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We summarize the geotectonic history of the southern (mostly Patagonian) Andean Cordillera, and its possible
influence on the regional expression of global climates, biogeography, and important aspects of mammalian
evolution in South America. The northern Patagonian segment of the Andes contrasts with neighbouring sections
in that, during Palaeogene times, there was a transform margin stage; this influenced the Andean climate in
addition to global climate changes. This segment underwent alternating subduction and transform episodes that
suggest the existence of a proto-Andes and an Oligocene Andean gap for the San Carlos de Bariloche area. Coeval
with this gap (and at the backarc region of this segment), the 1200–1500 m uplift of the Northern Patagonian
Massif took place, resulting in an altiplano (high plateau), or Northern Patagonian High Plateau (NPHP), of
100 000 km2, which dominated northern Patagonia during the Oligocene. It is estimated that, by these times,
climate in the NPHP was humid and seasonally cool, in contrast to the seasonally more uniform, humid climates
of the lower lands peripheral to it. The NPHP may have acted as a biogeographical barrier between central and
southern Patagonia, on one side (as part of the Austral Biogeographical Kingdom), and the rest of South America
(Holotropical Kingdom) on the other. The most important Paleogene mammalian turnover transpired at the Early
Oligocene, concomitantly with the full opening of the Drake Passage and associated global cooling. The latitudinal
climate gradient that began at the Eocene–Oligocene transition affected sharply the entire Patagonian region, an
effect that was enhanced by the uplift of the NPHP. © 2011 The Linnean Society of London, Biological Journal
of the Linnean Society, 2011, 103, 305–315.

ADDITIONAL KEYWORDS: biogeography – geotectonics – Mammalian evolution – palaeoclimates – South
America – Southern Andes

*Corresponding author. E-mail: earagon@cig.museo.unlp.edu.ar

Biological Journal of the Linnean Society, 2011, 103, 305–315. With 4 figures

© 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103, 305–315 305

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301097724?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Se resume la historia geotectónica del sector sur (principalmente Patagonia) de la Cordillera Andina y su posible
influencia en la expresión regional de los climas globales, biogeografía e importantes aspectos de la evolución de
los mamíferos en Sud América. El sector norte de los Andes Patagónicos contrasta con los sectores vecinos en que
durante el Paleógeno existió un estadio de margen transformante; esto influenció el clima en los Andes en forma
adicional a los cambios climáticos globales. Este segmento fue sometido a la alternancia de episodios de subducción
y margen transformante, que sugieren la existencia de un proto-Andes y la existencia de un gap Oligoceno de los
Andes para el área de San Carlos de Bariloche. Contemporáneo a este gap (y en la región del retroarco de este
segmento) tiene lugar el levantamiento del Macizo Norpatagónico a una altura de 1200–1500 m, dando como
resultado la formación de un altiplano (plateau elevado), o Plateau Elevado del Macizo Norpatagónico (NPHP), con
una superficie de 100.000 km2 la cual dominaba el norte de Patagonia durante el Oligoceno. Se estima que para
esos tiempos, el clima en el NPHP fue húmedo con estaciones frías, en contraste con el clima estacionalmente más
uniforme y húmedo de las tierras bajas de la periferia. El NPHP pudo haber actuado como una barrera
biogeográfica entre Patagonia sur y central por un lado (como parte del Reino biogeográfico Austral) y por otro, con
el resto de Sud América (Reino Holotropical). El ‘turnover’ más significativo para los mamíferos ocurrió en el
Oligoceno Temprano, concomitante con la apertura del Pasaje de Drake y el enfriamiento global asociado. El
gradiente latitudinal del clima que se inicio en la transición Eoceno-Oligoceno afectó profundamente la región
Patagónica, un efecto que fue realzado por el levantamiento del NPHP.

PALABRAS CLAVE: América del Sur –Andes del Sur – biogeografía – evolución mamíferos – geotectónica –
palaeoclimas.

INTRODUCTION

As a result of its large regional extent, the Andes
comprise an east–west barrier that, in many ways,
affects the distribution of South American climates.
From a geological perspective, the Andean mountain
system is a supra-subduction feature at the active
South American plate margin. This plate margin has
been active since the Late Jurassic.

The modern configuration of the Andes and its large
north–south variations are the result of Miocene tec-
tonic processes and the particular characteristics of
each segment as regards the subduction angle, the
angle of convergence, the thickness of the oceanic
plate, the relations between the segments, the com-
position of the continental crust, etc. To understand
the events that drove the Palaeogene geography and
climates of Patagonia, its pre-Miocene orogenic devel-
opments have to be addressed.

The Northern Patagonian Massif (also referred as
the Somún Curá Massif; Figs. 1, 2) is a geological
province on its own (Ramos, 1999). It is one of the two
major positive regions in extra-Andean Patagonia: the
other one being the Deaseado Massif. Located
between 41°30′–44°S and 65°30′–70°30′W, its base-
ment has metamorphic rocks of Precambrian age
(Dalla Salda, Varela & Cingolani, 1999). Several units
of Palaeozoic and Mesozoic age were deposited above
this basement (Rabassa, 1974; Kokogian et al., 1999;
Page et al., 1999). During Palaeogene times, the
Northern Patagonian Massif was the subject of suc-
cessive uplift and erosion processes, which led to the
development of a high plateau during the Late
Eocene–Oligocene; this geomorphological unit is here

named the Northern Patagonian High Plateau
(NPHP); see below and Figs 1B, 3). Subsequently, a
series of basalt lava flows (the Somún Curá Fm.)
covered its south-eastern flank, forming the Somún
Curá plateau (Fig. 3C) (Ardolino et al., 1999; Malu-
mian, 1999). As suggested below, the NPHP may have
been an important, north–south biogeographical
divide during the first half of the Cenozoic.

We summarize the historical development of the
southern Andean range during the first two-thirds of
the Cenozoic, including the Middle Eocene-Oligocene
uplift of the NPHP, and its effect on the regional
sedimentary and magmatic cycles, as well as climatic
events. We also suggest how these events impacted
southern South America climates, biogeography, and
major trends in mammalian evolution.

ABBREVIATIONS AND DEFINITIONS

NPHP, Northern Patagonian High Plateau, which is a
morphological unit; Northern Patagonian batholith
includes Jurassic to Miocene plutons at the southern
Andes axis (Rapela, 1999); Northern Patagonian
Massif: this is a geological province in northern Pat-
agonia (Ramos, 1999); Somún Curá Massif: Late
Oligocene–Early Miocene plateau basalts (Ardolino
et al., 1999). EECO, Early Eocene Climatic Optimum;
LOW, Late Oligocene Warming.

PALAEOGEOGRAPY AND THE MAIN
MAGMATIC AND SEDIMENTARY CYCLES

Southern South America is a slim continental plate
that has a western active margin at which elements of
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the Pacific Plate were subducted (Fig. 3). In this
context, a majority of the regional mountain building
processes can be related to the tectono-magmatic
changes that occurred in this supra-subduction system
since the Late Jurassic (Jordan et al., 1983, 2001;
Munizaga et al., 1988; Rapela & Kay, 1988). These
subduction processes were not homogeneous through-
out but, instead, varied greatly along strike and from
segment to segment. This variability included inter-
vals of normal to flat subduction (Barazangi & Isacks,
1979; Cahill & Isacks, 1992), and the evolution of the
transform margin (Aragón et al., 2008) that resulted in
episodes of deactivation and erosion of the mountain
belts, with drastic along-strike changes in topography.

The Cenozoic tectono-magmatic evolution of North-
ern Patagonia includes four magmatic cycles
(Ardolino et al., 1999) and five sedimentary cycles
(Malumian, 1999) that can be arranged in four
main stages of its palaeogeographical development
(Figs 3, 4):

1. The Late Cretaceous to Danian interval (Fig. 3A)
saw the subduction of the Aluk plate with the
development of an arc represented by the emplace-
ment of the Northern Patagonian batholith. This
supra-subduction system may have developed a
proto-Andes range (Suarez & de la Cruz, 2000). At
its back arc counterpart, the most extensive Atlan-
tic Ocean transgression drowned most of northern
Patagonia, expressed by the Salamanca, Pedro
Luro, and Jaguel Formations at the Colorado and
Neuquén basins (Figs 2, 4), deposited in a shallow
sea on a continental platform.

2. During the Late Palaeocene, the Farallón–Aluk
ridge collided with the South American plate at the
latitude of northern Patagonia with a very small
convergence angle (Cande & Leslie, 1986; Somoza
& Ghidella, 2005). This resulted in the develop-
ment of a transform margin (Aragón et al., 2008)
and regional uplift, the development of a broad
extensional setting, and the migration of the vol-
canic locus to the former back arc (Fig. 3B). The
regional uplift included the Northern Patagonian
Massif, the elevation of which began by the Middle

Figure 1. A, map of central and northern Patagonia
(provinces of Neuquén, Río Negro, and Chubut) showing
localities the described in the text (black circles). Stars
indicate major towns. B, map of Argentina indicating
natural regions, and the present divide between the Neo-
tropical Region (NR) of the Holotropical Biogeographic
Kingdom, and the Andean Region (AR) of the Austral
Kingdom. The shaded areas in (A) and (B) indicate the
location of the Palaeogene Northern Patagonian High
Plateau.
b
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Eocene, and probably continued to the Middle Oli-
gocene. These movements configured a new, out-
standing feature in the Patagonian landscape: the
Northern Patagonian High Plateau, or NPHP.

The marine regression from the Golfo San Jorge,
Colorado, and Neuquén basins was replaced by
successive continental sedimentation, as reflected
by the Río Chico, El Carrizo and Ombucta forma-
tions, respectively (Fig. 4). The volcanic activity
was concentrated at the Pilcaniyeu volcanic belt
(Fig. 3B), the ‘Faja Oriental o externa’ of Ardolino
et al. (1999), with isotopic dates that range from
60 ± 5 to 42 ± 5 Mya (Rapela et al., 1984, 1987).
This volcanism was essentially explosive, with the
development of a large caldera field (more than
400 km wide) that produced widespread deposits of
ignimbrites. At a later stage of this volcanism,
shield volcanoes were also developed. The most
important volcanic districts of this large volcanic

field are: Confluencia, Pilcaniyeu, and Mamuel
Choique in Río Negro Province, and Piedra Parada
in Chubut Province. The volumes of erupted ash
were calculated in more than 1200 km3, during a
time span of less than 10 Myr. Most of the Eocene
ash deposits concentrate towards the southeast
and east of the Pilcaniyeu belt.

3. By the Late Oligocene–Early Miocene, the proto-
Andes underwent a major period of erosion to the
extent that some of the region (the San Carlos de
Bariloche area) was bridged and flooded by the
Pacific Ocean (Ñirihuau Basin; Figs 2, 3C). This
new palaeogeographical interval is characterized
by Atlantic and Pacific transgressions reflective of
global eustatic changes (Malumian, 1999; Malu-
mian et al., 2008). Volcanism changed from a
single belt to widespread activity, extending from
the Atlantic Ocean to the Pacific coast (Fig. 3C).

The NPHP became the new topographic barrier
between the Atlantic and Pacific oceans, and prob-
ably between Patagonia and the rest of South
America (Fig. 1). Its relative elevation and steep
transition with respect to the surrounding coun-
tryside was preserved by the Late Oligocene basalt
flows of the Somún Curá Fm, as well as by sedi-
ments of the Sarmiento Fm. At the locality of Gan
Gan (Fig. 1), the Somún Curá lava flows descended
more than 400 m from the edge of the NPHP to the
surrounding countryside. The altitude that the
NPHP was estimated as having at least 1200 m
a.s.l. by the Late Oligocene, as determined from
the position of the Danian marine sediments that
lie undeformed at the top of the NPHP and
beneath the Late Oligocene basalt flows. The
western, sharp edge of the NPHP was bounded on
the south-west by the Ñirihuau Basin (Fig. 3C).
The NPHP provided the sediments for the
Ñirihuau Basin, which show facies transitions
related to a Pacific transgression, with more con-
tinental sediments found toward the NPHP and
marine facies toward the southwest (Spalletti,
1983). By contrast, sediments on top of the NPHP
are composed of loess. The Atlantic transgression
counterpart is known as ‘Patagoniense’ or ‘Patago-
niano’ and is characterized by a shallow sea with
cold water associations (Malumian, 1999; Fig. 3C).

Volcanism during this palaeogeographical stage
was broadly distributed from the Pacific to the
Atlantic coasts. It was profuse but mainly domi-
nated by lava flows. Moderate explosive activity
was restricted to the El Maitén belt, and minor
activity in the Somún Curá district (Fig. 3C).
There was a moderate increase of volcanism from
west to east: the coastal belt is made of sparse
andesitic outcrops, whereas the El Maitén belt is
composed of stratovolcanos that stand at the

Figure 2. Map of Argentina indicating the sedimentary
basins described in the text. Note that the Northern Pat-
agonian High Plateau (NPHP), and, previously, the North-
ern Natagonian Massif, influenced the drainage of all of
these basins.
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western edge of the Ñirihuau Basin with a poten-
tial ash production of 500 km3. The Somún Curá
district shows extensive plateau basalts and vol-
canic centres such as Talagapa (Fig. 1) that reflect
a small number of explosive events with a poten-
tial ash production of 100 km3. Most of this ash
production was confined to the Ñirihuau Basin, or
to the Oligocene–Miocene deposits of southeastern
Chubut province (San Jorge Basin area) (Fig. 2).

4. The next major palaeogeographic phase (Figs 3D,
4) occurred during the Miocene. The break-up of
the Farallón Plate gave rise to the Nazca and
Cocos plates at approximately 23 Mya (Lonsdale,
2005). The newly formed Nazca plate also changed
its relative movement to a large convergence angle
with respect to the South American plate (almost
90°; Cande & Leslie, 1986), promoting the events:

(1) reinstallation of subduction beneath the South
American plate at the latitude of northern Patago-
nia; (2) the rise of the Andes and the tectonic
inversion that put an end to the Ñirihuau Basin
(Giacosa & Márquez, 1999); (3) the reinstallation
of arc volcanism locus to the Andes axis; and (4)
the development of the Andes as a geographical
barrier for the easterly and westerly winds.

Volcanic activity shows a major explosive event at
15 Mya with the wide-spread distribution of the
Collón Curá Formation and its pyroclastic deposits
(Fig. 4). Since the Pliocene, typical stratovolcanos
spread along the present volcanic arc axis, and sparse
basaltic colada flows are erupted at the back arc.

REGIONAL CLIMATES AND THE
ANDEAN CORDILLERA

Continental-scale mountain belts interfere with atmo-
spheric and oceanic circulation patterns, and produce
climate changes and gradients in precipitation that
affect surface processes (Isacks, 1992). Thus, in addi-
tion to the complexity of global climate changes, the
mountain building changes at each Andean segment
must be considered as an additional factor to be taken
into account when considering palaeoclimate changes
of a particular area.

Even though the Andes comprises a continuous belt
that splits South America, the distribution of humid
and arid conditions alternate in a chess-board pattern
along it. This is a result of the fact that the Andes
stand perpendicular to moisture-bearing winds that
vary along strike. The northern and central Andes are
exposed to the moist easterlies that come from the
Atlantic Ocean across the Amazon basin, leaving all
moisture on the eastern flanks of the northern and
central Andes, and leading to aridity on the western
flanks. By contrast, the southern Andes receive the
moist Southern Hemisphere westerlies that leave all
the moisture on their western flanks, with resultant
aridity on their eastern side (Patagonia). It is impor-
tant to point out that the southern Andes with an
elevation of 2000 m a.s.l. are as effective a moisture
barrier as the central and northern Andes are, with
elevations of 5000 m and the Puna at 3700 m a.s.l.

Global climate changes through Palaeogene times
record two thermal optimums (EECO and LOW) that
extended sub-tropical climates to extreme high lati-
tudes. Palaeocene–Eocene climates in this region
were humid and subtropical on both sides of the
proto-Andes (Aragón & Romero, 1984; Suarez, de la
Cruz & Troncoso, 2000; Wilf et al., 2005). The exist-
ence of the proto-Andes suggests that the humidity in
eastern Patagonia may have been provided by the
easterly Atlantic monsoon.
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Contrary to northern-central South America, which
had an arid western flank and a humid eastern flank
throughout the Cenozoic (Strecker et al., 2007), Pat-
agonia Eocene palaeofloras suggest that a sub-
tropical climate was present as far as 48°S (Wilf et al.,
2005) on the eastern flank of the southern Andes.
This was abruptly interrupted by the global cooling
that took place during the Early Oligocene, which
established the beginning of the cool-arid conditions
that characterize modern Patagonia. During the
Early Eocene climatic optimum, the climate through-
out Patagonia was humid and subtropical; it is sug-
gested that the humid easterlies (Atlantic monsoon)
extended as far south as to dominate continental
Patagonia (see Compagnucci, this volume).

During the Oligocene, as global cooling was in
progress and the Patagonian climate became gradu-
ally more arid, the proto-Andes were diminished as
an effective barrier because they were eroded suffi-
ciently as to let Pacific marine transgressions reach
the former backarc region (at least in the San Carlos
de Bariloche area). From the Late Oligocene to the
Early Miocene, the NPHP, with its 100 000 km2 area
and 1200 m altitude, may have been the most impor-
tant topographic feature remaining to interact with
the monsoon (if present), as suggested by floral data.

After the Miocene, major plate rearrangement and
the building of the present Andes began, along with
its role as a barrier to humid westerly circulation. The
NPHP must have also remained as an important
topographical barrier during this time.

An additional factor to be considered is that the
Eocene–Oligocene rise of a plateau at the former back
arc, split South America into a southernmost part
(most of Patagonia south of the NPHP), and a northern
part (the remaining, much larger portion of the conti-
nent). This may have had considerable climatic and
biogeographical influence in southern South America
(see below). Palaeofloras also show a sharp change
between the Oligocene–Early Miocene deposits of the
northern Patagonian lowlands (the Ñirihuau Forma-
tion) and those of the NPHP (the La Pava Formation).
In the lowlands, abundant Nothophagus and coal
deposits of economic interest are present, whereas, in
the NPHP, only diatom-bearing deposits (shallow
lakes) in loess sediments and strata made of wasp
nests are found (Franchi et al., 1984). This shows
coeval climate stratification from the high plateau to
the surrounding lowlands. The Ñirihuau Formation
shows that subtropical floras of the middle section
suffered the effect of progressive desertification toward
the top of the sequence. Instead, the NPHP appears to
show sufficient humidity to sustain diatomaceous lake
deposits (Oligocene and Miocene). Nevertheless, the
abundant wasp nests suggest a more seasonal climate,
perhaps including cool winter conditions.

BIOGEOGRAPHICAL PATTERNS IN
SOUTHERN SOUTH AMERICA

A series of successive papers published in the last
decade (Morrone, 2002; Donato et al., 2003; Morrone,
2004a, b, 2006) summarized previous evidence and
argued that, in biogeographical terms, South America
was not a unit (the region traditionally referred to as
the Neotropics) but, instead, that the continent is a
composite. As previously proposed by several special-
ists belonging to different disciplines, especially by
palaeobotanists, it was argued that the southernmost
tip of South America belongs not to the Neotropical
region but, instead, to a distinct biogeographical unit,
the Andean Region of the Austral Kingdom. This
intercontinental biogeographical realm includes the
Southern Andes (central Chile, Puna Plateau
(Fig. 1B), and the Subantarctic Andean region) and
Patagonia, as well as Antarctica, southernmost
Africa, eastern and southern Australia, New Zealand,
and New Guinea. In later works, Morrone (2006)
regarded the remaining portion of the Andean Range,
its central and northern sections, as a transitional
zone between the Neotropical and Andean regions. In
turn, the remaining areas of South America, as well
as southernmost North America and the Caribbean,
were included in the Neotropical Region of the Holo-
tropical Kingdom (Morrone, 2002).

The biogeographical distinction of Patagonia in
comparison with the remaining (central and north-
ern) South America has been supported by several
lines of palaeo- and neontological evidence. For
example, a recent review of the biogeographical
history of South American arid lands, taking in
account selected, recent arthropod taxa, led Roig-
Juñent et al. (2006: 416) to state that the areas of
endemism of Patagonia form a natural (biogeographi-
cal) group, ‘. . . showing that this biota evolved as a
unit’. Interestingly, the natural area immediately
north of central and southern Patagonia, as defined
by these authors (the Austral Monte area; Roig-
Juñent et al., 2006: fig. 2 and table 1 in that paper)
matches quite strictly with the geographical place-
ment of the Northern Patagonian Massif.

Several aspects of the geological history of South
America had been suggested as primary drivers of
its biotic evolution (Pascual, 2006; Pascual & Ortiz
Jaureguizar, 2007; Donato et al., 2003). From our
perspective, and putting aside the Andean Cordil-
lera, the most prominent feature responsible of the
isolation of Patagonia during post Middle Eocene
times was the Northern Patagonian High Plateau. It
should be noted that the Austral Biogeographical
Kingdom largely predates the Mid-Eocene uplift of
the NPHP; Goin et al. (in press b) suggest that its
origin could be traced back to the Late Triassic.
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Evidence of an Austral realm previous to the uplift
of the NPHP is abundant. For example, Quattrocchio
& Volkheimer (2000) found that, during the Late
Cretaceous and Palaeogene, a southern, high lati-
tude, cool temperate, biogeographical province
extended from Patagonia in South America, across
Antarctica (mainly Western Antarctica) to New
Zealand and southeastern Australia. They named it
the ‘Weddellian Province’ (Zinsmeister, 1979, 1982)
and included within it both shallow marine faunas,
as well as the terrestrial biotas. Similarly, Quattroc-
chio (2006) and Quattrocchio et al. (2005) recognized
two major Danian microfloral provinces in Argen-
tina: an Ulmaceae pollen province north of Santa
Cruz Province, and a Nothofagidites province south
of the Chubut–Santa Cruz boundary in central Pat-
agonia. Goin et al. (in press a) suggested that these
palynological ‘provinces’ actually correspond to the
Neotropical and Andean biogeographical regions,
respectively. Briefly, it can be concluded that the
boundary between these northern and southern
regions may have shifted with time since the Late
Cretaceous to the Early Eocene, until the uplift of
the Northern Patagonian High Plateau set a more
permanent boundary for both regions from the Mid-
Eocene onwards.

A cautionary note should be made on the nature of
the palaeontolological evidence regarding Tertiary
South American mammals: most of it comes from
central Patagonia (i.e. from sites south of the NPHP).
However, when faunas from low latitude localities are
known, radical differences with approximately con-
temporary Patagonian associations can be observed.
This is the case, for example, of the Late Eocene
(?)-Early Oligocene Santa Rosa mammalian assem-
blage in Peruvian Amazonia. Goin & Candela (2004)
noted the uniqueness of this (Neotropical) metathe-
rian association as compared to the (Austral) Patago-
nian ones of similar age.

Also regarding metatherian mammals, Goin et al.
(in press a) postulated that the radiation of basal
‘opossum-like’ taxa (‘Ameridelphia’) may have been a
largely Neotropical event, including both southern
North America and northern South America. Second,
they postulated that the origin and radiation of
Australidelphia marsupials (microbiotherians, poly-
dolopimorphians, and Australasian taxa) was pre-
dominantly an Austral Kingdom event (Andean
Region + Antarctica + Australasia). An example of
this is the Late Palaeocene (?)–Early Eocene faunal
assemblages of Las Flores (central Patagonia) and
Itaboraí (southeastern Brazil; Itaboraian age). Both
share many taxa in common, except for the Polydol-
opidae (an australidelphian clade of marsupials),
which are exclusively present in Patagonia. In speci-
men numbers, polydolopids comprise approximately

50% of all the Las Flores metatherian association
(Goin et al., in press a).

A more general hypothesis, this time regarding
nontherian mammals, could also be made: that
monotremes (and gondwanatherians?) are Austral
Kingdom elements that would not be found in Ceno-
zoic levels of South America north of the NPHP.
Finally, we wonder whether the whole Austral-
osphenidan clade may have had an Austral Kingdom
centre of origin, rather than a Gondwanian or a
Southern Hemisphere one (on contrasting views
regarding the concept and entity of the Austral-
osphenida, compare Luo, Kielan-Jaworowska &
Cifelli, 2002 with Woodburne, Rich & Springer, 2003).

The NPHP probably acted not only as a general
barrier between the Andean and Neotropical regions
of South America, but also as a selective filter for
biotic migrations between these two regions. This
may be the case for two major groups of mammals
that arrived in South America by Middle Cenozoic
times: caviomorph rodents and platyrrhini primates.
None have yet been recorded from pre-Tinguirirican
(latest Eocene–earliest Oligocene) levels in South
America; however, molecular evidence strongly sug-
gests that at least caviomorphs may have been
present in this continent since the Middle or Late
Eocene (Poux et al., 2006). Most favoured hypotheses
dealing with the arrival of these mammals suggest a
trans-Atlantic dispersal from Africa, first to inter-
tropical South America and then to Patagonia (Vucet-
ich et al., 2010). If a pre-Tinguirirican age for the
Santa Rosa mammalian assemblage proves to be
correct (as partially hypothesized by Goin & Candela,
2004; see also Madden et al., 2010), this fauna, which
includes a wide variety of caviomorphs, would be an
empirical proof of a north–south dispersal of rodents
in South America. In that case, the NPHP may well
have been the filter for a (later) southern dispersal of
these mammals, as well as primates, into Patagonia
after their arrival to lower latitudes in this continent.

THE BEGINNING OF ARID-ADAPTED
MAMMALS IN SOUTH AMERICA

An interesting corollary of these inferences is whether
the isolation of Patagonia, by means of the Northern
Patagonian High Plateau, triggered the evolution of
arid-adapted mammalian taxa after the ‘big chill’ that
transpired by the Eocene–Oligocene boundary (EOB).
At this time (33.9 Mya), climatic conditions changed
toward an Icehouse phase, probably as a consequence
of the opening of the Southern Ocean with the Drake
Passage, an event that led to the formation of the
Antarctic Circumpolar Current (Livermore et al.,
2004). The result was the first major expansion of
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Antarctic ice in the Cenozoic, together with a sharp
decrease in global temperatures. In turn, these
changes promoted generalized turnovers in the
Palaeogene marine and terrestrial biota. In southern
South America, subtropical biomes and savannas
became the dominant biomes just after the EOB
(Ortiz-Jaureguizar & Cladera, 2006). During this
time, there was an expansion of micro- and mesother-
mal floristic elements (Barreda & Palazzesi, 2007),
and a sharp increase in seasonality (Hinojosa, 2005).
All these elements may have promoted the evolution
of lineages that exploited the new environmental con-
ditions, initially not distributed throughout South
America but found at its souternmost tip: approxi-
mately comprising the areas encompassed by the
Austral Kingdom.

Most of the South American mammalian fossil asso-
ciations known from the EOB are known from high
latitudes, such as those of Patagonia and other
regions of the Austral Kingdom. Marsupials, espe-
cially sensitive to low temperatures (Goin et al., in
press a), underwent a major turnover by the earliest
Oligocene that implied a modernization of several
lineages and the extinction of some of the earlier,
archaic taxa (Goin, Abello & Chornogubsky, 2010;
Goin et al., in press b). Among the most notable of
these changes is the origin and radiation of the Argy-
rolagoidea, a lineage of hypsodont marsupials most
probably adapted to granivorous and (at least partial)
herbivorous feeding habits. Among native ungulates,
there is a noticeable increase in the diversity of hyp-
sodont notoungulates (e.g. Archaeohyracidae, Inter-
atheriinae, Hegetotheriidae, and Mesotheriidae) after
the Early Oligocene. Judging from the Miocene South
American record, the few persisting taxa of low-
crowned, bunodont ungulate types were restricted to
lower latitudes (Cifelli & Villarroel, 1997; Carlini,
Gelfo & Sánchez, 2006; Goin et al., in press b).

In summary, we suggest that: (1) the first major
expansion in South America of xeric environments
after the EOB took place in the southernmost lati-
tudes: Patagonia and the southern Andes; (2) this
change promoted the evolution of arid-adapted lin-
eages among mammals; and (3) the subsequent
expansion of open, xeric environments in other
regions of South America may have promoted the
expansion of these arid-adapted taxa throughout
northern parts of the continent, probably via the xeric
corridors provided by the Andean Range.
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