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Abstract. SAO244567 is an unusually fast evolving star. Within twenty years only, it had
turned from a B-type supergiant into the central star of the Stingray Nebula. Space- and
ground-based observations obtained over the last decades have revealed that its spectrum
changes noticeably over just a few years, showing stellar evolution in real time. The low mass
of SAO244567 is, however, in strong contradiction with canonical post-asymptotic giant branch
evolution. Thus, its fast evolution has been a mystery for decades. We present preliminary
results of the non-LTE spectral analyis of the recently obtained HST/COS observations, which
finally allow us to shed light on the evolutionary history of this extraordinary object.

1. Introduction

Rapid changes of the observable properties of SAO 244567 were at first noticed by [1, 2]. Based
on a spectral classification of the optical spectrum obtained in 1971 and the UBV colors,
they concluded that SAO 244567 was a B-type supergiant with an effective temperature of
Teff ≈ 21 kK. However, the optical spectra from 1990 and 1992 as well as UV spectra from 1992
on display many nebular emission lines, indicating that SAO244567 has ionized its surrounding
nebula only two decades later. [3] and [4] presented the first spatially resolved images of the
planetary nebula (PN) and named it Stingray Nebula.
In [5] the first quantitative spectral analysis of all available spectra from 1988 to 2006, that
were taken with various space-based telescopes, was presented. It was found that the central
star has steadily increased its Teff from 38 kK in 1988 to a peak value of 60 kK in 2002.
During the same time, the star was contracting, as concluded from an increase in surface
gravity from log g =4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate
declined from log(Ṁ /M� yr−1) = −9.0 to −11.6 and the terminal wind velocity increased from
v∞ = 1800km/ s to 2800 km/ s. The surface composition is largely solar with the exception
of slightly subsolar C, P, and S, indicating that the possible asymptotic giant branch (AGB)
phase of the star was terminated before the third dredge-up. We confirmed previous findings,
that SAO 244567 must be a low mass star (M < 0.55M�). This low mass, however, contradicts
the rapid heating if a canonical post-AGB evolution is assumed [2, 4], because for such a rapid
evolution the core mass should be around 0.7M� [6]. [5] speculated that the star might had
experienced a late thermal pulse (LTP) shortly after leaving the AGB, because the evolutionary

11th Pacific Rim Conference on Stellar Astrophysics IOP Publishing
Journal of Physics: Conference Series 728 (2016) 032006 doi:10.1088/1742-6596/728/3/032006

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301099102?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


speed of late He-shell flash objects is very high. Within the next decades an LTP scenario would
predict for SAO 244567 an evolution back to the AGB, i.e., a cooling of the star. To follow the
evolution of the surface properties of SAO 244567 and verify the LTP hypothesis, we applied for
further observations with HST/COS.

2. Observations and spectral analysis

HST/COS 2015
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Figure 1. Emergence of Si III λ 1113.2 Å in the HST/COS observation taken in 2015 (right).
This line was not visible in the FUSE observation in 2002/2006 (left/middle) when the star
was about 10/5kK hotter. The dotted red / dashed purple line corresponds to TMAP models
with Teff =60/55 kK (best fit for 2002/2006), while the solid blue line represents a model with
Teff =50 kK (best fit for 2015). Note that the differences in the line profiles are caused by the
instruments’ line spread functions.

The observations were successfully performed on August 9, 2015, more than nine years
after the star was observed by an UV telescope the last time. We obtained FUV medium-
resolution (grating G130M) and low-resolution FUV and NUV spectra (gratings G140L and
G230L) spectra.
The new observations reveal that the flux level decreased by a factor of 1.55/1.4 compared to
FUSE observations in 2002/2006. Thanks to the good signal-to-noise ratio (S/N), we could
identify lines of Cr and Ni for the first time. Furthermore, we find that the N V resonance lines
show blue shifted absorption wings, which might indicate the presence of a very weak stellar
wind. Finally, we discovered the emergence the Si III λ 1113.2Å line in the new HST/COS
spectra (Fig. 1). This line was not visible in the previous FUSE observations, which cover this
wavelength range as well and have about the same resolving power (R ≈ 20 000).
For the quantitative spectral analysis we used the Tübingen non-LTE Model-Atmosphere
Package (TMAP, [7, 8, 9]), which allows the computation of fully metal-line blanketed model
atmospheres in radiative and hydrostatic equilibrium. Our model grid included opacities of the
elements H, He, C, N, O, Si, P, S, Cr, Fe, and Ni. The model atoms were taken from the
Tübingen Model-Atom Database TMAD and calculated (Cr, Fe, Ni) via the Tübingen IRon
Opacity interface TIRO [10]. In addition, we employed the program OWENS to model the ISM
line-absorption spectrum.
We found, that Si III λ 1113.2Å was not visible in the FUSE observation in 2002, because the
star was about 10 kK hotter in 2002 compared to 2015 where we find the best fit at Teff =50 kK.
This value is also confirmed by evaluating additionally the ionization equilibria of C III /C IV,
N III /N IV, O III/ O IV/ OV, and S IV / S V / S VI. The good S/N allows to reduce the error on Teff
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to ±2.5 kK. We conclude that the star has cooled significantly since 2002. The newly identified
lines of Cr and Ni allowed to measure their abundances for the first time. They are solar.
Moreover, we confirm the abundance values of all the other elements derived in our previous
analysis, i.e., no hint of a change in the chemical abundances was found.
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Figure 2. Temporal evolution of Teff. The square indicates the Teff estimate of [2] when
SAO 244567 was still a B-type supergiant. Dots correspond to Teff values as derived by [5] and
the triangle is the value measured with the new HST/COS observations performed in 2015. Note
that the cooling rate of SAO 244567 (770 ± 580K/yr) is similar to that of FGSge (350K/yr,
[14]), the only other hitherto known LTP object.

3. Conclusions

SAO 244567 provides us with the rare opportunity to study stellar evolution in real time. Its
primarily rapid heating (heating rate from 1988 to 2002: 1570± 570K/yr, Fig. 2), followed by
the rapid cooling (−770 ± 580K/yr, Fig. 2) strongly supports the LTP evolutionary scenario
(Fig. 3). LTPs are expected to occur to a significant fraction of the post-AGB stars while
evolving with roughly constant luminosity from the AGB towards the white dwarf domain.
Differently to very LTPs, which occur only on the early white dwarf cooling track and produce
a hydrogen-free stellar surface already during the flash, a normal surface composition holds up
after an LTP. Only when the star evolves back to the Hayashi limit on the AGB (Teff . 7000K),
envelope convection can set in again [11, 12, 13]. This was actually observed in case of FGSge,
the only other star known to date that certainly must have suffered an LTP. This star has been
transformed over an interval of 120 years from a hot, hydrogen-rich post-AGB star into a very
luminous cool supergiant (Fig. 3). [14] showed that, after its return to the AGB, the surface
H fraction of FG Sge got diluted significantly (from 0.9 to 0.01, by number) while s-process
abundances increased.
We note that SAO 244567 must be in an earlier evolutionary stage than FGSge, as it was
observed during its heating as well as its cooling phase. Moreover, the numerous UV observation
taken over three decades as well as the use of sophisticated non-LTE model atmosphere
codes allowed us to precisely record the evolution of this extraordinary object. Therefore the
derived surface parameters will establish constraints for LTP evolutionary calculations. These
calculations in turn may not only explain the nature of SAO 244567, but they could also provide
a deeper insight in the formation process of hydrogen-deficient stars, which make up about a
quarter of the post-AGB stars and white dwarfs.
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Figure 3. Sketch of an LTP evolution of SAO 244567 in the Hertzsprung-Russell diagram. The
observed evolutionary path of SAO 244567 is indicated by the pink line, whereas the observed
path of FGSge is shown in gray. “A” corresponds to the point when the star reaches the
Hayashi limit on the AGB and becomes H-deficient. “A” also corresponds to the recent position
of FGSge.
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[12] Blöcker T and Schönberner D 1997 Astron. Astrophys. 324 991
[13] Schönberner D 2008 Hydrogen-Deficient Stars eds Werner W and Rauch T (ASP Conf. Series vol 391) p 139
[14] Jeffery C S and Schönberner D 2006 Astron. Astrophys. 459 885

11th Pacific Rim Conference on Stellar Astrophysics IOP Publishing
Journal of Physics: Conference Series 728 (2016) 032006 doi:10.1088/1742-6596/728/3/032006

4




