
Computer code for double beta decay QRPA based
calculations
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Abstract. The computer code developed by our group some years ago for the evaluation of nuclear matrix elements, within
the QRPA and PQRPA nuclear structure models, involved in neutrino-nucleus reactions, muon capture and β± processes, is
extended to include also the nuclear double beta decay.

INTRODUCTION

The two neutrino double beta (ββ2ν ) decay (A,Z) → (A,Z+ 2)+ 2e−+ 2ν̃ can occur by successive β decays (see
Figure 1 a):

(A,Z) → (A,Z+1)+ e−+ ν̃
→ (A,Z+2)+2e−+2ν̃ , (1)

passing through the intermediate virtual states of the (A,Z + 1) nucleus (see Figure 2). More interesting is the
neutrinoless double beta (ββ0ν ) decay which is possible if the neutrino is a Majorana particle, i.e., equal to its own
antiparticle (see Figure 1 b):

(A,Z) → (A,Z+1)+ e−+ ν̃ ≡ (A,Z+1)+ e−+ν
→ (A,Z+2)+2e−. (2)

Also it is interesting the neutrinoless double beta decay with majoron emission (ββ0νχ ) where a Nambu-Goldstone
boson χ (called by majoron ) is produced by spontaneous symmetry breaking (see Figure 1 c):

(A,Z)→ (A,Z+2)+2e−+χ. (3)

It is important to mention that none of the experimental searches on neutrino oscillations give us the neutrino mass
so directly as the ββ0ν mode could give if experimentally observed.
These two modes of disintegration are related through the nuclear structure effects, i.e., M2ν and M0ν present many

similar features and it is well established that we shall not understand the ββ0ν decay unless we understand the ββ2ν
decay [1, 2].A really interesting point to analyze is the extreme sensitivity of the ββ2ν decay amplitudes, M2ν , on the
residual interaction in the particle-particle channel. Differently from other QRPA formalisms used in nuclear structure
to evaluate ββ -decay processes, we are treating the intermediate states without performing a second charge-conserving
QRPA to describe the ββ -decays to excited final states.
A few years ago, a computer code for quasiparticle random phase approximation (QRPA) and projected quasiparticle

random phase approximation (PQRPA) models of nuclear structure was published and explained in details [3].The
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FIGURE 1. Scheme for: a) ββ2ν decay; b)ββ0ν decay; c) ββ0νχ decay.

FIGURE 2. Scheme for ββ -decay in 76Ge.

code name adopted was QRAP ((Q)uasiparticle (RA)ndom (P)hase approximation). In the QRAP code, the residual
interaction is approximated by a simple δ -force. The main application of the code consists in evaluating nuclear
matrix elements (NMEs) involved in neutrino-nucleus reactions, as for example in electronic neutrino cross sections,
muon capture, β+ and β− decay rates. In this work we implemented the nuclear double beta decay (ββ -decay) in the
code, which will be rebaptized as QRAP-ββ . The actual code summarizes and gives a new fashion of the formalism
presented in Refs. [4, 5] for ββ2ν and ββ0ν decays, which was based on the Fourier-Bessel expansion of the weak
Hamiltonian adapted for nuclear structure calculations.
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ββ DECAY HALF-LIVES AND NUCLEAR MATRIX ELEMENTS

For 0+ → 0+ transitions, the inverse half-lives and the NMEs of ββ2ν , ββ0ν and ββ0νχ decays are related as [1]:

T−1
1/2 = G F 2|M |2, F =

 1 for ββ2ν
⟨mν⟩/me for ββ0ν
⟨gM⟩ for ββ0νχ

, (4)

where G is the kinematical factor which depends on the corresponding phase space, M is the NME and ⟨mν⟩, me and
⟨gM⟩ in F are the neutrino effective mass, the electron mass and the majoron-neutrino effective coupling constant,
respectively. M2ν , M0ν and M0νχ show very similar features. To get confidence in the nuclear model used to evaluate
theoretically the NME, the procedure is to find an agreement between experimental and theoretical values for M2ν ,
and then to use the same nuclear model (and parametrization) to describe consistently M0ν and M0νχ .
By this reason, we start analyzing in this work the ββ2ν matrix element. When only allowed transitions are

considered, the matrix element corresponding to |0+f ⟩ final state can be written, independently of the adopted nuclear
model, as

M2ν( f ) = ∑
λ=0,1

(−)λ ∑
α

 ⟨0+f ||O
β−

λ ||λ+
α ⟩⟨λ+

α ||Oβ−

λ ||0+⟩
Dλ+

α , f

≡ M F
2ν( f )+MGT

2ν ( f ), (5)

where the summation goes over all intermediate virtual states |λ+
α ⟩ and Dλ+

α , f = Eλ+
α
− (E0+E0+f

)/2 is the energy

denominator with E0 and E0+f
being the energy of the initial (|0+⟩) and final (|0+f ⟩) states, respectively. The operator

for β−-decay is
Oβ−

λ = (2λ +1)−1/2∑
pn
⟨p||Oλ ||n⟩

(
c†pcn̄

)
λ ,

with O0 = 1 for Fermi (F) and O1 = σ for Gamow-Teller (GT) transitions, being c† and c the particle creation and

annihilation operators. The corresponding operators for β+-decay are Oβ+

λ =
(
Oβ−

λ

)†
. Finally, it is important to

mention that in this work we follow the procedure developed in Refs. [1, 6] for the evaluation of the matrix elements
M F,GT

2ν ( f ), where a Fourier-Bessel expansion of the weak Hamiltonian was performed.

RESULTS AND FINAL REMARKS

Our main purpose is to develop a numerical code for the evaluation of weak observables in nuclear double beta decays.
The implementation of such a code, including the three decay modes, demands an amazing effort both theoretically
and numerically. Much effort has been spent by our group along last years in order to estimate the NME and the
corresponding half-lives [4, 5, 6, 7, 8, 9, 10]. From the pioneering works of Krmpotić et al. [1], we decided to use in
those works individual codes separated in three groups according to the considered decay mode. However, it will be
very useful for the nuclear community to have at their disposal an unified code containing all the three decay modes
together. With this aim, we have started in this work with a first version named as QRAP-2ν v0.0 where we recovered
the ββ2ν with the allowed contributions for the NMEs.
Details for the theoretical formalism to evaluate the ββ2ν NME with the allowed contributions is developed in

Refs. [4, 5, 6]. Relative to the QRPA nuclear calculations, we have employed a residual δ -force V = −4π(vsPs +
vtPt)δ (r), with different strength constants vs and vt for the particle-hole, particle-particle and pairing channels
[1, 3, 11]. The single-particle energies, as well as the pairing parameters vpairs (p) and vpairs (n), have been fixed by
fitting the experimental pairing gaps to a Wood-Saxon potential with the procedure described in [1, 3]. In this way, the
proton and neutron gap equations have been solved for the intermediate (N−1,Z+1) nucleus as in Ref. [11], and we
deal only with one QRPA equation. Note that in this procedure we avoid the problem of overlapping of two sets of the
same intermediate states generated from initial and final nuclei.
The schematic flux diagrams for the original QRAP code and the new QRAP-2ν v0.0 version is shown in Figure 3.

The numerical results obtained with this code for the GT NMEs in the ββ2ν -decay for 100Mo are shown in Table 1. The
value reproduced with the recovered and previously described code for QRPA is underlined. We also compare with
other calculations performed within different nuclear models: another QRPA calculation from Ref. [12] (this QRPA
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FIGURE 3. Flux diagram for QRAP-2ν v0.0 code.

TABLE 1. MGT
2ν (in units of MeV−1), G GT

2ν corresponding to gA/gV = −1.0 in [1]
(in units of 10−20 yr−1) and half-life (in units of 1019 yr) for ββ2ν decay of 100Mo to
the ground and first excited states of 100Ru.

Model 0+ → 0+g.s. 0+ → 0+1
QRPA [1] 0.102
QRPA [12] 0.101 0.138
FQTDA (I) 0.039 0.059

MGT
2ν 0.358±0.011 0.311±0.041

T2ν 0.768±0.002(stat)±0.054(syst) [13] 60+19
−11(stat)±6(syst) [13]

G GT
2ν 387 6.61

solves two RPA equations to calculate the NME) and the FQTDA formalism (Four Quasiparticle Tamm-Damcoff) [2].
In particular, the FTQDA is a new formalism employed to evaluate the NME based on the well-known QTDA [14].
The main difference in comparison to the QRPA comes from the description of the final (N−2,Z+2) nucleus. In the
QRPA the final nucleus is a two-quasiparticle excitation state of the vacuum ground state in the bosonic approximation
(the BCS wave function) whereas in the FQTDA the final nuclear results in a four-quasiparticle excitation. The
experimental data for MGT

2ν were obtained with the experimental half-life T2ν from [13] using Eq. (4) with the values
G GT
2ν also shown in Table 1.
Summarizing, we have implemented a numerical code to evaluate ββ -decay processes using a formalism based in

a Fourier-Bessel expansion of the weak Hamiltonian. This open code could be an open window in real advances in
studies of new physics, offering a gold opportunity to the scientific community. When it will be completed, this code
will summarize more of thirty years of theoretical and numerical work in ββ -decay developed by Prof. F. Krmpotić
and collaborators.
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