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Abstract

We consider new-physics (NP) contributions to the decay t → bbc. We parameterize the NP

couplings by an effective Lagrangian consisting of 10 Lorentz structures. We show that the presence

of NP can be detected through the measurement of the partial width. A partial identification of

the NP can be achieved through the measurements of a forward-backward-like asymmetry, a top-

quark-spin-dependent asymmetry, the partial rate asymmetry, and a triple-product asymmetry.

These observables, which vanish in the standard model, can all take values in the 10-20% range in

the presence of NP. Since |VtbVcb| ' |VtsVcs|, most of our results also hold, with small changes, for

t→ ssc.
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I. INTRODUCTION

On the whole, measurements of observables in the B system agree with the Standard

Model (SM). However, some cracks have started to appear. There are now several quantities

whose measured values differ from the predictions of the SM. Although these disagreements

are not statistically significant – they are typically at the level of ∼ 2σ – they are intriguing

since there are a number of different B decays and effects involved, and they all appear

in b → s transitions. Because of this, there have been numerous papers examining new-

physics (NP) flavour-changing neutral-current (FCNC) contributions to the various b → s

processes. These analyses have been performed in the context of specific NP models, or

model-independently.

In general, such NP can also contribute to FCNC processes involving the top quark. This

has been looked at, though much less so than in B decays. However, given that the LHC will

produce a large number of top quarks and will be able to measure flavour-changing t decays,

it is important to explore the possibility of NP contributions to FCNCs in the top sector.

In the past, analyses have focused on rare top decays such as t → cV (V = g, γ, Z) and

t→ ch [1, 2]. Other top decays where NP effects have been examined include t→ bτ+ν [2–9]

and t→ W+dk [10].

In this paper we examine the decay t → bbc. In the SM, this decay occurs at tree level,

via t → bW → bbc. On the other hand, because it involves the small element Vcb (' 0.04)

of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix, the amplitude for this

process is also rather small, and is therefore quite sensitive to NP. For example, there could

be NP FCNC contributions to this decay in models with a charged Higgs boson [2], or via

t → X0c → bbc, where X0 corresponds to some neutral particle (such as a Z ′ or a non-

SM Higgs boson). Such FCNC processes could interfere with the SM process, leading to

observable consequences, even if the intermediate NP particle were heavier than the top

quark. Rather than restricting our attention to any one particular model, we examine NP

contributions to t→ bbc model-independently (i.e., using an effective Lagrangian).

Our model-independent treatment of t → bbc takes into account the effects of the 10

possible four-Fermi operators. These operators contribute to both CP-conserving and CP-

violating observables. For the CP-even observables, we consider the CP-averaged partial

width, a forward-backward-like asymmetry, and an asymmetry that depends on the spin of

2



the top quark. For the CP-odd observables, we note that the decay t → bbc is dominated

by one amplitude in the SM; i.e., there is only one weak phase involved. As such, all

CP-violating asymmetries are very suppressed in the SM, so the observation of a non-zero

asymmetry would be a smoking-gun signal of NP. In this paper, we discuss two types of

CP-odd asymmetries: the partial-rate asymmetry (PRA) and a triple-product asymmetry

(TPA).

PRAs require a strong phase in order to be non-zero. Strong phases can arise due to

gluon exchange, but it is expected that such phases will be small since the energies involved

are so large. Another source of a strong phase is the width of the W . In our calculation, we

ignore QCD-based strong phases and assume that the required strong phase is due entirely

to the width of the W . This means that only SM-NP interference can lead to a PRA. On

the other hand, in contrast with PRAs, TPAs do not require a strong phase in order to be

non-zero. Thus, NP-NP interference terms can give rise to TPAs. As we will see, TPAs

generated by SM-NP interference tend to be small, but NP-NP TPAs can be large. These

are particularly interesting.

We show that the measurement of the partial width by itself can reveal the presence of NP.

However, if the NP exists, we will want to know its identity, i.e., which of the 10 operators is

responsible, and the partial width measurement does not give us this information. In order

to do this, it is necessary to measure the other quantities mentioned above. Since the various

observables depend differently on the operators, the knowledge of their sizes will give us an

idea of which NP operators are present. This will allow us in turn to deduce which model(s)

might be responsible for the observed effects.

Although we confine our attention to t → bbc in this work, we note that most of our

results are easily transferable to t → ssc by the replacement
(
b, b
)
→ (s, s) in Feynman

diagrams and expressions. Since |VtbVcb| ' |VtsVcs|, the branching ratio for t→ ssc is similar

to that for t → bbc, and the two processes would apriori have similar sensitivities to NP

effects. One difference between t → bbc and t → ssc is that the “CPT” correction to the

PRA would be significant for t→ ssc, whereas it is miniscule for t→ bbc (see the discussion

in Sec. IV A and Appendix B).

The remainder of this paper is organized as follows. In Sec. II we write down the SM

contribution to t → bbc, and also parameterize NP contributions to this decay in terms of

an effective Lagrangian containing ten terms. In Sec. III (CP-even observables) we compute
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the CP-averaged partial width for the decay under consideration, as well as a forward-

backward-like asymmetry and an asymmetry based on the spin of the top quark. The latter

two asymmetries are both constructed in such a way that they are zero within the context

of the SM. We close this section with a brief numerical study, noting that the CP-even

asymmetries could reasonably be of order 10’s of percent. Section IV contains our analysis

of two CP-odd observables – the partial rate asymmetry and the triple-product asymmetry.

Section V concludes with a discussion of our results. Appendices A, B and C contain some

technical details. In particular, Appendix B contains a discussion of results related to the

CPT theorem, namely which vertex-type corrections must be considered in the calculation

of PRAs in order not to violate CPT.

II. STANDARD MODEL AND NEW-PHYSICS CONTRIBUTIONS

In this section we parameterize the NP contributions to t → bbc in terms of an effective

Lagrangian. We then write down expressions for the SM and NP amplitudes. These expres-

sions are used in following sections to determine various CP-even and CP-odd observables.

Figure 1(a) shows the Feynman diagram for the SM contribution to t→ bbc. The resulting

amplitude is given by,

MW = −2
√

2GFm
2
WVcbVtb (ubγαPLut) (ucγβPLvb)

[
−gαβGT (q2)

]
, (1)

where V is the CKM matrix. We work in the standard representation of the CKM matrix,

in which Vcb and Vtb are both real. Note that colour indices have been suppressed. The

expression in square parentheses is the W propagator, with q = pt − pb = pb + pc, GT (q2) =

[q2 −m2
W + iεT (q2)]

−1
and εT (q2) ' q2ΓW/mW , where ΓW ' 3GFm

3
W/(2

√
2π).

(Note: throughout this paper we neglect the leptons’ and light quarks’ masses. However,

if this not done, the W propagator is modified to

i

[(
−gαβ +

qαqβ

q2

)
GT (q2) +

qαqβ

q2
GL(q2)

]
, (2)

where GL = [m2
W + iεL(q2)]

−1
. εT (q2) and εL(q2) are related to the transverse and longi-

tudinal widths of the W [6], and they both depend on the quark masses. There has been

considerable discussion in the literature regarding the correct form of the W propagator.

(See, for example, Refs. [5–7, 11–15].) The above expression has been derived by performing
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FIG. 1: Feynman diagrams for t → bbc. Diagram (a) shows the SM contribution. Diagram (b)

shows the NP contributions in the effective theory. The NP contributions are assumed to have the

same colour structure as that of the SM. See Appendix C for comments regarding the more general

case.

a Dyson summation of the absorptive parts of the W self-energy diagrams in unitary gauge,

with quarks and leptons in the loops. Some of the disagreement in the literature has focused

on the form of GL (see the brief discussion in Ref. [9], for example). Still, when all light

masses are neglected, none of the observables in the present work depend on GL. There

seems to be broader agreement on the form for GT in the literature, although many authors

drop the q2 dependence in εT . Finally, we should note that the Pinch Technique may be used

to reorganize perturbative calculations – even those involving resonances – in such a way

that results are explicitly gauge-invariant (see, for example, Ref. [15]). Rigorous application

of the Pinch Technique to the problem at hand is beyond the scope of this work.)

We parameterize new-physics effects via an effective Lagrangian Leff = LVeff + LSeff + LTeff,

where,

LVeff =
g′2

M2

{
RV
LL bγµPLt cγ

µPLb+RV
LR bγµPLt cγ

µPRb

+RV
RL bγµPRt cγ

µPLb+RV
RR bγµPRt cγ

µPRb
}

+ h.c., (3)
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LSeff =
g′2

M2

{
RS
LL bPLt cPLb+RS

LR bPLt cPRb

+RS
RL bPRt cPLb+RS

RR bPRt cPRb
}

+ h.c., (4)

LTeff =
g′2

M2

{
CT bσµνt cσµνb+ i CTE bσµνt cσαβb εµναβ

}
+ h.c. (5)

In the above expressions, g′ is assumed to be of order g, M is the NP mass scale and the

R and C couplings may include weak (CP-violating) phases. For the Levi-Civita tensor,

we adopt the convention ε0123 = +1. The NP contributions to t → bbc are illustrated in

Fig. 1(b). Colour indices are not shown in the above expressions, but are assumed to contract

in the same manner as those of the SM (i.e., b with t and c with b). In FCNC models –

those with a flavour-changing neutral particle such as a Z ′ or a scalar – the colour indices

would contract in the opposite manner (i.e., c with t and b with b). It is straightforward to

incorporate colour-mismatched terms into the effective Lagrangian. This topic is discussed

further in Appendix C.

It is useful to define

XV
LL ≡

(
g′

g

)2 (mW

M

)2 RV
LL

VtbVcb
=

√
2

8GF

g′2

M2

RV
LL

VtbVcb
, (6)

and similarly for the other R and C couplings. In terms of the “X” parameters, we have

the following expression for the NP contribution to t→ bbc,

MNP = 4
√

2GFVcbVtb
{
XV
LL ubγµPLut ucγ

µPLvb + . . .
}
. (7)

To get a sense of the possible order of magnitude of the X couplings, note that, if g′ ∼ 2g

and M ∼ 500 GeV, then XV
LL ∼ 2.5 × RV

LL. Thus, XV
LL could reasonably be assumed to

be of order unity. In other words, the SM and NP contributions to t → bbc can very well

be about the same size. When computing the effect of NP on a particular observable, it is

therefore important to include both the SM-NP interference and NP2 pieces.

At present, there are no direct constraints on the X couplings. The precision measure-

ments of Vcb place an indirect constraint via the loop diagram shown in Fig. 2. It is known

that some care must be taken when attempting to incorporate terms from an effective La-

grangian into loop calculations [16]. Incorporating the diagram shown in Fig. 2, we find the

following expression for the effective Lagrangian for b→ c`ν,

LSM+NP
eff ' −2

√
2GFVcb

[(
1 + ζVLL

)
cLγµbL + ζVLR cRγµbR

]
`Lγ

µνL + h.c., (8)
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FIG. 2: Loop-level contribution of the NP operators to b → c`ν. This contribution affects the

measurement of Vcb.

in which we have dropped corrections of order O (mb/mt). Using the Feynman rules for the

various vertices, and employing dimensional arguments, we estimate

ζVLL(R) ∼
GFm

2
t

2
√

2π2
(Vtb)

2XV
LL(R). (9)

Since semileptonic b → c transitions are used to determine Vcb, the experimental value of

Vcb can be used to bound XV
LL and XV

LR. Let us first consider the XV
LL term in Eq. (8),

ignoring the XV
LR term. The XV

LL term has exactly the same structure as the SM term.

Its effect is thus simply to multiply any inclusive or exclusive b → c`ν width by a factor

of
[
1 + 2Re

(
ζVLL
)

+
∣∣ζVLL∣∣2]. The current experimental value of Vcb is Vcb = (40.6± 1.3) ×

10−3 [17], implying a 6.4% uncertainty on V 2
cb. If we assume that the XV

LL contribution to

b→ c`ν is hiding in the experimental uncertainty of V 2
cb, we find the bound,

Re
(
XV
LL

)
<∼ 2.6, (10)

in which we have neglected the quadratic contribution of ζVLL, since it is small. Since XV
LR

is associated with the right-handed quark current in Eq. (8), its effect is process-dependent.

For example, for B → D`ν, the hadronic matrix element is only sensitive to the vector

part of the hadronic current, so left-handed and right-handed couplings both have the same

effect, and they can be absorbed in with the SM current [18]. For other modes, such as

B → D∗`ν, the right-handed and left-handed currents must be treated differently [18].
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Since our expression in Eq. (9) is somewhat of an approximation in any case, we assume the

same upper bound for XV
LR as for XV

LL, i.e.,

Re
(
XV
LR

)
<∼ 2.6. (11)

The NP operators considered in this work could contribute, via loops, to other observables

as well. As an example, consider the decay B → ψKS, which proceeds at tree-level in the SM.

In the present context, the NP operators contribute to this decay via a diagram similar to

Fig. 2, but with ν` replaced by cs in the final state. The resulting effective Lagrangian would

be very similar to Eq. (8), which could lead to effects in the measurement of sin(2β) [19].

We do not consider such effects further here.

Although we do not perform any model calculations in this work, it is worthwhile to

consider which types of models could give rise to the various NP operators. The terms

in Eqs. (3) and (4) arise in models that contain new charged vector or scalar bosons. For

example, extensions of the SM containing gauge bosons with left- and right-handed charged-

current couplings (such as the Left-Right Model) would contribute terms such as those

appearing in LVeff – including the RV
LR and RV

RL terms if there were some amount of mixing

between the left- and right-handed gauge bosons. Models containing charged scalars (such

as the charged Higgs bosons that appear in many extensions of the SM) could give rise to

the terms in the expression for LSeff. Alternatively, there are many FCNC models containing

a heavy neutral NP particle (such as a Z ′ or a neutral Higgs boson) with flavour-changing t-c

couplings. Here Fierz rearrangements of the eight operator combinations (γµPL,R) [γµPL,R]

and (PL,R) [PL,R] (in the notation employed in Ref. [20]) lead to all ten of the operator

combinations in Eqs. (3)-(5). In this case there would be mismatched colour indices between

the NP and SM diagrams. Appendix C explains how to deal with this situation.

In the following sections we compute various observables associated with the decays

t → bbc and t → bbc. We take as our starting point the expressions for the SM and NP

amplitudes in Eqs. (1) and (7), respectively.

III. CP-EVEN OBSERVABLES

We begin by considering three CP-even observables associated with the decays in question.

The first is the CP-averaged partial width, normalized to the SM result; the second is a
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forward-backward-like asymmetry; and the third is a CP-even asymmetry that employs the

spin of the top quark. In Secs. III A-III C we work out expressions for the various observables.

Section III D contains a numerical analysis and discussion of the results.

A. CP-averaged partial width

We first consider the partial width for t→ bbc. The expression for the differential partial

width, including the various NP terms from the effective Lagrangian, may be found in

Eq. (A1) in Appendix A. Performing the integrations over ρ2 = (pt − pc)2 = (pb + pb)
2 and

q2, we find,

Γ
(
t→ bbc

)
' ΓSM

(
t→ bbc

){
1 +

4ΓW
mW

[
−0.04× Re

(
XV ∗
LL

)
+ Im

(
XV ∗
LL

)]
+

3GFm
2
t√

2π2 (1− ζ2
W )

2
(1 + 2ζ2

W )

[ ∣∣XV
LL

∣∣2 +
∣∣XV

LR

∣∣2 +
∣∣XV

RL

∣∣2 +
∣∣XV

RR

∣∣2
+

1

4

(∣∣XS
LL

∣∣2 +
∣∣XS

LR

∣∣2 +
∣∣XS

RL

∣∣2 +
∣∣XS

RR

∣∣2)+ 24 |XT |2 + 96 |XTE|2
]}

, (12)

where ζW ≡ mW/mt and

ΓSM

(
t→ bbc

)
' GFm

3
t

24
√

2π
(VtbVcb)

2 (1− ζ2
W

)2 (
1 + 2ζ2

W

)
. (13)

In calculating the expressions in Eqs. (12) and (13), we have used the narrow width approxi-

mation, in which |GT (q2)|2 is replaced by a δ-function in q2, appropriately normalized. [One

exception is the term proportional to Re(XV ∗
LL) in Eq. (12), which was computed numerically.]

(Note that the term proportional to Im(XV ∗
LL) in Eq. (12), which is involved in the partial

rate asymmetry discussed below, is not quite complete. In its present form, it would lead

to a violation of CPT. To avoid running into problems with the CPT theorem, certain

vertex-type corrections need to be included in the calculation when computing partial rate

asymmetries. We discuss these extra terms in Appendix B.)

The partial width for the CP-conjugate decay may be obtained from Eq. (12) by complex

conjugating all weak phases.1 This has the effect of changing the sign of the Im(XV ∗
LL) term,

while leaving the other terms unchanged. Adding the widths for t → bbc and t → bbc, and

1 Note that the “i” multiplying XTE in the NP amplitude does not get complex conjugated when computing

the amplitude for the CP-conjugate process.
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dividing by twice the SM result yields

R ≡ Γ + Γ

2ΓSM

' 1 + 0.0845×
[
− 0.05×Re

(
XV ∗
LL

)
+
∣∣XV

LL

∣∣2 +
∣∣XV

LR

∣∣2 +
∣∣XV

RL

∣∣2 +
∣∣XV

RR

∣∣2
+

1

4

(∣∣XS
LL

∣∣2 +
∣∣XS

LR

∣∣2 +
∣∣XS

RL

∣∣2 +
∣∣XS

RR

∣∣2)+ 24 |XT |2 + 96 |XTE|2
]
, (14)

in which we have inserted the known values for the various physical constants, and used the

expression for ΓW noted below Eq. (1). Note that, in practice, the term proportional to

Re(XV ∗
LL) is always small compared to the other terms.

Above, we noted that the X’s could well be O(1). Thus, from Eq. (14), we see that

the CP-averaged partial width could be used as a tool to search for NP. In particular, an

experimental value for R that is different from unity would give clear evidence for NP.

(Depending on the size of the NP signal, it may be important to include corrections to

Eq. (13) [21].)

On the other hand, all 10 NP operators contribute to R in similar ways. Thus, even if

the measurement of R reveals the presence of NP, it does not give us any clue as to the type

of NP. For this reason, it is important to look for signs of NP in other quantities. This is

most easily done using observables that are strictly zero within the context of the SM. Such

observables would typically depend upon differing combinations of NP parameters, so that

the observation of NP effects using several different observables would yield insight into the

precise nature of the NP. In the following, we construct several asymmetries that are zero

within the context of the SM and discuss their potential usefulness as tools for searching for

NP.

Note that the ratio R, defined above, will also appear in the denominators of all asym-

metries considered below. Since R is primarily a sum of positive quantities, and since it will

always appear in the denominators of the asymmetries, it will always tend to decrease the

values of the asymmetries compared to the analogous expressions employing the approxi-

mation R ≈ 1.
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B. Forward-Backward-Like Asymmetry

A tool that has historically been useful to experimentalists is the forward-backward (FB)

asymmetry. The differential width for t→ bbc may be written in terms of q2 = (pt − pb)2 =

(pb + pc)
2 and cos θ, where θ is the angle between the momentum of the top quark and that

of the charm quark in the b-c rest frame. The FB asymmetry makes use of the following

asymmetric integration over cos θ,

ΓFB =

∫ m2
t

0

[∫ 1

0

dΓ

dq2 dcos θ
dcos θ −

∫ 0

−1

dΓ

dq2 dcos θ
dcos θ

]
dq2 . (15)

We choose instead to work with the kinematical variables q2 and ρ2, noting that

cos θ =
m2
t − 2ρ2 − q2

q2 −m2
t

, (16)

Using Eq. (16), we may rewrite Eq. (15) as follows,

ΓFB =

∫ m2
t

0

[∫ m2
t−q2

(m2
t−q2)/2

dΓ

dq2dρ2
dρ2 −

∫ (m2
t−q2)/2

0

dΓ

dq2dρ2
dρ2

]
dq2 . (17)

Let us first consider the SM contribution to the FB asymmetry. The SM-only contribution

to the width is such that

dΓSM

dq2dρ2
∝
∣∣GT

(
q2
)∣∣2 (q2 + ρ2

) (
m2
t − q2 − ρ2

)
(18)

(see Eq. (A1) in Appendix A). Using the integration prescription in Eq. (17), and assuming

the narrow-width approximation, we find,

ASM
FB =

ΓSM
FB + Γ

SM

FB

ΓSM + ΓSM

=
ΓSM

FB

ΓSM

' − 3ζ2
W

2 (1 + 2ζ2
W )
' −0.228. (19)

Thus, we see that the SM contribution to the FB asymmetry is non-zero.

As noted above, in order to use a particular asymmetry as a discriminator of NP, it

is useful if the asymmetry is zero when no NP contribution is present. The regular FB

asymmetry does not satisfy this requirement, as is evidenced by Eq. (19). It turns out,

however, that if we modify the ρ2 integration prescription somewhat, the SM contribution

can be made to disappear. That is, instead of breaking up the integral over ρ2 at the point

ρ2
FB = (m2

t − q2) /2, as is done in Eq. (17), we move the boundary to the value ρ2,

Γρ2 ≡
∫ m2

t

0

[∫ m2
t−q2

ρ2

dΓ

dq2dρ2
dρ2 −

∫ ρ2

0

dΓ

dq2dρ2
dρ2

]
dq2 , (20)
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FIG. 3: Phase space for t → bbc. The gray vertical bar shows the location of the W resonance at

q2 = m2
W . The shaded and clear regions (separated by the curve denoted “ρ2”) are used in the

construction of the FB-like asymmetry Aρ2 . The line indicated by “ρ2
FB” shows the boundary used

in the usual definition of the FB asymmetry.

in which ρ2 is chosen such that [see Eq. (18)],∫ ρ2

0

(
q2 + ρ2

) (
m2
t − q2 − ρ2

)
dρ2 =

∫ m2
t−q2

ρ2

(
q2 + ρ2

) (
m2
t − q2 − ρ2

)
dρ2. (21)

Then, by construction,

ΓSM
ρ2 =

∫ m2
t

0

[∫ m2
t−q2

ρ2

dΓSM

dq2dρ2
dρ2 −

∫ ρ2

0

dΓSM

dq2dρ2
dρ2

]
dq2 = 0. (22)

The new boundary, ρ2, is q2-dependent and can be solved for numerically.2 Figure 3 shows

the phase space available for t→ bbc and also indicates the two boundary choices described

above. The vertical band indicates the location of the W resonance for the SM contribution.

Equation (A1) in Appendix A gives the expression for dΓ/dq2dρ2. The ρ2 dependence of

the SM piece is given by (q2 + ρ2) (m2
t − q2 − ρ2); the SM-NP cross terms and the

∣∣XV
LL

∣∣2 and

2 The equation for ρ2 is cubic and can also be solved analytically, although the resulting expressions for the

roots of the equation are not particularly enlightening.
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∣∣XV
RR

∣∣2 terms have this same ρ2 dependence. Since the integration prescription described

above is engineered to eliminate the SM term when integrating over ρ2, these latter terms also

disappear upon integration over ρ2 in this manner. Performing the integration numerically

for the other terms yields the following,

Γρ2 '
3G2

Fm
5
t (VtbVcb)

2

16π3

[
0.155

(∣∣XV
LR

∣∣2 +
∣∣XV

RL

∣∣2)
+0.0208

(∣∣XS
LL

∣∣2 +
∣∣XS

RR

∣∣2 +
∣∣XS

LR

∣∣2 +
∣∣XS

RL

∣∣2)
+0.310 Re

[
XT

(
XS∗
LL +XS∗

RR

)
− 2XTE

(
XS∗
LL −XS∗

RR

)]
+1.81

(
|XT |2 + 4 |XTE|2

) ]
. (23)

The above expression is CP-even; i.e., the analogous expression for t → bbc is the same.

Finally, we form an FB-like asymmetry as follows,

Aρ2 =
Γρ2 + Γρ2

Γ + Γ
' 1

R

[
0.0393

(∣∣XV
LR

∣∣2 +
∣∣XV

RL

∣∣2)
+0.00528

(∣∣XS
LL

∣∣2 +
∣∣XS

RR

∣∣2 +
∣∣XS

LR

∣∣2 +
∣∣XS

RL

∣∣2)
+0.0786 Re

[
XT

(
XS∗
LL +XS∗

RR

)
− 2XTE

(
XS∗
LL −XS∗

RR

)]
+0.460

(
|XT |2 + 4 |XTE|2

) ]
. (24)

By construction, this asymmetry is only non-zero if NP contributions are present. Sec-

tion III D contains a discussion of the range of sizes that are possible for the FB-like asym-

metry. At this point we note only that asymmetries of order tens of percent are possible.

C. CP-even Spin Asymmetry

The final CP-even observable that we consider depends on the spin of the top quark [22].

We construct this asymmetry in such a way that it will be zero in the SM and potentially

non-zero in the context of NP. Equation (A2) in Appendix A contains the expression for

the absolute value squared of the total amplitude, keeping only those terms that contain

the top-quark spin four-vector. The term proportional to |GT |2 in that expression is the

SM contribution. The next term [proportional to Re
(
GTX

V ∗
LL

)
] arises from the interference

of the SM contribution with one of the NP terms. The remaining terms are purely NP in

origin. Inspection of Eq. (A2) reveals that the SM term is proportional to pb · st. (This is
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related to the fact that, in the SM, the spin of the top is in the direction of the momentum

of the b in the top’s rest frame [23].) Working in the top rest frame, we define

~s‖,± = ± 1

sin θbc
(n̂c − n̂b cos θbc) , (25)

where n̂b(c) = ~pb(c)/|~pb(c)| and where θbc is the angle (assumed to be between 0 and π) between

the three-momentum of the b and that of the c, in the top’s rest frame. The cosine and sine

of this angle are given, respectively, by,

cos θbc =
m2
t (ρ2 − q2)− ρ2 (ρ2 + q2)

(m2
t − ρ2) (ρ2 + q2)

,

sin θbc =
2mt

√
ρ2q2 (m2

t − q2 − ρ2)

(m2
t − ρ2) (ρ2 + q2)

. (26)

The vectors ~s‖,± are in the decay plane and are perpendicular to ~pb by construction. Setting

sµt,± =
(
0, ~s‖,±

)
, we then have pb · st,± = 0. Thus, the SM contribution to the amplitude

squared disappears for these orientations of the top quark’s spin. We can thus construct

an asymmetry based on this spin configuration that will be zero within the SM, making it

potentially a sensitive probe for NP. We first define,

Γ‖ ≡
1

2

[
Γ
(
~s‖,+

)
− Γ

(
~s‖,−

)]
, (27)

where the factor of “1/2” is to account for the average over the top quark’s spins. Using

Eqs. (A2), (25) and (26), and incorporating the integration over phase space, we obtain,

Γ‖ =
G2
Fm

5
t (VtbVcb)

2

70π2

{(∣∣XV
LR

∣∣2 − ∣∣XV
RL

∣∣2)
−1

4

(∣∣XS
LL

∣∣2 − ∣∣XS
RR

∣∣2 +
∣∣XS

LR

∣∣2 − ∣∣XS
RL

∣∣2)
+2 Re

[
XT

(
XS∗
LL −XS∗

RR

)
− 2XTE

(
XS∗
LL +XS∗

RR

)]
− 96 Re[XTX

∗
TE]

}
. (28)

Finally, summing over the process and the CP-conjugate process, we obtain,

A‖ =
Γ‖ + Γ‖

Γ + Γ

' 0.0607

R

{(∣∣XV
LR

∣∣2 − ∣∣XV
RL

∣∣2)− 1

4

(∣∣XS
LL

∣∣2 − ∣∣XS
RR

∣∣2 +
∣∣XS

LR

∣∣2 − ∣∣XS
RL

∣∣2)
+2 Re

[
XT

(
XS∗
LL −XS∗

RR

)
− 2XTE

(
XS∗
LL +XS∗

RR

)]
− 96 Re[XTX

∗
TE]

}
, (29)

where we have used the fact that 12
√

2GFm
2
t/[35π(1−ζ2

W )2(1+2ζ2
W )] ' 0.0607. A discussion

of numerical values obtainable for the CP-even single-spin asymmetry follows in the next

subsection.
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D. Discussion of CP-even Observables

In this section we have described three observables that are even under CP and that

could be used to detect the presence of NP in the decays t → bbc and t → bbc. Should NP

be discovered, detailed analysis of such observables could allow experimentalists to map out

the nature of the NP.

The first observable considered in this section was a ratio, R, which was defined to be

proportional to the CP-averaged partial width. Of the observables considered in this work,R

would probably be the simplest to measure experimentally. Decisive experimental deviation

from the SM value R = 1 would be evidence for NP.

On the other hand, R cannot be used to distinguish the different NP operators. To do

this requires the use of other quantities. It is useful to employ observables that give a null

signal within the context of the SM. For such observables, a significant departure from zero

would be a “smoking-gun” signal for new physics. In addition, since they depend differently

on the various NP operators, the observation of non-zero values for these observables would

help in identifying the type of NP.

The usual forward-backward asymmetry for t → bbc is expected to be non-zero within

the context of the SM. It is possible, however, to alter the kinematical weighting that is used

in defining the FB asymmetry in such a way that the resulting “FB-like” asymmetry is zero

within the context of the SM. Equation (24) defines the FB-like asymmetry Aρ2 in terms of

an asymmetric integration over the kinematical variable ρ2. The integration is engineered

in such a way that the SM contribution disappears kinematically. In Eq. (29) we formed a

CP-even asymmetry using the spin of the top quark. This asymmetry was also defined in

such a way that it was zero within the context of the SM. A non-zero experimental signal

for either of these asymmetries would indicate the presence of NP.

Table I contains some representative values for the CP-even asymmetries Aρ2 and A‖,

along with the corresponding value for the ratio R in each case. The entries in the table

are ordered from smaller R values in the top rows to larger ones in the bottom rows. As

is evident from the table, when R is close to unity (meaning that it may not be a very

clear discriminator of NP), it is still possible to have CP-even asymmetries that are on the

order of several percent. For larger R values, the asymmetries Aρ2 and A‖ can reach into

the 10’s of percent. Note, however, that there are some NP scenarios in which A‖ suffers
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TABLE I: Some representative values for the FB-like asymmetry Aρ2 and the CP-even spin asym-

metry A‖. The value for R is also included for each case.

XV
LR XV

RL XS
LL XS

LR XS
RL X

S
RR XT XTE R Aρ2 A‖

1.5 1.2 7.4% 11%

2.5 2.5 1.3 5.2% 15%

1 −1 0.5 0.125 1.7 6.9% −14%

1 −1 0.5 −0.125 1.7 12% 29%

−2.5 2.5 0.25 1.8 21% 0%

0.5 −0.25 2.0 11% 36%

2.5 2.5 2.1 24% 0%

1 3.0 15% 0%

2.5 2.5 1 3.3 28% 0%

1 2 3
0

0.1

0.2

0.3

!

AΡ2

1 2 3
"0.6

"0.3

0

0.3

0.6

!

A!

FIG. 4: Scatter plots of the CP-even asymmetries Aρ2 and A‖ for various combinations of the NP

parameters.

cancellations or is zero, even if the NP parameters themselves are non-zero. For example, if∣∣XV
LR

∣∣ =
∣∣XV

RL

∣∣, the contributions from these two parameters cancel in A‖.

The CP-even observables are displayed in another manner in Fig. 4, which shows scatter

plots of Aρ2 versus R and A‖ versus R. The points in this plot were obtained by generating

real random numbers for eight of the ten NP parameters over various ranges. (XV
LL and

XV
RR were excluded, since they do not contribute to the numerator of either asymmetry.)

Asymmetries were only plotted if R ≤ 3. Again, it is evident that CP-even asymmetries of

order a few 10’s of percent are possible.
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IV. CP-ODD OBSERVABLES

In addition to the CP-even observables considered in the previous section, it is also

possible to construct CP-odd observables related to the decay t → bbc. In this section we

consider two such observables. The first is the partial rate asymmetry, which compares the

partial width for the process to that of the CP-conjugate process. The second is a triple-

product asymmetry, which is formed using the spin of the top quark and the three-momenta

of two of the final-state quarks. To be non-zero, both of these asymmetries require the

presence of at least two contributing amplitudes with a non-trivial relative weak phase. Let

us first consider the partial rate asymmetry.

A. Partial Rate Asymmetry

The SM amplitude for t→ bbc is dominated by a single contribution. As such, the partial

rate asymmetry vanishes. In the presence of NP, the partial-rate asymmetry (PRA) can be

nonzero if there is a NP contribution to the decay with a relative weak phase. As can be

seen in Eq. (12), there is one important NP piece of this type – XV
LL. The contribution

to the PRA then comes from the interference of the SM W -exchange amplitude with the

XV
LL term. What we see in this subsection is that the PRA can actually be of order several

percent if the Lorentz structure of the NP is (V − A)× (V − A).

We have noted above that a non-zero PRA requires the interference of at least two ampli-

tudes having a non-zero relative weak phase. Another requirement is that these amplitudes

have a non-zero relative strong phase. Strong phases can come from the exchange of gluons,

but they can also emerge from the imaginary parts of loop diagrams that do not involve

gluons. In particular, if an exchanged particle in the process has a resonance, there is a

strong phase associated with the width of that particle. Strong phases originating from

particles’ widths have been used to generate PRAs in many different systems, including

t → bbc [2, 24], t → bτ+ν [2, 4–7, 9], and various supersymmetric decays [25–27]. In the

present calculation, the width of the W provides the required strong phase. This means

that the PRA can only arise from SM-NP interference, since NP-NP interference terms do

not have a relative strong phase.

Using the expression in Eq. (12), and recalling that the analogous expression for the
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FIG. 5: Vertex correction-type diagrams involving the effective operators shown in Fig. 1 (b).

These diagrams contribute to the cancellations required by the CPT theorem. The dashed line

indicates that only the absorptive parts of the diagrams are computed.

CP-conjugate process involves the complex conjugation of the weak phases, we immediately

find the following expression for the partial rate asymmetry,

ACP =
Γ− Γ

Γ + Γ
' 1

R
4ΓW
mW

Im
(
XV ∗
LL

)
' 0.102

R
× Im

(
XV ∗
LL

)
. (30)

As was noted above, the PRA requires the existence of a non-zero relative strong phase

between interfering amplitudes. In this example, the strong phase is provided by the width

of the W , which is the reason that the PRA is proportional to ΓW . Examination of Eq. (30)

reveals that the best-case scenario for the PRA occurs when XV
LL is purely imaginary, or

nearly so, and all other NP coefficients are zero. In this case, R ' 1+0.0845
∣∣XV

LL

∣∣2, and we

find that the PRA is maximized when
∣∣XV

LL

∣∣ ' 3.44. The maximum possible PRA, obtained

in this manner, is approximately 18%.

As is well-known [28, 29], the CPT theorem requires that we actually be a bit more careful

when computing PRAs. In particular, invariance under CPT requires that the total width

of the top be equal to that of the anti-top. Our result in Eq. (30) shows that, under certain

circumstances, the partial width for t → bbc is not equal to the partial width for t → bbc.

This necessarily implies that there must be compensating partial rate asymmetries in other
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top/anti-top decay modes such that the total top width is still equal to the total anti-top

width. In order to respect CPT in this way, it turns out that we need to include another

class of diagrams, shown in Fig. 5. These diagrams contribute to various top decay modes,

inducing partial rate asymmetries in these modes in such a way that the total top width is

equal to the total anti-top width. In the special case t→ bbc, the effect is such that “ΓW” in

the numerator of Eq. (30) gets replaced by “ΓW −Γ
(
W → bc

)
” [24, 30, 31], which is to say

that the strong phase due to the rescattering process W → bc→ W does not contribute to

the PRA. Since Γ
(
W → bc

)
is very small, we may safely neglect its effect. It is worthwhile

to explore this point a bit further, however, and we do so in Appendix B. Specifically, we

verify that the diagrams in Fig. 5 interfere with their SM counterparts in such a way that

the CPT theorem is respected, and we also comment on the PRAs that result in other decay

modes due to the NP effective operators for t→ bbc.

B. Triple Product Asymmetry

Mathematically, triple-product asymmetries (TPAs) in t → bbc are related to terms of

the form ~vi · (~vj × ~vk) in the absolute value squared of the amplitude, where each of the ~vi

could represent a momentum or spin. Working in the rest frame of the top quark, there are

only two independent three-momenta. Thus, in order to obtain a non-zero TPA, we need

to include one or more spins in ~vi · (~vj × ~vk). Since the light final-state quarks hadronize,

it is difficult to gain useful information from their spins. The situation is different for the

top quark, however, since it decays too quickly to hadronize. In this case, we can construct

asymmetries based on ~s · (~p1 × ~p2), where ~s is the top quark’s spin and ~p1 and ~p2 are two

of the final-state momenta [32]. In the context of the calculation, these terms arise from

expressions such as εαβγδp
α
t s

β
t p

γ

b
pδc.

Now, the PRA considered above contained a factor of ΓW ∼ 2 GeV in the numerator.

The presence of this factor was due to the requirement that there be a relative strong phase

between diagrams contributing to the PRA. On the other hand, TPAs do not require a

strong phase and are thus not suppressed by a factor of ΓW . This means that TPAs could

in principle be much larger than the PRA considered above. As we shall see, there are in

fact certain NP operators that can produce a large TPA.

Because TPAs are CP-odd quantities, they require a non-zero relative weak phase between
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interfering diagrams, just as the PRA did. But because no strong phase is necessary, TPAs

can in principle arise both from SM-NP and NP-NP interference. (Due to the strong phase

requirement, the PRA could only arise from SM-NP interference.) What we find, however,

is that the only TPA that survives is one due to NP-NP interference.

All triple-product terms in the absolute value squared of the amplitude may be written

in terms of εαβγδp
α
t s

β
t p

γ

b
pδc. Keeping only such terms, we find the following expression in the

rest frame of the top quark,

1

3

∑
colours

∑
b,b,c spins

|M|2
∣∣
TP

= 1536G2
Fm

2
t (VtbVcb)

2 ~s · (~pb × ~pc) Im
[
XT

(
XS∗
LL+XS∗

RR

)
−2XTE

(
XS∗
LL−XS∗

RR

)]
, (31)

in which ~s denotes the top’s spin [see also Eq. (A2)]. In computing the above expression,

we have summed over quark colours and over the final-state quarks’ spins, and have divided

by 3 for the average over the top quark’s colours. Setting

~s⊥,± = ± ~pb × ~pc
|~pb × ~pc|

, (32)

we define

ΓTP ≡
1

2
[Γ (~s⊥,+)− Γ (~s⊥,−)] , (33)

where the factor of “1/2” is to account for the average over the top quark’s spins. Using the

result in Eq. (31) and incorporating the integration over phase space, we obtain,

ΓTP =
2G2

Fm
5
t (VtbVcb)

2

35π2
Im
[
XT

(
XS∗
LL +XS∗

RR

)
− 2XTE

(
XS∗
LL −XS∗

RR

)]
, (34)

in which we have used the fact that

|~pb × ~pc| =
1

2mt

[
q2ρ2

(
m2
t − q2 − ρ2

)]1/2
. (35)

Finally, we define the TPA as

ATP
CP ≡

ΓTP − ΓTP

Γ + Γ
, (36)

so that

ATP
CP '

1

R
48
√

2GFm
2
t

35π

Im
[
XT

(
XS∗
LL +XS∗

RR

)
− 2XTE

(
XS∗
LL −XS∗

RR

)]
(1− ζ2

W )
2

(1 + 2ζ2
W )

' 0.243

R
Im
[
XT

(
XS∗
LL +XS∗

RR

)
− 2XTE

(
XS∗
LL −XS∗

RR

)]
. (37)
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TABLE II: Some representative values for the triple-product asymmetry. The second to last column

also shows R for each case.

XS
LL XS

RR XT XTE R ATP
CP

−1.5i −1.5i 0.5 0 1.6 23%

2.5i −2.5i 0 0.4 2.6 38%

−2.5i −2.5i 1 0 3.3 37%

1 2 3

0
0.1
0.2
0.3

!0.1
!0.2
!0.3

!

ACP
TP

FIG. 6: Scatter plot of the CP-odd TP asymmetry ATP
CP for various combinations of the NP

parameters.

Table II contains some numerical results following from the above expression, showing that

the TPAs can indeed be large – of order 10’s of percent – if the NP coefficients are assumed

not to be suppressed. Figure 6 shows a scatter plot of ATP
CP versus R. The points in this

plot were obtained by generating combinations of purely real and purely imaginary random

numbers for XS
LL, XS

RR, XT and XTE over various ranges. Once again, asymmetries were

only plotted if R ≤ 3. It is evident from the plot that relatively large TPAs are possible.

V. DISCUSSION AND CONCLUSIONS

In this paper we consider new-physics (NP) contributions to the decay t → bbc. In

the Standard Model (SM), this is a tree-level process: t → bW → bbc. However, the

SM amplitude involves the small Cabibbo-Kobayashi-Maskawa element Vcb (' 0.04), and is

therefore suppressed. As a result, the decay is quite sensitive to NP. Rather than working

within the context of any one particular extension of the SM, we parameterize the NP
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couplings by an effective Lagrangian that includes the 10 possible four-Fermi operators. We

show that the SM and NP contributions to t→ bbc can indeed be about the same size.

We first compute the t → bbc partial width in the presence of NP. The ratio R, defined

in Eq. (14), provides a quantitative measure of the deviation of the partial width from its

SM expectation (R = 1 in the SM). This shows clearly that this observable is excellent for

showing that NP is present – significant deviations of R from 1 are possible.

On the other hand, the partial width is not a good observable to identify the new physics

– all 10 NP operators contribute to R in a similar way. In order to get an idea of the

type of NP present, it is necessary to consider other quantities. To this end, we construct

two CP-conserving and two CP-violating observables: (i) CP-even: a forward-backward-like

asymmetry [Aρ2 – Eq. (24)] and a top-quark-spin-dependent asymmetry [A‖ – Eq. (29)],

(ii) CP-odd: the partial rate asymmetry [ACP – Eq. (30)] and a triple-product asymmetry

[ATP
CP – Eq. (37)]. In each case, the observable is formulated in such a way that it is zero

within the context of the SM. The key point is that these observables depend on differing

combinations of the NP parameters. This gives them different sensitivities to the various

Lorentz structures present in the NP effective Lagrangian.

The allowed values of these four observables vary greatly depending on the values of the

NP parameters, but results in the 10-20% range are possible (see Tables I and II). If NP

is present, it may well produce measurable values of these observables. Taken together, the

measurements of these quantities will give a good indication of the type of NP present.
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Appendix A: Useful Expressions for t → bbc

This Appendix contains two expressions that are used to compute observables in the

main body of the paper. We take mb = mc ' 0. The first of these is the expression for the

partial differential decay width for t → bbc. Using Eqs. (1) and (7) and averaging over the
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top quark’s spins and colours, we find the following,

dΓ

dq2dρ2
=

3G2
F (VtbVcb)

2

2 (2π)3m3
t

{(
q2 + ρ2

) (
m2
t − q2 − ρ2

)
×
[
m4
W |GT |2 + 4m2

W Re
(
GTX

V ∗
LL

)
+ 4

(∣∣XV
LL

∣∣2 +
∣∣XV

RR

∣∣2)]
+ 4ρ2

(
m2
t − ρ2

) (∣∣XV
LR

∣∣2 +
∣∣XV

RL

∣∣2)
+ q2

(
m2
t − q2

) (∣∣XS
LL

∣∣2 +
∣∣XS

RR

∣∣2 +
∣∣XS

LR

∣∣2 +
∣∣XS

RL

∣∣2)
+ 8q2

(
−m2

t + q2 + 2ρ2
)

Re
[
XT

(
XS∗
LL +XS∗

RR

)
− 2XTE

(
XS∗
LL −XS∗

RR

)]
+ 32

[
m2
t

(
q2 + 4ρ2

)
−
(
q2 + 2ρ2

)2
] (
|XT |2 + 4 |XTE|2

)}
, (A1)

in which Vtb and Vcb have been taken to be real. The analogous expression for t → bbc is

obtained by complex conjugating all of the NP coefficients (XV
LL, etc.), while leaving GT

unchanged.

It is also useful to have the expression for the absolute value squared of the amplitude,

keeping only the terms that contain the spin four vector for the top quark. This expression

is used to compute the CP-even single-spin asymmetry in Sec. III C and the TP asymmetry

in Sec. IV B. Keeping only terms containing the spin four vector of the top quark, we find,

1

3

∑
colours

∑
b,b,c spins

|M|2
∣∣
st

= 96G2
Fmt (VtbVcb)

2

{(
m2
t − q2 − ρ2

) [
−m4

W |GT |2 − 4m2
W Re

(
GTX

V ∗
LL

)
− 4

(∣∣XV
LL

∣∣2 − ∣∣XV
RR

∣∣2)]pb · st − 4ρ2
(∣∣XV

LR

∣∣2 − ∣∣XV
RL

∣∣2) pc · st
− q2

(∣∣XS
LL

∣∣2 − ∣∣XS
RR

∣∣2 +
∣∣XS

LR

∣∣2 − ∣∣XS
RL

∣∣2) pb · st
+ 8 Re

[
XT

(
XS∗
LL −XS∗

RR

)
− 2XTE

(
XS∗
LL +XS∗

RR

)] [(
m2
t − q2

)
pb · st + ρ2pb · st

]
+ 128 Re [XTX

∗
TE]
[(

2m2
t − q2 − 2ρ2

)
pb · st +

(
q2 + 2ρ2

)
pc · st

]
− 16 Im

[
XT

(
XS∗
LL +XS∗

RR

)
− 2XTE

(
XS∗
LL −XS∗

RR

)]
ε (pt, st, pb, pc)

}
, (A2)

in which st denotes the top’s spin four vector and ε (pt, st, pb, pc) ≡ εαβγδp
α
t s

β
t p

γ

b
pδc. In writing

the above expression, we have used the fact that pt · st = 0. We have also summed over

quark colours and over the final-state quarks’ spins, and have divided by 3 for the average

over the top quark’s colours.
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Appendix B: CPT and Beyond

The CPT theorem requires the total decay width for the top to be equal to that for the

anti-top. An apparent violation of the CPT theorem arises, however, if the NP contributions

in Fig. 1 (b) are the only ones that are kept. That this is the case is straightforward to see,

since the diagram in Fig. 1 (b) affects the partial widths for t→ bbc and t→ bbc differently

[leading to the PRA in Eq. (30)], but has no effect on the other top or anti-top decay modes.

Thus, the top and anti-top total widths are not equal if only such contributions are kept,

resulting in an apparent violation of the CPT theorem. This phenomenon is well-known

(see, for example, Refs. [7, 24, 28–31]). In this Appendix we show that the inclusion of

certain vertex-type corrections gives rise to compensating differences in the top and anti-top

widths. The sum of the differences is zero, so that the top and anti-top widths no longer

differ, in agreement with the CPT theorem.

Let us define the partial width difference for the decay t→ bjk as follows,

∆Γ
(
t→ bjk

)
≡ Γ

(
t→ bjk

)
− Γ

(
t→ bjk

)
, (B1)

in which j and k could refer either to quarks or to leptons. For the case t→ bbc, the main

contribution to ∆Γ is due to the interference between the SM and NP diagrams indicated

in Fig. 1. Another important set of contributions for the decay t → bjk is indicated in

Fig. 5. The absorptive parts of these vertex-like corrections interfere with their associated

SM diagrams in such a way that the conservation of CPT is manifest. Using the Cutkosky

rules to calculate the absorptive part of the vertex-like corrections, we find

∆Γ
(
t→ bjk

)
' 2
√

2GFm
2
W (Vcb)

2

π
Im
(
XV ∗
LL

)
Γ (t→ bW )

[
δj bδkc−B

(
W → jk

)]
. (B2)

Summing over j and k (including both quark and lepton final states), we have∑
j,k

∆Γ
(
t→ bjk

)
= 0, (B3)

demonstrating that the CPT theorem is indeed respected once the absorptive parts of the

diagrams in Fig. 5 are included.

Equation (B2) gives a correction to the PRA for t→ bbc, leading to the following modi-

fication of Eq. (30),

ACP ' 0.102×
Im
(
XV ∗
LL

)
R

[
1− B

(
W → bc

)]
. (B4)
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Z, γ, g d, s, b

d, s, b

FIG. 7: A loop-level contribution of the NP operators that could contribute to PRAs in t→ ffc,

with f = d, s, b.

The correction to the original expression is miniscule, since B
(
W → bc

)
' |Vcb|2 /3 ' 5.5×

10−4.

An interesting consequence of the CPT theorem is that, if NP operators give a PRA in

a particular decay mode (such as t → bbc, as in our case), then those same NP operators

must also contribute to one or more other decay modes in such a way that the total width of

the top is the same as that of the anti-top. This means that those other decay modes must

also have PRAs (barring other accidental cancellations). We can use Eq. (B2) to estimate

the PRAs in other decay modes due to the NP operators in Eqs. (3)-(5). The resulting

expression is given by,

ACP

(
t→ bjk

)
'−
√

2GFm
2
W (Vcb)

2

π
Im
(
XV ∗
LL

)
'−5.6× 10−5 Im

(
XV ∗
LL

)
, jk 6= bc. (B5)

Thus the contributions of these NP operators to PRAs in other top decay modes are expected

to be very small. One could also consider the complementary question: Are there NP

operators, other than those given in Eqs. (3)-(5), that could contribute to the PRA in

t→ bbc? The answer to this question appears to be yes. For example, the effective operators

(sO1c)(cO2b) or
(
dO1u

)
(cO2b) could appear in a diagram similar to that in Fig. 5, but

with the usual SM tbW vertex at the top, and the NP-induced one-loop correction to the

Wbc vertex at the bottom. Such operators are constrained by B decays.

We should note that the NP effective operators in Eqs. (3)-(5) give rise to other loop-

level diagrams that could contribute to PRAs in top decays. The contributions in different

decay modes would still complement each other in the sense that the total top and anti-top
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widths would remain equal. Figure 7 shows an example of loop-level corrections to t→ ffc

(f = d, s, b) mediated by the NP operators considered in this work. These diagrams could

interfere with their corresponding SM diagrams to induce PRAs. We do not compute such

contributions here.

Appendix C: Effect of Including Colour-mismatched Terms

The effective Lagrangian incorporating NP effects given in Eqs. (3)-(5) assumed that the

colour indices contracted in the same manner as those of the SM diagram. This need not be

the case, so it is useful to consider the effects of including colour-mismatched terms in the

effective Lagrangian. To this end, let us generalize the NP effective Lagrangian in Eq. (3)

as follows,

LVeff =
g′2

M2

{
RV
LL baγµPLta cbγ

µPLbb +RV ′
LL baγµPLtb cbγ

µPLba

+RV
LR baγµPLta cbγ

µPRbb +RV ′
LR baγµPLtb cbγ

µPRba

+ . . .}+ h.c., (C1)

and similarly for Eqs. (4) and (5). In this expression, the subscripts a and b are colour

indices and the primed coefficients correspond to the new, colour-mismatched terms. The

total amplitude for ta → bbbccd (with the subscripts a, b, c and d representing the colours)

could then be parameterized as

Mabcd =
∑
i

(Riδabδcd + R′iδadδbc)Mi , (C2)

in which the sum runs over the SM diagram, plus all NP contributions. The factors Ri and

R′i are the coefficients for the colour-matched and colour-mismatched terms, respectively,

and are assumed to contain all of the weak phases. (The R′ coefficient for the SM term is

assumed to be zero.) For a given value of i, the phases of Ri and R′i could be different. The

factors Mi contain all the spinors and γ matrices and, in the case of the SM diagram, the

W propagator.

Summing over the quarks’ colours and dividing by 3 for the average over the top quark’s

colours, we find,

1

3

∑
a,b,c,d

MabcdM∗
abcd = 3

∑
i

[
|Ri|2 + |R′i|

2
+

2

3
Re(RiR′∗i )

]
|Mi|2
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+ 6
∑
j>i

{
Re

[
RiR∗j + R′iR′∗j +

1

3

(
RiR′∗j + R′iR∗j

)]
Re
(
MiM∗

j

)
− Im

[
RiR∗j + R′iR′∗j +

1

3

(
RiR′∗j + R′iR∗j

)]
Im
(
MiM∗

j

)}
. (C3)

The RiR∗j terms in the above expression correspond to the “colour-matched” terms that we

have taken into account in this work. The other terms are new.

Equation (C3) can be used to generalize the expressions in this paper, provided the

expressions have already been split cleanly into pieces containing the weak phases (Ri, etc.)

and those containing the spinors and any strong phases (Mi). Expressions containing SM-

NP cross-terms may safely set RSM = 1 and incorporate the entire amplitude into the

“MSM” part [in Eq. (C2)], since Vtb and Vcb have been taken to be real. As an example, the

generalized form for Eq. (14) would be

R ' 1 + 0.0845×
[
−0.05×Re

(
XV ∗
LL +

1

3
XV ′∗
LL

)
+
∣∣XV

LL

∣∣2 +
∣∣XV ′

LL

∣∣2 +
2

3
Re
(
XV
LLX

V ′∗
LL

)
+ . . .

]
, (C4)

in which we have used the fact that R′SM = 0. Similarly, Eq. (37) would become,

ATP
CP '

0.243

R
Im
{
XT

(
XS∗
LL +XS∗

RR

)
− 2XTE

(
XS∗
LL −XS∗

RR

)
+ X ′T

(
XS′∗
LL +XS′∗

RR

)
− 2X ′TE

(
XS′∗
LL −XS′∗

RR

)
+

1

3

[
XT

(
XS′∗
LL +XS′∗

RR

)
− 2XTE

(
XS′∗
LL −XS′∗

RR

)
+X ′T

(
XS∗
LL +XS∗

RR

)
− 2X ′TE

(
XS∗
LL −XS∗

RR

)]}
, (C5)

and Eq. (30) would become,

ACP '
0.102

R
× Im

(
XV ∗
LL +

1

3
XV ′∗
LL

)
. (C6)

Finally, an expression such as “Re
(
GTX

V ∗
LL

)
” in Eq. (A1), which contains both a strong

phase (in GT ) and a weak phase (in XV
LL), first needs to be separated into two pieces using

Re (AB) = Re(A)Re(B)− Im(A)Im(B).
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