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Abstract

Understanding the mechanisms that drive population dynamics is fundamental for

management of wild populations. The guanaco (Lama guanicoe) is one of two wild

camelid species in South America. We evaluated the effects of density dependence

and weather variables on population regulation based on a time series of 36 years

of population sampling of guanacos in Tierra del Fuego, Chile. The population

density varied between 2.7 and 30.7 guanaco/km2, with an apparent monotonic

growth during the first 25 years; however, in the last 10 years the population has

shown large fluctuations, suggesting that it might have reached its carrying

capacity. We used a Bayesian state-space framework and model selection to

determine the effect of density and environmental variables on guanaco population

dynamics. Our results show that the population is under density dependent

regulation and that it is currently fluctuating around an average carrying capacity of

45,000 guanacos. We also found a significant positive effect of previous winter

temperature while sheep density has a strong negative effect on the guanaco

population growth. We conclude that there are significant density dependent

processes and that climate as well as competition with domestic species have

important effects determining the population size of guanacos, with important

implications for management and conservation.
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Sherbrooke, Canada

Received: March 19, 2014

Accepted: November 21, 2014

Published: December 16, 2014

Copyright: � 2014 Zubillaga et al. This is an
open-access article distributed under the terms of
the Creative Commons Attribution License, which
permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author
and source are credited.

Data Availability: The authors confirm that all data
underlying the findings are fully available without
restriction. All relevant data are within the paper
and its Supporting Information files.

Funding: The authors have no funding or support
to report.

Competing Interests: The authors have declared
that no competing interests exist.

PLOS ONE | DOI:10.1371/journal.pone.0115307 December 16, 2014 1 / 17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301098239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0115307&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction

To understand wildlife population dynamics it is important to identify how they

are affected by environmental factors and density dependence (DD) processes; it is

also critical for conservation and wildlife management, particularly in those

species living in extreme environments. Although several studies have shed light

on these issues for several species, e.g., wildebeest [1], white-tailed deer [2], and

elands and impalas [3], still little is known about the mechanisms that regulate the

populations of groups such as the wild South American camelids. This is the case

of the heavily exploited guanaco (Lama guanicoe) populations, that have

diminished significantly during the last century because of grazing conflicts with a

sheep-based society, and overhunting; in only three years between 1977 and 1980

around 140,000 guanacos were officially exported from Argentina mainly to eight

countries in North America and Europe [4]. Due to decades of hunting, the

guanaco’s distribution has been reduced by 75% in Chile and Peru, and by 60% in

Argentina [5]. Although the guanaco is categorized as least concern by the IUCN

Red List [6], to tackle the dramatic decline of guanaco populations this species has

been included in Appendix II of CITES [7]. A sustainable management of

guanacos requires understanding the processes that regulate their populations [8].

In nature all species are subject to checks and balances that limit their

population growth; these result from the action of different processes that restrict

population size and/or geographic distribution; such processes can be density-

stabilizing or density-limiting [9]. The former is of a biotic nature and depends on

the interaction between individuals of the same or different species; the latter is

independent of population size. Stabilization results from density-dependence: its

regulatory effect varies in intensity with the size or density of the population itself.

However, not all DD factors are density-stabilizing. Therefore, analyses that

ignore the effects of density can produce misleading guidelines for population

management if DD actually occurs. In addition, when the maximum sustained

harvest criterion is used for wildlife management, it is necessary to estimate the

population size at which population growth rate is maximum, but this estimation

depends on the shape of the DD function [10],[11].

In addition, population growth can be affected by the interaction between

density dependence environmental variables; the strength of DD and of

environmental variables on the regulation of the desert bighorn sheep population

(Ovis canadensis) were explored using Bayesian state space models [12]; those

results showed that the population’s growth rate was dominated by density-

dependence and, although drought had a secondary effect, it was still relevant to

the population dynamics. In terms of the persistence of the population, the results

of [12] emphasize that a more variable environment is less threatening than one in

which the mean conditions become harsher.

Although there are various studies of density-dependence processes in

mammals in general [13],[14], and in ungulates in particular [15], [16],[17],[18]

there are very few study in wild South American camelids that analyze the effect of

density dependency on population growth. To our knowledge, the only studies in
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this taxonomic group have been carried out in populations of vicuña (Vicugna

vicugna) [19], [20], [21], and guanacos, the latter focusing on the effect of density-

dependency over some demographics parameters [22], [23], [24]. However, in a

previous study [25] we evaluated the effect of density, the impact of sheep density

and of weather variables on the growth rate of a guanaco population growth in

Chile, using a multiple linear regression analysis; the results showed that only

population size was a statistically significant predictor variable. However, many

studies on ungulates [26][27] have shown that population growth models that

explicitly account for the Markov chain structure of population dynamics

processes provide accurate predictions of the effect of climate and density-

dependence on population growth rates. Therefore, we considered of interest to

use population growth models on the same guanaco population that we

previously analyzed [25], while accounting for the effect of weather variables and

sheep densities.

Although the guanaco has a high economic value as a commercial species (for

its hair, meat and skin), it is considered a pest by sheep ranchers because it has

been popularly considered as a potential competitor for forage and water. Present

management programs are incipient and markets are still not fully developed, so

rigorous evaluations of density-dependence and environmental impacts in these

populations are important not only for scientific purposes, but also for the design

of sustainable management plans to avoid uncontrolled hunting by ranchers

(unpublished report to the Secretary of Wildlife of the Province of Chubut,

Argentina). Here we used a Bayesian model to determine the strength of density

dependence regulation on the Tierra del Fuego guanaco population as well as we

tested the influence of winter temperature and average annual precipitation on the

population’s growth rate.

Materials and Methods

Ethics statements

The present study did not require the capture or handling of animals. Data for this

study is based on public information provided by the Chilean State Wildlife

Control Service or obtained as direct observations by the authors. Field

observations were made from public roads and did not require special permits,

and when in private lands appropriate permission was granted to the authors of

this study by private land owners.

Study area

This study was carried out on a guanaco population of the ‘‘Cameron’’ ranch

(53.9˚ S, 69.3˚ W) located in the Southern region of the Tierra del Fuego Island,

Chile. The ranch covers an area of the 2000 km2, and its altitude range is 0 –

300 m.a.s.l. The region is a mosaic of the steppe (‘‘pampa’’) and forest biomes; the

latter is composed by deciduous forests dominated by lenga (Nothofagus pumilio)
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and ñire (N. antartica). The steppe is composed of several species of the genera

Stipa, Festuca and Rytidosperma (‘‘coirón’’ grasses), of the genera Chiliotrichium,

Berberis, Baccharis, and Lepydophillum (‘‘mata’’ grasses), of the genera Empetrum,

Baccharis, Discaria, Pernettya, Bolax and Azorella (‘‘murtilla’’ grasses), of the

genera Holcus, Dactylis, Trifolium, and Agrostis (meadow grasses); of the genera

Poa, Azorella, Hordeum, Samolus, Festuca, as well as species of Juncacea and

Cyperacea (‘‘vega’’ grasses, the most fertile type of grassland, found in poorly

drained and more humid, areas), and of the genera Carex, Empetrum,

Marssippospermum, and Sphagnum) (peat bogs)[28]. Fig. 1 shows the distribution

of the different types of vegetation in the study area, although some of the species

have recently been seriously reduced by sheep, the dominant domestic species,

with densities that have fluctuated in the last decades between 11 and 23 sheep/

km2.

In Tierra del Fuego island guanacos are not preyed upon by pumas (Puma

concolor) as it happens in the continent [29], and where also some culpeo foxes

(Lycalopex culpaeus) occasionally prey upon newborn guanacos [30]. In non-

forested areas (the Patagonian steppe), from the east of the Andes to the Atlantic

coast, the climate is characterized by an average annual precipitation of 200–

400 mm (in the Cameron ranch itself the average is 370 mm/year), while in the

forested areas the average precipitation fluctuates around 400–600 mm per year

[31]. The average annual NDVI (Normalized Differential Vegetation Index),

which is a dimensionless value in the range 0–1, and used as an indicator of

primary productivity, is around 0.56, but highly seasonal (between 0.6–0.7 in the

summer period of December-April, and about 0.4–0.5 in the winter period of

June-August) (unpublished report to the Secretary of Wildlife of the Province of

Chubut, Argentina). Given a precipitation of 370 mm/year the estimated above-

ground net primary productivity (ANPP) was 1600 dry matter kg/ha/year [32].

In South America there are only two species of wild camelids: the vicuña and

the guanaco; the latter ranges from Northern Peru through Chile, and across

Patagonia to southern Argentina and Chile, reaching Tierra del Fuego; it occupies

a wide variety of habitats from hardpan deserts to scrublands to grasslands, from

sea level to nearly 4500 m on the Andes’ mountain range [33]. The guanaco

mating system is a resource defense polygyny, where five major social units have

been recognized: (i) family groups (one adult dominant male, various adult

females and several young), (ii) solitary territorial males (defending a territory but

usually without females), (iii) male groups (non-territorial males), (iv) female

groups (adult females with or without young), and (v) mixed groups (individuals

of both sexes and all ages) [24]. From spring to autumn adult females are socially

and spatially segregated from non-territorial males, and parturition occurs in the

summer, with females producing one offspring after about 11.5 months of

gestation [24].
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Guanaco population sampling

Guanacos were counted for 34 consecutive years between 1977 and 2012 (the

exceptions were years 1986 and 1996), using the transect method with a variable

width from 1977 to 2000, and with a fixed width band from 2001 to 2012 (the

latter with a maximum of 500 m to each side of the transect) [34], [35], [36],

[37], [38]. The sampling period was carried out in autumn of each year and lasted

approximately 7 days, between 10:30 and 19:00 h, with two observers in each of

two 464 vehicles going over the main, secondary and local roads at a maximum

speed of 40 km/h. Each road was covered only once and particular care was taken

to avoid potential duplication of counts at the road intersections. In addition to

individual guanaco counts, the following were recorded: weather conditions, time,

distance (km) from the starting point, GPS coordinates, observation distance

from the transect (m), an estimate of the angle to the animal’s position, and

Fig. 1. Study area. Location of the study area and distribution of vegetation types (modified from [28]).

doi:10.1371/journal.pone.0115307.g001
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–when the animals were observed in groups– the number of individuals, the type

of social group, and its structure (sex, and the age class: newborn, juvenile, and

adult). The road network and all geo-referenced observations were processed with

the Arc View 9.3 Geographical Information System (GIS), and transferred using

program Map Source. The cartography was kindly provided by the Chilean

‘‘Servicio Agrı́cola y Ganadero’’ (SAG). The area effectively surveyed in each

sampling period was around 420 km2 (the average length of the transects was

420 km and the width band was 1 km) which represent about 20% of the area

under study; despite the roads were not randomly distributed, as the guanaco

population is well structured at the period of the year when sampling was carried

out (particularly the family groups), it was assumed that the guanaco density in

the area surveyed is representative of the whole ranch. The population size was

estimated as given in [28] which was based in the method described and

implemented in [31]; more details on the statistical analyses of the sampling can

be found in [25].

Sheep population

Sheep population was based on a time series obtained from Soto (personal

communication); only eight years of data were available (1980, 1985, 1990, 1995,

2000, 2005, 2008 and 2011); as the sheep population change between years was

relatively smooth, we interpolated linearly between two consecutive data points to

generate a complete time series of 36 years.

Environmental covariates

We evaluated the effects of density dependence and of environmental covariates on

guanaco population dynamics; the environmental covariates considered were:

annual precipitation and average winter temperature (months of June, July and

August), and 25 years of data (1977–2002) were from the CRU TS 2.1 database,

compiled by the Tyndall Centre, Climatic Research Unit, School of Environmental

Sciences of the University of East Anglia, United Kingdom (http://www.cru.uea.

ac.uk/cru/data/hrg.htm). Because the CRU data ended in 2002, we completed that

time series for 2003 to 2012 with data from Punta Arenas (Chile), the closest

meteorological station to the Cameron ranch; this data was downloaded from the

Internet site of the Meteorological Service of Chile (http://www.meteochile.gob.cl/).

For each of these covariates, at a given time t we calculated the anomaly for a

given value vt as

zt~
vt{mv

max(v){min(v)
,

where mv is the empirical mean of the weather series represented by the vector v,

and zt is the resulting anomaly.
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In order to make the parameter estimates comparable, we also re-scaled the

sheep counts as zt 5 vt/max(vt), where vt is the estimate of the number of sheep in

year t.

Population analysis

We evaluated the effect of density-dependence and environmental covariates in

the regulation of the Tierra del Fuego guanaco population by the method of the

‘‘direct density-dependence’’ [39] using a Bayesian state-space framework [40].

Here we assumed that population counts were obtained with errors, and thus

we define the random variable Ot for counts on a population at a given time t.

Furthermore, because the actual population size is unknown, we define the

random variable Nt for the population size at a given time. The conditional

probability of an observation of counts at time t ~ 0, 1, 2, . . . , T , where T is the

last year of the study, is given by the negative binomial observation model

P Ot~otjrtð Þ~C otzrtð Þ
ot!C rtð Þ

prt (1{p)ot , ð1Þ

where p is the probability that a single individual is detected and rt is a size

parameter. The theoretical mean of the count random variable is E[Ot | nt] 5 nt,

and Var Ot½ �~s2
t . Following Linden and Mantyniemi’s [41] notation, we have that

rt~ n2
t

� ��
s2

t {nt
� �

and the probability is given by p~nt
�

s2
t , which simplifies the

size parameter to rt 5 nt/(1/p - 1) and the variance is s2
t ~nt=p. We used the

negative binomial model to account of potential overdispersion in the counts

[42][41].

On the other hand, the conditional probability for a population size Nt is given

by the Poisson process model

P Nt~ntjltð Þ~ lt
nt e{lt

nt!
, ð2Þ

where the expected value of the population size at time t is given by E[Nt | lt] 5

lt. The process model, this is the expected population size at t .0, is a function of

the expected population size at t - 1, and is given by the population growth

function

lt~f nt{1jb,xtð Þ, t~1,2, . . . ,T, ð3Þ

where b is a vector of parameters to be estimated and xt is a vector of covariates.

The joint likelihood of the vectors o and n of observations and population sizes,

respectively, is given by
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P o,njb,X,pð Þ ~ Pois n0jl0½ � P
T

t~1
Pois ntjf nt{1jb,xtð Þ½ �

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Process model

| P
t[V

NB otjnt,pð Þ
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{Datamodel

,

ð4Þ

where V is the subset of years for which counts were obtained and X is the T6k

design matrix containing the covariates for all years where k is the total number of

parameters in vector b. The full posterior for all the unknowns is given by

P n,b,pjoð Þ ! P o,njb,X,pð Þ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{Likelihood

| P bjbp,dp

� �
P pjs1,s2ð Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
,

ð5Þ

where bp is a vector of mean prior parameters and and dp is a prior covariance

matrix for the growth parameters in equation 3, while s1 and s2 are priors for the

probability p.

We used a Markov chain Monte Carlo (MCMC) algorithm that combined

Metropolis sampling [43][44] for the population growth parameters b and the

latent population sizes n, and direct sampling for the probability p in the data

model [44]. We used normal priors for the population growth parameters such

that b , Nk(bp, dp), and used a conjugate beta prior for p such that

P pjn,o,s1,s2ð Þ!Beta p s1z
X
t[V

rt; s2z
X
t[V

ot

�����
" #

: ð6Þ

We ran ten parallel chains for 210,000 iterations, with a burn in of 10001 and

thinned the resulting sequences every 200 steps to reduce serial autocorrelation.

Each chain was started from different initial values. We used potential scale

reduction as proposed by Gelman et al [45] and calculated potential scale

reduction to evaluate convergence.

Within the MCMC sampler we also constructed predictive distributions for the

observations by sampling a new set of predictive o, noted o’, integrated across the

posterior densities of the parameters

P o’joð Þ~
ð ð

. . .

ð
P o’jb,pð ÞP b,pjoð Þdb0 . . . dbk{1dp: ð7Þ

This integral is evaluated numerically from which the expected predictions are

calculated as

E o’jo½ �~ 1
M

XM

m~1

E o’jb̂m,p̂m

h i
, ð8Þ
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where b̂m and p̂m are the estimated parameters at step m. With (8) we predicted o’

at all the remaining m steps of the MCMC for a total of M510,000, and then

calculate the mean and quantiles for each observation to construct predictive

intervals. We used these predictive distributions for model selection by calculating

predictive loss (Dm) [46], which combines a measure of model goodness of fit

based on the error sum of squares

Gm~
X
t[V

E o’tjot½ �{otð Þ2, ð9Þ

with a measure of model dispersion (or penalty term), measured as the predictive

variance

Pm~
X
t[V

Var o’tjot½ �: ð10Þ

The model with the lowest Dm 5 Gm + Pm, is then selected. This approach has

advantages over more traditional methods such as the use of Akaike information

criterion (AIC) in that it does not rely uniquely on a measure of goodness of fit

and a penalization term, but it evaluates the predictive capabilities of the model

and penalizes over-fitting based on the spread of the predictive distributions [44].

Thus, relevant covariates that could be automatically discarded under a traditional

method can still be considered as long as their effect is significant.

Models tested

To evaluate if the population of guanacos in Tierra del Fuego is regulated by

density dependence, precipitation and winter temperature, we defined function f

(.) in equation 3 as a discrete exponential growth function of the form

E nt½ � ~ f nt{1jbð Þ
~ nt{1 exp xT

t b
� �

, t~1,2, . . . ,T,
ð11Þ

where b 5 {b0, …, bk-1} and xt
T is the transposed vector of covariates. We tested a

range of nested models, starting with a simple exponential growth model of the

form E[nt] 5 nt-1 exp[b0], where b0 corresponds to the intrinsic rate of

population growth. This simplest model implies that the population is not

regulated by density dependence. Covariates can be included as

E nt½ �~nt{1 exp b0z
Xk{1

j~1

bjxj,t

" #
, ð12Þ

where xj,t is the jth environmental covariate. To estimate the effect of density

dependence we extended equation (12) based on the Ricker population growth

model, which takes the form

Density and Weather Regulation on a Guanaco Population
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E nt½ �~nt{1 exp b0zb1nt{1z
Xk{1

j~2

bjxj,t

" #
, ð13Þ

where b1 is the parameter that estimates the intensity of density dependence on

the population growth.

All statistical analyses were performed in the open source statistical software R

[47].

Results

S1 Table shows the time series of guanaco data for the 36 years sampled (years

1986 and 1996, with no available data, were linearly interpolated), and the values

of the climatic variables.

Bayesian analysis of density-dependence

The model with the lowest predictive loss included density dependence, winter

temperature and sheep densities (Table 1), where the conditional posterior

densities of all three parameters did not include 0 (i.e. their effect was significantly

different from 0; S2 Table). All the models tested that did not include density

dependence (i.e. simple exponential growth models) had predictive loss values

higher than the worst Ricker model. The exponential model had a deviance almost

16% higher than the Ricker model. The selected model implies that there is a

significant density-dependent effect and that population growth increases

positively with winter temperature but declines with increasing sheep densities

(Fig. 2). The average carrying capacity during a given time, K, is given by

K~ b0z
Xk{1

j~2

bj�xj

 !,
b1,

where �xjis the average value of the jth covariate within the interval of time of

interest. For the last six years the estimated K is 46,563 (¡15,283) individuals

(about 23 guanaco/km2). As expected, this value is strongly affected by the density

of sheep in the area, for instance, in the last year; the number of sheep was

estimated at about 45,000 individuals. At this number, the carrying capacity of the

guanacos drops to an estimate of K529,359 (¡16,329). Fig. 3 shows the observed

population size, the estimated population size with its 95% CI, and the estimated

carrying capacity.

Discussion

The results of our Bayesian analysis show that the population of guanacos in

Tierra del Fuego, Chile, is under strong density dependent regulation, and that it

has already reached its carrying capacity (K546,563 individuals). In addition, we
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found a positive relation between population growth rate and winter temperature

(Fig. 2). Moreover, we found a strong effect of the number of sheep in the area,

where a marked increase in their numbers can dramatically limit the availability of

resources for the guanacos.

A study similar to our present analysis was carried out with the elk [48], and the

authors concluded that a density-dependence model that incorporates climatic

covariates shows a better fit than without considering them. Our results are

consistent with these results where winter temperature has a positive effect on the

guanaco population growth.

In particular, our results suggest that the guanaco population of the Cameron

ranch, Tierra del Fuego, Chile, is presently being regulated near its carrying

capacity by a density-dependent process. These results are consistent with those

Table 1. Model fit (as measured by the predictive loss) of the guanaco population growth models.

Model Goodness of fit Penalty Deviance

DD + Temp + Sheep 747042316.4 2588292.694 749630609.1

DD + Sheep + Temp 6 DD 748808123.7 2614802.017 751422925.7

DD + Temp + Precip + Sheep 751283742.7 2674436.853 753958179.5

DD + Sheep + Temp 6 DD + Precip 6 DD 753299329.9 2702261.732 756001591.6

DD + Temp 6 DD 782831094.6 2558115.904 785389210.5

DD + Temp 788181401.3 2587368.34 790768769.6

DD + Temp + Precip 791766848.7 2618544.645 794385393.3

DD + Temp 6 DD + Precip 6 DD 793801071.9 2639064.723 796440136.6

DD + Sheep + Precip 6 DD 817856927.4 2605420.646 820462348

DD + Sheep 820229740.3 2550647.293 822780387.6

DD + Precip + Sheep 823431071.4 2601587.578 826032659

DD + Precip 841143533.6 2511229.804 843654763.4

DD + Precip 6 DD 844055704.3 2545798.918 846601503.3

DD 854413880.7 2501355.587 856915236.3

Temp 873204686.7 2557085.83 875761772.6

Precip 878017164.2 2523181.168 880540345.4

Sheep 882878856.8 2526847.302 885405704.1

Temp 6 DD 883300197.6 2594072.115 885894269.7

Precip 6 DD 891135256.2 2553360.278 893688616.5

Temp + Precip 893374974.7 2606019.758 895980994.4

Temp + Sheep 893617459.1 2600458.55 896217917.6

Precip + Sheep 899859493.5 2489580.89 902349074.4

Temp 6 DD + Precip 6 DD 902399153.6 2550110.373 904949264

Sheep + Temp 6 DD 903200592.5 2560516.426 905761108.9

Sheep + Precip 6 DD 906910271.5 2476583.175 909386854.7

Sheep + Temp 6 DD + Precip 6 DD 909330405.9 2569412.91 911899818.8

Temp + Precip + Sheep 916053078.8 2486596.4 918539675.2

The variables tested were: density dependence (DD), average winter temperature (Temp), sheep density (Sheep) and annual precipitation (Precip). The
‘‘best’’ model was chosen as the model with the lowest deviance (DD + Temperature + Sheep).

doi:10.1371/journal.pone.0115307.t001
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obtained for other species of ungulates such as white-tailed deer (Odocoileus

virginianus), elk (Cervus elaphus), desert bighorn sheep (Ov. canadensis nelsoni),

mule deer (0d. hemionus), desert mule deer (0d.h. crooki) caribou (Rangifer

tarandus) and bison (Bison bison) [49].

A logistic model was used to fit 31 years of vicuñas data and found a significant

effect of rainfall on population growth, and that rainfall had its highest significant

effect with a time lag of 4 years [21]. Thus, our results are congruent with those of

the vicuñas that may allow for a preliminary generalization: South American

Fig. 2. Effect of annual precipitation and sheep numbers on the guanaco’s expected population growth rate. a) Average winter temperature ( C̊)
during the study; b) effect winter temperature on the guanaco population’s growth rate; c) yearly estimated number of sheep in the study area; d) effect of the
number of sheep on the guanaco population growth rate. The population growth rate was calculated as l5 exp(b0 + b1 K + b2 T + b3 S), where K is the
carrying capacity, T are the values of winter temperature, and S are the values for the estimated number of sheep. The width of the polygons in b) and d)
corresponds to the 95% credible intervals.

doi:10.1371/journal.pone.0115307.g002
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camelid populations are regulated by density dependence while also being affected

by environmental variables.

A study on a 17-years population time series on vicuña in Chile [20] estimated

that the population was stationary (i.e. the per capita annual population growth

rate was equal to 1). They performed a simple linear regression between

population size and growth rate and concluded that there was a clear density-

dependence effect; however, the large scatter of the data in the relationship

between density and the population growth rate can be taken as an indication that

density-independent factors also play an important role in population change.

Similarly, an analysis was carried out by means a multiple linear regression in the

same guanaco population of Cameron Ranch that we studied here. The analysis

included the population growth rate as dependent variable and guanaco

population size, sheep population size and the same weather covariates as

independent variables [25]. The results suggested that the population size was the

only statistically significant predictor. In comparison with the results of Zubillaga

et al [25] the present study shows that, in addition to population density, average

Fig. 3. Predicted population size as a function of winter temperature, sheep density and density-
dependence. The green polygon shows the predicted population sizes and the grey polygons are the 95%
credible intervals for the predicted population sizes.

doi:10.1371/journal.pone.0115307.g003
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winter temperature and sheep densities are also significant determinants of the

guanaco population growth rate. The differences in the conclusion of both

analyses may be in part due to the fact that our previous approach can generate

conclusions that differ substantially from the current state-space model [50]. In

the current analysis we used a Markov Chain structure to model changes in

population growth, while we accounted for measurement errors that were not

considered in the previous analysis. Nonetheless, more research needs to be

carried out to determine the exact mechanisms that relate population growth to

winter temperature in the previous year.

In a study on a population of guanacos from Torres del Paine, Chile,

researchers found that population density and climate variables affected birth

mass, but there was no correlation between birth mass and weather [22]. The

authors suggested that the annual variation in climate could have been insufficient

to influence population dynamics, and/or that population density was too high,

masking any climatic influences. However, as we report here, the Tierra del Fuego

guanaco population is currently fluctuating around its carrying capacity, possibly

making the effects of winter temperature more conspicuous. As we mention

above, further research will be needed to determine the influence on such weather

variables on the demography of the species.

Studies on vicuña, a close relative of the guanaco, may shed some light on the

density dependence mechanisms that regulate the Tierra del Fuego guanaco

population growth. These studies suggest that density affects fecundity, which is

reduced with a decrease in the amount of nutrients and water available during

their first 3–4 years of life [20], [21]. Similarly, in a study of the guanaco

population from Rı́o Negro, Argentina, no yearlings (i.e. juveniles between birth

and age 1 year) were observed in a breeding season after an extremely dry year

[51]; however, a study designed to verify if there is a density-dependent effect on

fecundity is still pending for guanacos.

Although in other ungulates usually juvenile survival decreases in response to

increasing population size [52], in guanacos, and despite the negative correlation

observed between mean weight of newborns and population density [22], the

opposite was found; the proportional hazards model indicated that the risk of

mortality of chulengos (newborns between birth and age 1 year) decreased as

population density increased [23]; however, this trend may have been influenced

by the effect of puma predation since the mortality risk by puma decreases when

the population density increases [23]. Thus, a possible negative effect of density

over the chulengo survival should not be completely dismissed.

Population size may not be controlled exclusively by either density-dependent

or density-independent mechanisms, but rather a combination of both [53], and

our results with the Cameron guanaco population seem to conform well to this

generalization. There is still a need to carry out future controlled long-term

studies to elucidate how population density, climate, predation, and even diseases,

interact to determine the population dynamics of guanacos, and if these factors

play a role in a possible multiple equilibrium behavior of these populations.
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Our results shed light into the population dynamics of South American

camelids, particularly on the strongly managed populations of guanacos of

Cameron, in Chile. Due to the pronounced decline in guanaco population

numbers in South America, our results may be useful to inform on management

alternatives guanaco populations in Cameron and in other places.
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