], D(p) = p2 +m2(p) and q± = q ± p/2. Here the functions z(p), g(p)
and h(p) are Fourier transforms of the nonlocal form factors in Eqs. (2).

The functions Gρ(p
2) and L+(p

2) correspond to the transverse and longitudinal parts of the
vector fields, which describe meson states with spin 1 and 0, respectively. Thus the masses of
the physical ρ0 and ρ± vector mesons (which are degenerate in the isospin limit) can be obtained
by solving the equation

Gρ(−m2
ρ) = 0 , (6)

where the minus sign is due to the fact that the action is given in Euclidean space. In addition,
physical states ˜⃗vµ have to be normalized through

˜⃗vµ(p) = Z−1/2
ρ v⃗µ(p) , (7)

where

Z−1
ρ = g−2

ρqq =
dGρ(p)

dp2

∣∣∣∣
p2=−m2

ρ

. (8)

For the axial vector meson sector one has to take into account the mixing between the π⃗ and
a⃗µ fields. The corresponding quadratic action reads

Squad
E (π⃗, a⃗µ) =

1

2

∫
d4p

(2π)4

{
Gπ(p

2) δπ(p)δπ(−p) +Gµν
a (p2) δa⃗µ(−p)δa⃗ν(p)

+ iGπa(p
2)

[
δa⃗µ(p) p

µδπ⃗(−p)− δa⃗µ(−p) pµδπ⃗(p)

]}
, (9)
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where Gπ(p
2) and Gπa(p

2) are one loop integrals [16]. The tensor Gµν
a (p2) is similar to Gµν

v (p2),
the only difference being the signs of the mass terms m(q+)m(q−) in both the spin 1 and spin

0 pieces. The physical states ˜⃗aµ and ˜⃗π can be obtained by the relations

π⃗(p) = Z1/2
π

˜⃗π(p) ,

a⃗µ(p) = Z1/2
a

˜⃗aµ + i λ(p) pµ Z1/2
π

˜⃗π(p) , (10)

where Zπ and Za are wave function renormalization factors, and λ(p) is determined by requiring
that the cross terms in the quadratic expansion vanish.

4. fπ and fv decay constants
The pion weak decay constant fπ is given by the matrix elements of the axial currents Ja

Aµ(x)
between the vacuum and the physical one-pion state at the pion pole:

⟨0|Ja
Aµ(0)|δπ̃b(p)⟩ = i δab fπ(p

2) pµ , (11)

with p2 = −m2
π. On the other hand, the matrix elements of the electromagnetic current Jemµ(0)

between the neutral vector meson state δṽ3µ ≡ ρ0µ and the vacuum determine the vector decay
constant fv:

⟨0|Jemµ(0)|δṽ3ν(p)⟩ = e fv(p
2) (gµν p

2 − pµpν) , (12)

with p2 = −m2
ρ, where e is the electron charge.

In order to obtain these matrix elements within our model, we have to “gauge” the effective
action through the introduction of gauge fields, and then we have to calculate the functional
derivatives of the bosonized action with respect to the electromagnetic and axial gauge fields and
the renormalized meson fields. Notice that if the action is written in terms of the original states
δπ⃗, in order to calculate the matrix element in Eq. (11) one has to take into account the mixing
with the a⃗µ fields. In addition, due to the nonlocality of the interaction, the gauging procedure
requires the introduction of gauge fields not only through the usual covariant derivative in the
Euclidean action but also through a transport function that comes with the fermion fields in the
nonlocal currents (see e.g. Refs. [3, 8, 12]), giving rise to tadpole-like contributions to the decay
constants. The various diagrams contributing to fπ are schematized in Fig. (1). Analytical
expressions for the functions fπ(p

2) and fv(p
2) will be given in a forthcoming article [16].

π

π

a1
a1

Figure 1: Diagrams contributing to the calculation of the pion decay constant.
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5. ρ→ ππ decay
In general, different transition amplitudes can be calculated by expanding the bosonized action
to higher orders in the meson fluctuations. In order to obtain the decay amplitude of the ρmeson
into two pions we have to calculate the corresponding functional derivative of the effective action,
namely

δ3SE
δπ̃a(q1)δπ̃b(q2)δṽcµ(p)

∣∣∣∣
δvµ=δπ=0

= (2π)4 δ(4)(p+ q1 + q2) i ϵabc

[
F̃ρππ(p

2, q21, q
2
2) (q1µ + q2µ)

+ G̃ρππ(p
2, q21, q

2
2) (q1µ − q2µ)

]
. (13)

The ρ→ ππ decay width is then given by

Γρ→ππ =
1

12π
mρ g

2
ρππ

(
1− 4m2

π

m2
ρ

)3/2

, (14)

where gρππ ≡ G̃ρππ(−m2
ρ,−m2

π,−m2
π).

The meson fields in Eq. (13) are physical states. In terms of the unrenormalized fields, taking
into account the π − a mixing we have

G̃ρππ(p
2, q21, q

2
2) = Z1/2

ρ Zπ

[
Gρππ(p

2, q21, q
2
2) +

λ(p) Gρπa(p
2, q21, q

2
2) + λ(p)2 Gρaa(p

2, q21, q
2
2)

]
. (15)

The one-loop functions Gρππ(p
2, q21, q

2
2), Gρπa(p

2, q21, q
2
2) and Gρaa(p

2, q21, q
2
2), which can be

obtained after a rather lengthy calculation [16], can be associated with the diagrams of Fig. (2).

ρ

π

π

ρ

π

a1

ρ

a1

a1

Figure 2: Diagrams contributing to the ρ→ ππ decay amplitude.

6. Numerical results
6.1. Model parameters and form factors
In order to properly define the model it is necessary to give the model parameters and to
specify the form factors f(z), g(z) and h(z) in the fermion currents. Here we consider two
parametrizations, corresponding to different functional dependences for the Fourier transforms
f(p) and g(p) that guarantee the ultraviolet convergence of loop integrals. The first one, which
we call P1, is given by simple Gaussian functions [8, 9, 10, 11, 12]

g(q) = e−q2/Λ2
0 , f(q) = e−q2/Λ2

1 . (16)
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The second, that we call P2, is chosen so as to reproduce lattice QCD results [6] for the
momentum dependence of effective quark propagators. In this case the form factor functions
are taken as [13]

g(q) =
1 + αz

1 + αzfz(q)

αmfm(q)−mαzfz(q)

αm −mαz
, f(q) =

1 + αz

1 + αzfz(q)
fz(q) , (17)

where

fm(q) =

[
1 +

(
q2

Λ2
0

)3/2
]−1

, fz(q) =

[
1 +

(
q2

Λ2
1

)]−5/2

. (18)

Notice that the form factors introduce two additional parameters, Λ0 and Λ1, which play the
role of effective momentum cutoffs. Both types of form factors have been previously considered
in the context of nonlocal chiral quark models in Refs. [13, 15].

In our model there is also another form factor h(p) coming from the vector and axial vector
currents. For definiteness and simplicity we assume the effective behavior of quark interactions
to be similar in the J = 0 and J = 1 channels, therefore we choose this form factor to have the
same form as the function g(p).

Now, given the form factor functions, one can fix the model parameters so as to reproduce
the observed meson phenomenology. We recall that in our model the parameters in the effective
action are the quark mass mc and the coupling constants GS , GV , and κ, to which we have to
add the scale parameters Λ0 and Λ1.

The parameters are determined as follows. The effective cutoffs Λ0 and Λ1 are fixed in
such a way that they lead to momentum dependences of the effective mass and WFR in the
quark propagator in agreement with lattice QCD results. The remaining four parameters are
determined by fixing the value of the quark WFR at momentum zero, Z(0) ≃ 0.7 (as dictated
by lattice QCD estimations), and by requiring that the model reproduces the empirical values
of three physical quantities. Here we have chosen the masses of the π and ρ mesons and the
pion weak decay constant fπ. The numerical results for the model parameters corresponding to
the above described form factor functions are quoted in Table 1.

P1 P2

mc [MeV] 3.36 1.48
GSΛ

2
0 29.7 21.84

Λ0 [GeV] 1.03 0.95
Λ1 [GeV] 1.10 1.50
κP [GeV] 3.41 6.35
GV Λ

2
0 19.31 15.56

Table 1: Parameter values for parametrizations P1 and P2.

The momentum dependence of quark propagators is illustrated in Fig. 3, where we show the
curves for the functions fm(p) and Z(p) that correspond to our parametrizations P1 and P2,
together with lattice QCD results.

6.2. Meson properties
Once the parameters have been determined, we can calculate the values of the above mentioned
meson observables for the pseudoscalar, vector and axial-vector sectors. Our numerical results
for parametrizations P1 and P2 are summarized in Table 2, together with the corresponding
phenomenological values.
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Figure 3: Momentum dependence of the functions fm(p) and Z(p) for parametrizations P1 and
P2, in comparison with lattice results.

P1 P2 Empirical

σ̄1 [MeV] 560 560 -
σ̄2 [MeV] -0.470 -0.430 -

−⟨qq⟩−1/3 [MeV] 295 380 -
mπ [MeV] 146 139 139
fπ [MeV] 91.2 91.8 92.4
mρ [MeV] 784 779 775.5

fv 0.16 0.21 0.20
Γρ→ππ [MeV] 122 148 149.1

Table 2: Numerical results for various phenomenological quantities.

7. Summary
We analyze the description of light pseudoscalar and vector mesons within an SU(2) chiral
quark model that includes nonlocal four fermion couplings with wave function renormalization.
In particular we calculate in this framework the masses and decay constants for the ρ and π
mesons, as well as the decay width of the ρ meson into two pions. The model parameters
are determined considering two different nonlocal form factor shapes, namely simple Gaussian
functions and lattice QCD inspired form factors.

From our numerical results it is seen that in both cases it is possible to find sets of model
parameters that lead to reasonable phenomenological values for the meson masses and decay
constants. The agreement is particularly good for our parametrization P2, which is also able to
reproduce adequately the momentum dependence of mass and WFR in the quark propagators
found in lattice QCD calculations.
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