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We present an exhaustive study of the rank-distribution of city-population

and population-dynamics of the 50 Spanish provinces (more than 8000

municipalities) in a time-window of 15 years (1996–2010). We exhibit com-

pelling evidence regarding how well the MaxEnt principle describes

the equilibrium distributions. We show that the microscopic dynamics that

governs population growth is the deciding factor that originates the

observed macroscopic distributions. The connection between microscopic

dynamics and macroscopic distributions is unravelled via MaxEnt.
1. Introduction
1.1. Patterns in social systems
Orderliness, reflected in either scaling properties [1] or power laws [2–6], is

encountered in different frameworks involving social groups. A salient example

is Zipf’s Law [7,8], a power law with exponent 2 2 for the density distribution

function that is observed in describing urban agglomerations [9–11] and firm

sizes all over the world [12]. This kind of ‘order’ has received immense attention

in the literature. Pertinent regularities have been found in other scenarios as well,

ranging from scientific collaboration networks [13] and total number of cites by

physics journals [14] to Internet traffic [15,16] or Linux package links [17]. Another

special regularity has also been found in the density distribution function of

the number of votes in Brazilian elections [18]: a power law whose exponent is

2 1 (this kind of distribution is the origin of the so-called First-Digit Law, or

Benford’s Law, as shown in Weisstein [19]). This behaviour is also found in

Hernando et al. [20] for the city size-distribution of the province of Huelva

(Spain), and in the distribution of the number of votes in the 2008 Spanish General

Elections. Undoubtedly, some aspects of human behaviour reflect a kind

of ‘universality’.

Common to all these disparate systems is the lack of a characteristic size,

length or frequency for the observable of interest, which makes it scale-invariant.

In our previous work [20], we have introduced an information-theoretic tech-

nique based upon the minimization of Fisher’s information (MFI) measure [21]

that allows for the formulation of a ‘thermodynamics’ for scale-invariant systems.

The methodology establishes an analogy between such systems and physical

gases that, in turn, shows that the two special power laws mentioned in the pre-

ceding paragraph lead to a set of relationships formally identical to those

pertaining to the equilibrium states of a scale-invariant non-interacting system,

the scale-free ideal gas (SFIG). The difference between the two distributions is

thereby attributed to different boundary conditions on the SFIG.

Many social systems, however, are not easily included in the two previous

descriptions. Inspired by opinion dynamics models [18,22,23], we described in

a previous work [24] a numerical process that reproduces the shapes of the

empirical city-population distributions. The model is based on a competitive
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cluster growth process inside a scale-free ideal network (a

scale-free network in which degree distribution is described

as an SFIG). The finite size of the network introduces compe-

tition, and thus correlations in the cluster sizes. The larger the

competitiveness, the larger the deviation from the SFIG distri-

bution. The equivalence with the workings of physical gases

was shown to be compelling indeed. However, some aspects

of the concomitant problems defied full understanding,

because an analytical prescription for the classification of

the size-distribution of social groups was missing.

1.2. Entropy measure of information
In order to do look for such analytical understanding, we will appeal
here to a variational approach centred on information theory. On the

basis of ideas by Hernando et al. [25] we deal with the

well-established MaxEnt technique [26–29] by including,

within the associated Lagrangian, information regarding

equations of motion, i.e. ‘dynamical’ information of a kind that

goes beyond the customary one, based upon expectation values.

We have demonstrated that proportional growth and

hyper-exponential growth (also known as q-growth where q is

a real value that parametrizes the growth dynamics) can both

be described in these terms, accurately predicting the equili-

brium size-distribution for such systems [25]. This is

tantamount to giving a dynamical interpretation to the ‘infor-

mation cost’ introduced in Baek et al. [30]. Our approach

relates the microscopic dynamics of the system elements with

the observed macroscopic distribution. We remark that the

introduction of dynamical information results in a net decrease

of the entropy. Take for example geometric Brownian motion.

In the case of a pure diffusive process, the final state covers all

space with equiprobability, while in the geometric Brownian

process the final state does not uniformly cover all space.

Of course, a lower value of the entropy ensues then. See in

this vein Corominas-Murtra & Solé [8], where Zipf’s Law has

been shown to be the asymptotic solution for a wide range of

entropy losses. The important concept of entropy loss is lucidly

described in Harremoes & Topsoe [31,32]. See also Gabaix [11]

and Zanette & Manrubia [33] for interesting related work.

1.3. Aim of this work
Our main present purpose is to apply what we learned in

Hernando et al. [25] to empirical social systems, thus demon-

strating the applicability of MaxEnt to collective human

behaviour, and the potential use of an explicit social thermo-
dynamics. The applicability of this theoretical procedure will

allow us to reduce the large number of microscopic degrees

of freedom to a few macroscopical parameters. In this work

we test two different tableaus for the migration dynamics

underlying the empirical city population:

(i) Proportional growth with a constraint in the total-

population. The city populations evolve as geometrical

Brownian walkers but total population remains constant.

(ii) q-growth with total-population constraint plus pro-

portional drift. This more sophisticated evolution

uses q-metric Brownian walkers [25] to reproduce

migration patterns and adds some drift of proportional

nature to simulate the growth of the total population.

We fit each microscopic dynamical model to the empirical

data on city-populations, and compare the MaxEnt prediction
for macroscopic size-distribution with the actual one.

If compatibility is encountered between the microscopic and
macroscopic measure, our theoretical description should be correct.

This work is organized as follows. In §2 we describe the

empirical dataset used here. In §3, we revisit the theoretical

MaxEnt approach to be followed for tableau (i) and (ii). In §4,

we present the results, first for the proportional growth

approximation and then for the q-growth with drift. We analyse

the results for a numerical simulation with random walkers as

the control case, and apply our methodology to the empirical

data for the Spanish provinces. The ensuing results clearly

show the usefulness of the theoretical method. In §5, we discuss

some noteworthy features of the results and their possible uses

in other contexts. A summary is given in §6 and, finally, some

technical aspects are the subject of appendix A.
2. Empirical dataset
The raw data are obtained from the Spanish state institute

INE [34] and cover the years in the 1996–2010 (with the excep-

tion of 1997) period. It encompasses 8116 municipalities (the

smallest Spanish administrative unit) distributed within 50 pro-

vinces (the building blocks of the autonomous communities).

The autonomous cities of Ceuta and Melilla are not included.

We use provinces and municipalities as the closest representa-

tives of the ideal of a closed system’s fundamental elements.

However, some arbitrariness remains in the data, because (i)

there are many municipalities that actually possess more than

one population-centre, (ii) there are provinces that contain

more than a single socioeconomic cluster, and (iii) there are econ-

omic regions that extend beyond the border of a province. Those

facts introduce systematic errors into the data, but we retain

enough accuracy for the purposes of this work.

The data cover a total Spanish population of 39 106 917

inhabitants in 1996, reaching 47 254 510 in 2010. For this last

year, the largest municipality (Madrid) covers 3 273 049

people and the smallest one just five persons (Illán de

Vacas, Toledo). The total population of each province

ranges between 6 458 684 inhabitants (Madrid) and 95 258

(Soria), and the number of municipalities, between 371

(Burgos) and 34 (Las Palmas). Figure 1 shows the spatial

distribution of the Spanish municipalities.

The number of municipalities in each province is not large

enough to build up an accurate macroscopic size-density dis-

tribution. Accordingly, we have systematically worked with

rank-distributions (RDs) instead. RDs are usually built from

the vector x ¼ fxign
i¼1, where xi is the population of the ith

municipality and n is the total number of municipalities in

that province. We assign rank numbers ranging from 1 to n,

from the largest (max(x)! r ¼ 1) to the lowest in population

(min(x)! r ¼ n). However, in order to compare with theoreti-

cal, continuous RDs, we have found it to be more accurate to

assign ‘middle-point’ values from r ¼ 0.5 to r ¼ n 2 0.5,

instead. We show some examples of RD for different provinces

in figures 2 and 4 (the RDs for all the 50 provinces can be

found in the electronic supplementary material). For our

microscopic dynamical analysis, we generate, for each pro-

vince and for each time-period, the pair ðui; _uiÞ, with the

logarithm of the population ui correlated with the relative

population increment _ui. They are computed as

ui ¼
log½xiðt2Þxiðt1Þ�

2
and _ui ¼

log½xiðt2Þ=xiðt1Þ�
t2 � t1

; ð2:1Þ
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Figure 1. Spatial map of the municipalities of Spain. The size is proportional to the logarithm of the population, and colour indicates the q value obtained from the
rank-distributions of that province when applicable, or from the dynamics instead (see text). (Online version in colour.)
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where t1 and t2 are consecutive years for which data are available.

We show in the insets of figures 2 and 4 the corresponding

dynamics for each province. To unravel the relationship between

these dynamic pictures and city-population RDs is the main

purpose of this work.
3. Theoretical approach
3.1. Basics
Following the methodology described in Hernando et al. [25],

let us define our relevant quantities. They are

(i) N, the total population of a province,

(ii) n, the total number of municipalities into which the

population is apportioned,

(iii) xi(t), the population of the ith municipality at time t,
(iv) _xiðtÞ, the time-derivative of xi(t),
(v) a priori knowledge of the dynamics at hand, i.e.

_xiðtÞ ¼ g½xiðtÞ�; where g(x) describes the functional

dependence of the dynamics in the population x,

(vi) x0, the minimum possible population (at least x0 ¼ 1),

and

(vii) pX(x), the number of cities with exactly an x–

population.

Considering the continuous limit of the distribution pX(x), the

conservation of both n and N guaranteesð1

x0

dxpXðxÞ ¼ n and

ð1

x0

dxpXðxÞx ¼ N: ð3:1Þ

The variables xi(t) and _xiðtÞ describe the explicit micro-

scopic state of the system, and they are those involved in

the dynamical equation. On the other hand, quantities as

N, n, x0 or the distribution pX(x) can be obtained from macro-

scopic observations. The theoretical approach that follows is

our attempt to describe macroscopically the state of the

system univocally using the latter macro-observables. To
this aim, we introduce in the MaxEnt principle the dynamical

information of the equation of motion. We do that in the

fashion of Hernando et al. [25], i.e. turning on MaxEnt and

conjecturing, à la Jaynes, that in dynamical equilibrium the

appropriate distribution pX(x)dx is the one that maximizes

Shannon’s entropy S subject to the above constraints. One

thereby concocts the variational problem

d½S� mn� lN� ¼ 0; ð3:2Þ

with m and l the corresponding Lagrange multipliers.

The functional form of the dynamics g(x) affects the way

Shannon’s entropy is measured [25]. The equilibrium city

size-distributions pX(x) are determined univocally by g(x),

x0, N and n, as will be seen next for two different guesses

for g(x): proportional growth (g(x)/ x) and q-growth (g(x)

/ xq).
3.2. MaxEnt for proportional growth dynamics
Hernando et al. [24] showed that city population expansion

can be modelled by means of cluster growth in complex net-

works. Such a process (diffusion) in networks generally starts

(i) using a node as a seed, (ii) its first neighbours being added

to the cluster in the first iteration, (iii) the neighbours of those

neighbours afterwards and so on. Mathematically, if Dt is the

interval of time for each iteration and x(t) is the population of

the cluster at the time t, we can write

xiðtþ DtÞ ¼ xiðtÞ þ Dt
XxiðtÞ

j¼1

kijðtÞ; ð3:3Þ

where kij(t) is the number of neighbours of the jth node

accepted to the cluster per unit time at time t. Because it is

our intention to pass to the continuum, we appeal to the

central limit theorem so as to generalize this equation to

xiðtþ DtÞ ≃ xiðtÞ þ DtðkiðtÞxiðtÞ+ sk

ffiffiffiffiffiffiffiffiffi
xiðtÞ

p
Þ; ð3:4Þ

where ki(t) is a mean value of accepted neighbours per unit time

at time t andsk its standard deviation. For large enough values of
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the population the last term—related to finite size effects—can be

neglected; so we write for the continuous limit

_xiðtÞ ¼ kiðtÞxiðtÞ; ð3:5Þ

where the dot represents the time derivative. This equation

describes the so-called proportional growth, whose generaliz-

ation to a random process leads to the so-called geometrical

Brownian motion. A system governed by these dynamics exhi-

bits scale-invariance since a scale transformation in the fashion

x’(t)¼ cx(t), where c is an arbitrary constant, leaves invariant

the dynamical equation. Equation (3.5) is linearized by intro-

duction of the new variable ui¼ log(xi/x0), which leads

to _uiðtÞ ¼ kiðtÞ. Considering that k is a Wiener coefficient

(following a normal distribution with covariance kkiðtÞkjðt0Þl ¼
kkiðtÞ2ldðt� t0Þdij), the Shannon measure is expressed in terms

of u as

S ¼
ð1

0

dupðuÞ log½ pðuÞ�: ð3:6Þ

where p(u)du ¼ pX(x)dx. With our two conservation rules

(equation (3.1)) written in u-terms, the MaxEnt variational

problem becomes

d S� m

ð1

0

dupðuÞ � L

ð1

0

dupðuÞeu
� �

¼ 0; ð3:7Þ

where we have used the definition L ¼ x0l. The solution is the

equilibrium density pðuÞdu ¼ nZ�1 expð�LeuÞdu, that one

now recasts in terms of the observable x getting

pXðxÞdx ¼ n
Z

e�Lx=x0

x
dx: ð3:8Þ

From the conservation rules, we can easily obtain for the

pertinent constraints the values

Z ¼ Gð0;LÞ

and
e�L

LGð0;LÞ ¼
N

nx0
;

9=
; ð3:9Þ

with Gða; zÞ the so-called incomplete Gamma function. In this

way, the 2n microscopic degrees of freedom (each xi and _xi

pair) are reduced to four parameters (n, N, x0 and L) related

between them via this last equation. The shape of the

macroscopic distribution is then determined by a single

value N/nx0.

The concomitant cumulative function PX(x) reads

PXðxÞ ¼ n 1� Gð0;Lx=x0Þ
Gð0;LÞ

� �
; ð3:10Þ

and the associated RD—obtained from the inversion of the

cumulative one—becomes

x ¼ x0

L
G�1 0;

Gð0;LÞr
n

� �
; ð3:11Þ

where r is the (continuous) rank from 0 to n, and G�1ðzÞ
denotes the inverse function of G: GðG�1ðzÞÞ ¼ z. We derive

from here what we call the Gamma Scaling Law

x0 ¼ xL
x0

and r0 ¼ rGð0;LÞ
n

;

9>>=
>>;

ð3:12Þ

obtaining a ‘scaled’ RD

x0 ¼ G�1ð0; r0Þ; ð3:13Þ

which no longer depends on N, n or x0.
3.3. Beyond proportional growth generalizing
equation (3.5)

The description based on equation (3.5) has limitations that

we discuss in §4.1. A different possibility consist in appealing

to the more general expression

_xiðtÞ ¼ kiðtÞ½xiðtÞ�q; ð3:14Þ

where q is a dimensionless parameter. Using the defini-

tions of the q-logarithm and q-exponential of Tsallis’

statistics [35–37]

logqðxÞ ¼
x1�q � 1

1� q
; ðx . 0Þ

and eqðvÞ ¼ ½1þ ð1� qÞv�1=ð1�qÞ
þ ;

9>=
>; ð3:15Þ

linearized by means of the new variable vi ¼ logqðxi=x0Þ. The

subindex þ takes care of the so-called Tsallis cut off [38]: eq

vanishes if the bracket becomes negative. We obtain the

dynamical relationship _vðtÞ ¼ kðtÞ, and so the Shannon

entropy is measured as

S ¼
ðvm

0

dvpðvÞ log½ pðvÞ�; ð3:16Þ

where vm ¼ 1/(q 2 1) if q . 1 or infinite otherwise. The con-

comitant MaxEnt problem is now of the form

d S� m

ðvm

0

dvpðvÞ � L

ðvm

0

dvpðvÞeqðvÞ
� �

¼ 0; ð3:17Þ

whose solution is pðvÞdv ¼ nZ�1 exp½�LeqðvÞ�dv. Changing

back to the observable x, we find

pXðxÞdx ¼ n
Z

e�Lx=x0

xq dx: ð3:18Þ

The constraints derive from the conservation rules in the

usual manner as

Z ¼ L

x0

� �q�1

Gð1� q;LÞ

and
Gð2� q;LÞ
LGð1� q;LÞ ¼

N
nx0

:

9>>>=
>>>;

ð3:19Þ

The current cumulative function turns out to be

PXðxÞ ¼ n 1� Gð1� q;Lx=x0Þ
Gð1� q;LÞ

� �
; ð3:20Þ

and for the associated RD one has

x ¼ x0

L
G�1 1� q;

Gð1� q;LÞr
n

� �
: ð3:21Þ

We now consider a q-equilibrium system subject to

proportional drift that may account for the ‘natural’ popu-

lation-growth or fluctuations of proportional nature. One is

here including a kind of noise that affects the underlying

dynamical equation via

_x ¼ k1xðtÞ þ kqxðtÞq; ð3:22Þ

or, in terms of u ¼ log(x),

_u ¼ k1 þ kq eðq�1Þu; ð3:23Þ

where k1 characterizes proportional drift and kq the hyper-

exponential growth. Considering both k1 and kq as indepen-

dent Wienner coefficients, the system departs equilibrium

via proportional diffusion. As seen in Hernando et al. [25],

the kernel function for that kind of diffusion is a lognormal
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distribution. We face the convolution

pXðxjL; x0; q;sÞdx ¼ n dx

ðL=x0Þq�1
Gð1� q;LÞ

�
ð1

x0

dx0
e�Lx0=x0

x0q
e� log2ðx0=xÞ=2s2

x
ffiffiffiffiffiffi
2p
p

s
; ð3:24Þ

where s is the drift-scale parameter. The mean value reads

Gð2� q;LÞ
LGð1� q;LÞ e

s2=2 ¼ N
nx0

: ð3:25Þ

In this model, the 2n microscopic degrees of freedom are

then reduced to six parameters (n, N, x0, L, q and s) related

between them via this last equation. The shape of the

macroscopic distribution is then determined by the value of

N/nx0, q and s.

Note that we have derived our distributions using MaxEnt

(with the standard Shannon entropy, but with modified vari-

ables). Many other authors use MaxEnt in conjunction with

different entropic forms for which one of the four Khinchin’s

axioms is modified (the axiom of extensivity) [38,39], but

keeping the original variables, not changing them as we do.
l

0 1 2 3 4 5 6
r'

–8

–6

–4
r (rank)

Figure 2. (a) Macroscopic rank-distribution of the province of Alicante (year
2010), compared with the corresponding MaxEnt prediction for proportional
growth. The shadowed area represents the 90% CI for n ¼ 141. Inset: relative
change versus natural logarithm of the population for this province for the last
15 years, where each grey dot represents one municipality for each annual
period. Black dots denote the mean value in each interval Du ¼ 0.25 and the
error bars the standard deviation at that interval. (b) Gamma-scaled rank-
distribution of all 50 provinces. Inset: raw data (2010). (Online version
in colour.)
3.4. Numerical simulation with random walkers
We have performed numerical simulations with random

walkers to test the theoretical results of our connection

between the microscopic dynamics and the macroscopic

state via MaxEnt. This is achieved following the algorithm

described in Hernando et al. [25] for the dynamics. We

first find the equilibrium state attained by n q-metric walk-

ers following equation (3.14) with a given value of q, a

initial total population N, and a minimum allowed popu-

lation x0 (or the equivalent value of u0 if working with

the linearized variable u). Without this lower bound, the

dynamics may reach a peculiar stable state in which the

population tends to zero owing to the eventual dis-

appearance of the settlements. The effect of this kind of

constraint on the final size-distribution is also studied in

Blank & Solomon [2], where the above-referred peculiarity

is avoided by recourse to introducing an exponential

growth that takes place if one forces the average of k to

be greater than zero. In our case, growth is introduced as

a proportional drift, via equation (3.23), with a positive-

valued mean for k. Accordingly, the system evolves in the

following fashion:

(i) walkers ‘move’ following the q-dynamics, and

populations are corrected as described in Hernando

et al. [25] to reproduce the total population,

(ii) we make the walkers to evolve by adding a

proportional noise,

(iii) the ensuing drift generates population-growth and

the value of N obtained afterwards is updated

accordingly, and

(iv) we keep going on during a specified number m of

iterations.

The walkers’ final macroscopic size-distribution and their

dynamics are analysed in the same way as we did for empiri-

cal data in §2. This final distribution is used as a control case.

We will show in §4 that our approach is able to macroscopi-

cally describe the effects of (i) the lower bound and (ii) the
positive mean growth (microscopic dynamics). Also, the

preceding discussion is revisited in §5.2.

4. Results
4.1. Proportional growth analysis
We use as paradigmatic example of proportional growth the

province of Alicante. We also use it to illustrate our empirical

analysis. The inset in figure 2a depicts u versus _u obtained

using equation (2.1) for all the municipalities in the last

15 years. The correlation coefficient between the two micro-

scopic variables is found to be 0.16, small enough to

consider, at zeroth-order approximation, that the growth is

of proportional nature, and thus independently of the size

and obeying equation (3.5).

As seen in §3.4, the macroscopic equilibrium RD pre-

dicted for proportional growth by MaxEnt follows

equation (3.8), where L is univocally determined via equation

(3.9), with the given total population N ¼ 1 926 285 (in 2010),

the number of municipalities n ¼ 141 and an estimation of

the minimum population x0. N and n are well determined

in all cases. The simplest way of estimating x0 is via extrapol-

ation in the rank-plot of a linear fit to the logarithm of the

lowest populations. A more sophisticated method (that we
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use here) uses a nonlinear fitting of the raw data to the

MaxEnt rank-distribution via this single parameter, using

equation (3.11) together with the definition of L equation

(3.9). We have obtained log(x0) ¼ 4.83, with a correlation coef-

ficient of 0.9997. The comparison of the raw data with the

analytical rank-distribution is displayed in figure 2a. The sha-

dowed area represents the 90% CI owing to the finite value of

n (numerically estimated as described in appendix A). The

empirical RD falls inside the CI, and the observed micro-

scopic dynamics are compatible with the dynamical

assumption of equation (3.5). We consider then that this

case constitutes strong evidence for the applicability of the

MaxEnt principle for scale-invariant social systems.

We have applied the same approximation of proportional

growth to the rest of the Spanish provinces, also including the

values of the total populations N in the fitting procedure.

Using the corresponding values of n together with the esti-

mated values of x0 and N, we get the value for L, and

apply then the Gamma Scaling Law described in §3.4. The

scaled RDs are displayed in figure 2 (raw data in the inset),

and the numerical values of the fitted results can be found

in electronic supplementary material, table S1. A quite nice

adjustment ensues in general but not in all instances. This

‘failure’ is linked to the strong correlations between _u and u
for some provinces, that reaches significant values (of up to

0.57 for the province of Lugo). Although such correlations

may compromise the validity of the approximation of pro-

portional growth, the scaling features exhibited by this plot

are remarkable indeed.

It is worth mentioning that the fitted value for the total

population N is found to be systematically lower than the

actual value for it. Such a scenario usually changes when the

capital city of the province is not considered in the fitting pro-

cess, and thus in the estimation of N. This indicates that the

population of the capital city is systematically larger than

what one would expect from the MaxEnt prediction (of the

90% confidence level). This is not surprising because, as men-

tioned earlier, provinces are not ideal, isolated systems: the

actual administrative municipality for capital cities is usually

the sum of the historical ones plus some near neighbours,

and their economy is expected to be highly correlated with

that of other capital cities. Although only 50 cities is a small

sample, we have studied the rank-distribution of these capitals

and their dynamics to shed some light on this observation. We

have found the pleasing result that these capitals form a scale-
free system of their own. We compare in figure 3 the RD with the

MaxEnt prediction using the actual value N ¼ 15528025 with

the only fitting parameter log(x0) ¼ 10.80(5) (with a correlation

of 0.99989). When studying the relative increment _u versus the

log-size u, we find very low size-dependencies (correlation of

0.15, lower than the one prevailing for Alicante). This obser-

vation confirms the appropriateness of a proportional

growth dynamics. Again, the capital city of Madrid exhibits

a larger-than-expected population ( just in the limit of the

90% confidence level), indicating the possible existence of a

higher, international system of correlations.
4.2. q-Growth with proportional drift analysis
The main limitation of the proportional growth approxi-

mation is that the model is not able to describe some

dynamical patterns such as, for example, the generalized

migration from small villages to big cities. To reproduce
such behaviour, some dependence of the relative growth _u
with the population via u is needed. We start from a Taylor

expansion in u up to second-order _u ≃ aþ buþ cu2. Consid-

ering it as the second-order expansion of an exponential

function, we write

_u ≃ aþ buþ cu2 ≃ k1 þ kq eðq�1Þu; ð4:1Þ

where a ¼ k1 þ kq, b ¼ kq(q-1) and c ¼ kq(q-1)2/2. Thus, we

face a microscopic ‘q-dynamics’ with proportional noise

(equation (3.23)) whose macroscopic distribution will follow

equation (3.24). The actual q-value can then be directly deter-

mined either from the macroscopic RD or from the

microscopic dynamical data. If both estimations match, the

theoretical procedure should be correct. For the first esti-

mation, we obtain from the RDs the parameters x0, L, q
and s of equation (3.24) using the fitting method described

in appendix A. For the second estimation, we fit the

‘local’ mean value of _u in equation (3.23) to the expression

(see appendix A)

k _uðuÞl ¼ kk1lþ kkql eðq�1Þu: ð4:2Þ

4.2.1. Results on random walkers simulation
To test both fitting procedures, we have performed a numerical

simulation of drifted q-metric walkers as described in §3.4. We

have arbitrarily used n ¼ 200 walkers with an initial total popu-

lation of N¼ 50 000, minimum allowed population x0 ¼ 1

and a dynamical value q ¼ 1.2. We use in the simulation a

time interval of Dt ¼ 0.03, and generate normally distribu-

ted random numbers for k1 and kq with standard deviations

s1 ¼ 0.6 and sq ¼ 0.1, respectively. We also set a mean

value kk1l¼ 0.05. We stop after m¼ 2650 iterations. At the

end of the simulation both the total population N and the

minimum size x0 have grown by a factor of exp½mDtkk1l� ¼
expð3:98Þ. Proportional noise contributes to the final width

with s ¼ Dt
ffiffiffi
n
p

s1 ¼ 0:93. The final L value predicted by

MaxEnt via equation (3.25) using these values is

logðLÞ ¼ �7:8. We show the final RD in figure 4, with the

dynamical data obtained using equations (2.1) in the inset.
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Submitting the RD data to the fitting procedure obtains

the estimated values logðLÞ ¼ �8:8, q ¼ 1.32, log(x0) ¼ 3.56

and s ¼ 1.15. We show in the first panel of figure 4 the fit

as a red line to the data. Comparing these values with the

actual ones, we find a general discrepancy of 10 per cent

(in particular, 20% for s). This result gives us the order of

the error of our fitting methodology. From the fit to the

dynamics, we have obtained q ¼ 1.16 + 0.10 (red line in the

inset of first panel of figure 4), which is closer to the actual

value of 1.2 with a discrepancy of 3 per cent. The factor

between the two independent q-fits is 0.89, which gives an

idea of the accuracy of the method, approximately 10 per cent.

year

Figure 5. Evolution of q via MaxEnt distributions for Alicante (circles),
Guipúzcoa (squares), Girona (diamonds) and Navarra (triangles). Alicante is
the province with larger s (0.15) of these four examples, correlated with its
larger time-variation. (Online version in colour.)
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Figure 6. Comparison of independent measures of q, via the comparison
MaxEnt distribution versus dynamics. (Grey colour represents those cases
where the dynamical fit fails, see text.)
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4.2.2. Results on empirical city-population
As a general trend, we can fit the macroscopic RDs without too

many technical complications. In many cases, the capital city

has to be excluded, as found in §4.2.1. Also, in some other

instances, a few of the largest cities have to be excluded. We

have also found ‘outliers’ for very low population centres

(details can be found in appendix A). We find for all the Span-

ish provinces (mean value + s.d.): logðx0Þ � 5:5 + 1:3;

logðLÞ � �4:3 + 1:6; q � 1:20 + 0:45; and s � 0:43 + 0:24.

We show in figure 4 some interesting examples of RD (plots

for all provinces are found in the electronic supplementary

material, together with the table with all the numerical

values). Most of the provinces follow the analytical curve

quite well, with very few exceptions. The most dramatic of

those exceptions correspond to Salamanca, Orense and

Zamora, where a few cities account for the main part of the pro-

vince’s total population and the small villages follow a

lognormal distribution. It is expected that owing to their

small size, the finite effect of the last term in equation (3.4)

becomes important. Thus, the distribution is found to be

noisy in these cases.

Proportional drift noise, scaled by s, has shown to be neg-

ligible in some cases but quite important in others. In general,

better fits are obtained for those provinces for which the dis-

tributions’ evolution during the last 15 years has been smooth

and slow. High rates of change correlate with high s. This

rather surprising result tells us that if the system is able to

reach dynamic equilibrium, it converges to the MaxEnt pre-

diction. To illustrate this, we plot in figure 5 the evolution

in time of q for some provinces. We have also found that

the correlation between the pair s and logðLÞ and the pair

q and logðLÞ is rather important (R ¼ 20.40 and 20.37,

respectively). Indeed, equation (3.25) relates these parameters

in an equation-of-state fashion.

On the other hand, the microscopic dynamical fit presents

some preliminary difficulties. The main one is high noise for

small city sizes (owing to the last term of equation (3.4),

which cannot be neglected). Anyhow, because the mean

value of this noise is zero, we can safely use equation (4.2)

to fit the ‘local’ mean value of _u via q. However, in few

cases, we have found technical troubles when the value of

kkql is small in relation to the drift. Indeed, a low value of

kkql generates a nearly linear dependence of _u with u, neglect-

ing the second-order term of equation (4.1). This generates an

ambiguous result for q, falling down to a generic q ¼ 1 value

in the fitting process. We have found this in nine of the 50

provinces. Unfortunately, an accurate estimation of q for

these cases cannot be achieved from the dynamics.
We depict in figure 6 the comparison between both inde-

pendent sources for q, macroscopic versus microscopic,

which represent the main result of this work (we display in

grey the cases where the dynamical fit fails, near the dynami-

cal value q ¼ 1). We find a mean proportionality of 0.85 with

a correlation of 0.97, and compared with the proportionality

found in the control case (the random-walker simulation), we

can assume that the discrepancy is the expected one using

the fitting procedure.

In such instances, the microscopic dynamical process deter-
mines the macroscopic rank-distribution of the city-population.
The equilibrium distribution is that found via maximization of
the Shannon entropy in the terms discussed above.
5. Further remarks
5.1. Origin of the q-dynamics
In §4.2.2, we have successfully parametrized the pertinent

dynamics without discussing possible underlying mechanisms.
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We encounter two general trends: (A) migration from small

villages to big cities, and (B) saturation for large cities. The

cases of Valladolid, Castellón, Navarra, León and Ávila consti-

tute good examples of the first scenario, the most frequent for

Spain’s provinces. We usually find a value q . 1 for them.

Several of these examples illustrate the second possibility

for cities with a population larger than 10 000, with a relative

growth lower than expected. Such a situation is due to the

finiteness of the resources needed to make a city grow,

which impedes arbitrarily large growth rates. We also find

examples, as shown for Guipúzcoa, for which the system fol-

lows the B-trend with values q , 1. These cases clearly

indicate a generalized migration from cities to small towns,

owing to local socioeconomic conditions. In other remarkable

cases, both situations A and B occur in the same region, as in

Madrid and Barcelona, where a migration to medium-sized

towns occurs, a sign of non-monotonic behaviour for _u
with respect to u, which in such instances compromises the

dynamical fit (depicted here for Barcelona). On the other

hand, the case of Girona deserves some comment. Even if it

presents a tiny migration tendency, the system is very near

total equilibrium, with an excellent fit for the RD.

The use of power laws to model both migration and sat-

uration is here of a heuristic nature. We have no evidence

of any ‘microscopic’ mechanism generating them, and the

value of q is merely obtained from empirical observation.

Identifying the mechanism that generates the dynamics con-

stitutes a formidable challenge. It is worth mentioning that

growth with saturation has been traditionally modelled

using the so-called logistic function, or its generalization

X(t) with parameters a, K and v that follow a differential

equation of the type (http://en.wikipedia.org/wiki/Genera

lised_logistic_function)

_XðtÞ ¼ a 1� XðtÞ
K

� �n� �
XðtÞ; ð5:1Þ

which formally is identical to equation (3.22) with v ¼ q 2 1,

a ¼ k1 and a/K ¼ kq. Accordingly, migration and growth

with saturation relates with hyper-exponential growth. How-

ever, as far as we know, a pure theoretical determination of

the q-value from the underlying mechanism is still unknown.
5.2. The importance of the constraints in the
microscopic dynamics

The constraints imposed on both the dynamics and the MaxEnt

treatment play a fundamental role in the success of our

approach. Indeed, fixing a minimum allowed population x0,

different from zero, prevents the eventual ‘death’ of the city,

and thus maintains constant the total number of cities in the

system. Without this condition, the dynamics could lead to a

stable state in which the population tends to zero, a problem

that could be overcome by introducing a continuous growth

via a positive value of the mean of the growth. However,

this situation is very hard to maintain for a long period, so

that it cannot be considered as a normal situation on which

to base a general theory. On the other hand, we need a mean

growth different from zero to describe migration patterns.

These could lead to an unstable situation of continuous

growth. The condition of constant total population for internal

migration solves this issue in a natural fashion, and

macroscopic equilibrium configurations can then be arrived at.
The above-mentioned constraints, together with a smooth

growth for the total population, allow one to simultaneously

describe the RDs for both large populations and small ones.

Thus, our distribution equation (3.24) describes the tails in a

better fashion than simple power laws. Indeed, the tail for

small sizes was usually not considered if one wants to check

the adequacy of a power law or other functional form. The

use of administrative data for calculating the size of a settle-

ment is subject to some limitations: (i) the arbitrary

administrative area may be too small in the case of large

cities, or (ii) too large in the case of small settlements, includ-

ing more than one town so that their actual population cannot

be properly assessed (as commented in §2). The latter problem

is particularly evident when one considers the difference

between the number of municipalities in France (36 781) and

Spain (8116), although the population of France is only 38

per cent higher than that of Spain. Equation (3.24) overcomes

this limitation. Per contra, as we have seen in §4.2.2, it fails in

some cases (and for a few populations in the distribution

tail, due to ‘outliers’, see appendix A) indicating that a case-

by-case analysis is needed to describe some areas in order to

identify whether the hypothesis of the model match the

empirical situation.
5.3. Beyond Spanish city populations
We have also found evidence of MaxEnt equilibrium both in

other countries and in other kinds of social systems, such as

electoral results, in current and previous years. As an example,

we plot in figure 7a the rank distribution with theoretical fit for

the state of Ohio [40] (logðLÞ ¼ �3:7, q¼ 1.62, log(x0)¼ 10.1

and s¼ 0.36). We also show in the bottom panel the electoral

results for the 2005 UK general election [41] (logðLÞ ¼ �13:5,

http://en.wikipedia.org/wiki/Generalised_logistic_function
http://en.wikipedia.org/wiki/Generalised_logistic_function
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q¼ 13.5, log(x0)¼ 4.15 and s¼ 0.05). Deeper understanding of

each territory/election correlated with the kind of study pre-

sented here may help to better appreciate the effects of

regional policies. Work along such lines is in progress.

We emphasize that the formalism applied here is of a

quite general nature and can be applied to other kind of

systems as well. If a dynamical equation

(1) can be parametrized, and

(2) a change of variables able to linearize it can be concocted,

one would be able to (i) recover the present scenario and

(ii) comfortably use the present procedure.
cInterface
10:20120758
6. Summary
We have shown that the observed macroscopic city-popu-

lation distributions of the Spanish provinces are, in general,

MaxEnt equilibrium distributions, according to the extant

microscopic growth dynamics. The MaxEnt variational pro-

cess is constrained by appropriate constraints (minimum

allowed size different from zero and conservation of the

total population for internal migration flows). Our procedure

in this communication can be summed up as follows.

(i) We first considered a proportional growth approach to

the problem, finding that the empirical distributions

can be nicely scaled following the Gamma Scaling

Law, derived from the equilibrium distribution of a

scale-free system.

(ii) Afterwards, we dealt with q-growth processes, with

some proportional drift. We accounted in this way

for both migration and ‘natural’ growth of the popu-

lation, obtaining better fits to the data than in case (i).

We have checked that the value of the dynamical exponent q,

estimated from the RDs, is equivalent to the one estimated

directly from the dynamics. We read this result as a confir-

mation of the validity of our approach, establishing thus a

connection between microscopic and macroscopic worlds

via MaxEnt.
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Appendix A
A.1. Estimation of the distribution’s 90% CI
The confidence levels of the RDs for a given number n are

estimated as follows.

(i) A list of n random numbers is generated, following the

desired distribution, by inverse transform sampling.

(ii) The list is sorted from largest to lowest in order to

obtain the rank-distribution. The list is saved for

further use.

(iii) A large number of lists is generated following (i) and

(ii), obtaining a distribution of values for each rank.
(iv) The 0.95th and 0.05th quantiles are obtained form each

rank, determining the lower and upper limits of the

90% CI.
A.2. Fit for q-exponential growth
A first method to estimate the MaxEnt q-distributions’ par-

ameters L, x0 and q for a given empirical data is a direct fit

of the rank-distribution to equation (3.21). We have used

the MATHEMATICA software (Wolfram Research Inc. 1988–

2011) to this end, by means of the Nonlinear Model Fit

function using different guesses for the initial values. We

also compare the pertinent results with a solution obtained

from the reproduction of the first three moments of the distri-

bution, finding, statistically and numerically, better stability

using the logarithmic moments k(log(x/x0))ml instead of

k(x/x0)ml. We have tabulated them as functions of q
and L in the form Mmðq;Ll ¼ k½logðx=x0Þ�ml, which are

defined via

klog
x
x0

� �
l¼ 1

Gð1�q;LÞG
30
23 L

11
00ð1�qÞ

				
� �

k log
x
x0

� �� �2

l¼ 2

Gð1�q;LÞG
40
34 L

111
000ð1�qÞ

				
� �

���

and k log
x
x0

� �� �m

l¼ n!

Gð1�q;LÞG
ðmþ2Þ0
ðmþ1Þðmþ2Þ L

1 ... 1
0 ... ð1�qÞ

				
� �

;

9>>>>>>>>>=
>>>>>>>>>;

ðA1Þ

where G stands for the so-called Meijer G-functions. The

associated system of equations is

Mmðq;LÞ ¼ E logm x
x0

� �� �

¼
Xm

m0¼0

ð�1Þm
0 m

m0

� �
E½logm�m0 ðxÞ� logm0 ðx0Þ; ðA 2Þ

which we deterministically solve using m ¼ 1,2,3 via L, x0

and q, with the empirical expected values E½logmðxÞ� ¼Pm
i¼1 logmðxiÞ=n.

We have also introduced into our equations the pro-

portional drift parametrized with s. Its inclusion in the

above equations can be easily materialized using the addi-

tive property of cumulants for convolutions (Wikipedia,

en.wikipedia.org/wiki/Cumulant). Taking into account that

for the centred normal distribution only the second cumulant

does not vanish, we face the following system of equations:

Xbmc
i¼0

Tm
i s

2iMm�2iðq;LÞ ¼
Xm

m0¼0

ð�1Þm m
m0

� �
E½logm�m0 ðxÞ�

� logm0 ðx0Þ; ðA 3Þ

where Ti
m is the ith element of the mth row of the triangle of

Bessel numbers [42] Tm
i ¼ m!=ði!2iðm� 2iÞ!Þ.

The ensuing system of equations is solved using the

FindRoot functionality of MATHEMATICA with different start-

ing points so as to ensure the best possible result. We accept a

set of parameters if the three different results (fit, and

equations’ system with/without drift) are reasonably similar.

When that does not happen, we look for outliers, excluding

some points from the tails (largest or smallest) until reaching

a satisfactory convergency of the three results. The most

frequently outlier case obtains for the capital city. The

second case refers to a few small villages with undersized

population. All outliers are indicated in the electronic
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supplementary material, table S1, together with the results of

the three estimations. On the other hand, as commented in

the text, we have found three notorious cases—Salamanca,

Orense, and Zamora—where no satisfactory outcome has

been achieved with this procedure.

A.3. Fitting the dynamical data
As commented in the text, we have fitted the mean value

k _uðuÞl to equation (4.2) via kk1l, kkql and q. We have used

again the Nonlinear Model Fit function, with different
guesses for the initial values. The dataset for k _uðuÞl (and

also the standard deviation) is systematically computed in

bins of size Du ¼ 0.25 for all the provinces. Very few points

can be found in some of the bins, which introduces high

numerical error. Accordingly, we include the bin in the data-

set if, and only if, a minimal number of points exists. We have

assumed, for all the provinces, that this number is the 15 per

cent of the bin with the larger number of points. The bins

used in each fit are shown in the inset of the

rank-distribution plots.
JR
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