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a b s t r a c t

Every chordal graph G admits a representation as the intersection graph of a family of
subtrees of a tree. A classic way of finding such an intersection model is to look for a
maximum spanning tree of the valuated clique graph of G. Similar techniques have been
applied to find intersectionmodels of chordal graph subclasses as interval graphs and path
graphs. In this work, we extend those methods to be applied beyond chordal graphs: we
prove that a graph G can be represented as the intersection of a Helly separating family
of graphs belonging to a given class if and only if there exists a spanning subgraph of the
clique graph of G satisfying a particular condition. Moreover, such a spanning subgraph
is characterized by its weight in the valuated clique graph of G. The specific case of Helly
circular-arc graphs is treated. We show that the canonical intersection models of those
graphs correspond to the maximum spanning cycles of the valuated clique graph.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction and background

Weconsider simple, finite, undirected graphs.Without loss of generality, we shall only dealwith connected graphs. Given
a graph G, VG and EG denote the vertex set and the edge set of G, respectively. A complete set of G is a subset of pairwise
adjacent vertices. A clique is a complete set that is not properly contained in any other complete set. The clique family of
G is denoted by C(G). For any v ∈ VG, the set whose elements are the cliques of G containing v is denoted by Q (v), that is
Q (v) = {Q ∈ C(G)/v ∈ Q }.

LetF be a set family withmembers Fi for i ∈ I . The intersection or total intersection ofF , written∩F , is the set∩i∈I Fi. The
familyF has theHelly property or is aHelly family if every pairwise intersecting subfamily has a non-empty total intersection.
We say that F is separating when for every pair of elements u and v of ∪i∈I Fi, there exists a member Fi of the family such
that u ∈ Fi and v ∉ Fi.

The intersection graph of F is obtained by considering a vertex for each member of the family and an edge between two
vertices whenever the corresponding sets have non-empty intersection. The following theorem is a direct consequence of
a well-known result demonstrated by Berge in the context of hypergraph theory [2, Chapter 1, Section 8, Proposition 1]. It
proves that any graph is the intersection graph of a unique Helly separating set family.

Theorem 1. Let G be a graph. The set family (Q (v))v∈VG is Helly and separating. The intersection graph of this family is the same
graph G; moreover, if G is the intersection graph of a Helly separating set family F , then F = (Q (v))v∈VG .

Many graph classes such as chordal graphs, interval graphs, circular-arc graphs and line graphs, have been characterized
or defined as intersection graphs of set families whose members are vertex sets of certain subgraphs of some particular
graphs [4]. In order to write in a simpler way the definition of such classes, we introduce the term intersection graph of a
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graph family, instead of intersection graph of a set family. The intersection graph of a graph family (Fi)i∈I is the intersection
graph of the corresponding vertex set family (VFi)i∈I , thus it is obtained by representing each graph Fi by a vertex i, and
connecting two vertices i and j by an edge if and only if the vertex sets of Fi and Fj intersect. We say that a graph family has
the Helly property if the corresponding vertex set family has the Helly property and, in an analogous way, that a graph family
is separating when the corresponding vertex set family is separating.

Chordal graphs have been widely studied; one of the reasons is that chordal graphs have a natural intersection model. In
many applications the intersection representation of a graph ismore important than the graph itself. The following standard
properties of chordal graphs are discussed in more detail in [1,3,5,6,13] and are also contained in books [4,9,12].

A graph G is chordal if and only if there exists a tree T and a family T of subtrees of T such that G is the intersection graph
of T . The pair (T, T ) is called a tree representation of G and T is called the support of the representation. Inmany publications
T is called the host tree. It is clear that given a tree representation other tree representations can be obtained, for instance,
by just subdividing an edge of the support and subdividing the same edge in the members of the family covering it. A tree
representation is called canonical when its support has a minimum number of vertices. A chordal graph can admit many
distinct canonical representations but the support of each one of them is always a spanning tree of the clique graph of G;
moreover, it is a spanning tree that can be recognized by its weight in the valuated clique graph of G. In what follows we
discuss these results in detail.

The clique graph of G, written K(G), is the intersection graph of C(G). Notice that for each v ∈ VG,Q (v) is a subset of
vertices of K(G). Given a spanning tree T of K(G), T[Q (v)] denotes the subgraph of T induced by the vertices belonging
to Q (v).

Theorem 2. A graph G admits a tree representation if and only if there exists a spanning tree T of K(G) such that, for any vertex
v ∈ VG, T[Q (v)] is a subtree of T.

Any spanning tree T of K(G) satisfying the conditions of the previous theorem is called a clique-tree of G.
Theweighted clique graph Kw(G) of G is the clique graph K(G) with each edge e = QQ ′ weighted by w(e) = |Q ∩Q ′

|. The
weight w(H) of a subgraph H of Kw(G) is


e∈EH

w(e).
Notice that, by definition, any clique-tree of G is a spanning subgraph of K(G) and thus of Kw(G). The following theorem

characterizes the clique-trees of G by means of their weight in Kw(G).

Theorem 3. Let G be a graph. A spanning tree T of Kw(G) is a clique-tree of G if and only if

w(T) =

 
Q∈C(G)

|Q |


− |VG|.

Moreover, in this case, T is a maximum spanning tree of Kw(G).
In this paper we generalize these results in order to apply them to other graph classes. In Section 2, a generalization of

Theorem 2 is supplied by Theorem 7 which states that a graph G can be represented as intersection of a Helly separating
family of graphs belonging to a given class if and only if there exists a spanning subgraph of K(G) satisfying a particular
condition. Such a spanning subgraph is the clique-tree in the case of chordal graphs.

In Section 3, the mentioned spanning subgraph of K(G) is characterized by its weight in Kw(G). Theorem 10 generalizes
Theorem 3.

In Section 4, the general results of the previous sections are applied to the classes of chordal, interval andHelly circular-arc
graphs. In the first and in the second case, already known results are obtained in an easyway. In the case of Helly circular-arc
graphs, we get the main Theorem 15 which provides a new unpublished characterization of the canonical representation of
Helly circular-arc graphs. A related but distant work has been published in [11].

In Section 5, other examples are offered.

2. Intersection graphs of Helly separating graph families

As we noted in the previous section, for any graph G and v ∈ VG, the set Q (v) is a subset of vertices of K(G); in [2], the
set family (Q (v))v∈VG is called the dual of the clique family of G. Since v is a vertex in the intersection of any two cliques
belonging to Q (v),Q (v) induces a complete subgraph of K(G) which is denoted by Kv .

The following theorem is a clear consequence of Theorem 1.

Theorem 4. Any graph is the intersection graph of some Helly separating graph family. Moreover, a graph G is the intersection
graph of a Helly separating graph family (Fv)v∈VG if and only if, for every v ∈ VG, Fv is a spanning subgraph of Kv .
Proof. The first assertion is trivial using Theorem 1 and considering every Q (v) as the vertex set of a graph without edges.
Let G be the intersection graph of the Helly separating graph family (Fv)v∈VG ; this means that the corresponding vertex
set family is Helly separating and its intersection graph is G. By Theorem 1, the corresponding vertex set family must be
(Q (v))v∈VG . Since each Kv is a complete graph with vertex set Q (v), every member Fv is a spanning subgraph of Kv .

To prove the converse implication, for every v ∈ VG, let Fv be a spanning subgraph of Kv and consider the graph
family (Fv)v∈VG . The corresponding vertex set family is (Q (v))v∈VG and hence, by Theorem 1, it is Helly separating and its
intersection graph is G. �
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Fig. 1. Graph G, its clique graph K(G), and a Helly separating graph family (Fv)1≤v≤6 whose intersection graph is G.

Fig. 2. A Helly separating Paths-family whose intersection graph is the graph G in Fig. 1.

We show an example in Fig. 1. Since every graph Fv in that figure is a spanning subgraph of the corresponding complete
subgraph Kv of K(G), the family (Fv)1≤v≤6 is Helly and separating, and its intersection graph is G.

LetS be a graph class. AS-family is any graph family such that each member belongs toS. A natural question arises: is
every graph the intersection graph of some Helly separatingS-family? Answering this question, we have established the
following theorem.

Theorem 5. LetS be a graph class. A graph G is the intersection graph of some Helly separatingS-family if and only if, for every
v ∈ VG, there exists S ∈S such that |VS| = |Q (v)|.

Proof. By Theorem 4, G is the intersection graph of some Helly separatingS-family if and only if, for every vertex v ∈ VG,
a spanning subgraph of Kv belonging toS can be chosen. Since every Kv is a complete graph, this can be done if and only if
the classS contains, for every v ∈ VG, some graph with |Q (v)| vertices. �

For example, the graphG in Fig. 1 cannot be represented as the intersection graph of a Helly separating family of triangles.
Observe that for the vertex 1 of G, |Q (1)| = 2 and there is no triangle with 2 vertices. On the other hand, any graph can be
represented as the intersection graph of a Helly separating family of paths because there exist paths of any order. The Helly
separating Paths-family in Fig. 2 represents graph G in Fig. 1.

The following two theorems tell us when a graph is the intersection graph of a Helly separatingS-family such that all its
members are subgraphs, or induced subgraphs, of some particular graph belonging to a given class.
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The union of a graph family F = (Fi)i∈I is the graph UF whose edge set and vertex set are, respectively, the union of the
edge sets and the union of the vertex sets of the members of the family, that is

VUF =


i∈I

VFi and EUF =


i∈I

EFi .

Notice that each member Fi of F is a subgraph of the graph UF .
LetS andH be graph classes. AnH–S-family is anS-family whose union belongs toH . When, in addition, each member

of the family is an induced subgraph of the union, we say that the family is an inducedH–S-family.
For instance, the family (Ti)1≤i≤6 in Fig. 2 is an induced Cycles-Paths-family since the union of the six paths members of

this family is a cycle, and each path is an induced subgraph of it. For the same reason, this is not a Trees-Paths-family.

Theorem 6. LetS and H be graph classes. A graph G is the intersection graph of some Helly separating H–S-family if and only
if, for every v ∈ VG, a spanning subgraph Fv of Kv belonging toS can be chosen in such a way that the union graph of (Fv)v∈VG
belongs toH.

Proof. It is a direct consequence of Theorem 4. �

Theorem 7. LetS andH be graph classes. A graph G is the intersection graph of some induced Helly separating H–S-family if and
only if there exists a spanning subgraph H of K(G) belonging toH such that, for every v ∈ VG, the subgraph H[Q (v)] induced in
H by Q (v) belongs toS.
Proof. Assume that G is the intersection graph of an induced H–S-family F = (Fv)v∈VG . We claim that the necessary
condition is satisfied considering H = UF . Indeed,

(i) UF is a spanning subgraph of K(G) since, by Theorem 4, Fv is a spanning subgraph of Kv for every v ∈ VG.
(ii) UF ∈ H , by definition ofH–S-family.
(iii) By definition of inducedH–S-family, each Fv is an induced subgraph ofUF . The vertex set of Fv isQ (v), thus the subgraph

induced inUF byQ (v) is Fv . By theH–S-family definition, Fv ∈S. It follows that, for every v ∈ VG, the subgraph induced
in UF by Q (v) belongs toS.

The converse implication is straightforward. �

Notice that the previous theorem generalizes Theorem 2. In analogy with the term clique-tree used for a chordal graph,
we introduce the following definition.

Definition 1. LetS and H be graph classes. A clique-H–S-support of a graph G is any spanning subgraph H ∈ H of K(G)
satisfying that for all v ∈ VG the subgraph induced in H by Q (v) belongs toS.

Using this definition, Theorem 7 can be formulated as follows:

A graph G is the intersection graph of an induced Helly separatingH–S-family if and only if there exists a clique-H–S-
support of G.

Moreover, Theorem 4 shows that the clique-H–S-supports provide the only representations of G as intersection of
induced Helly separatingH–S-families.

3. Characterization of clique-H–S-supports
It is clear that, in general, determining if there exists a clique-H–S-support of G could be a hard problem. In order to

help in the solution of this problem, in this section, we present partial and total characterizations of clique-H–S-supports
for graph classesS and H satisfying certain conditions. The characterizations are based on the weight of the support and
generalize Theorem 3: the problem of finding a clique-H–S-support of G is reduced to the problem of finding a spanning
subgraph H ∈ H of Kw(G) with a specific weight which, in addition, must be maximum.

The following result is used in the proofs of the main theorems.

Lemma 1. Let G be a graph. If H is a spanning subgraph of Kw(G), then

w(H) =


v∈VG

|EH[Q (v)]|.

Proof. Notice that the weight w(e) = |Q ∩ Q ′
| of an edge e = QQ ′ of K(G) can be alternatively formulated as

w(e) = |{v ∈ VG/e ∈ EKv }|.
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Table 1
For any class H , classS satisfies property A with H . This means that if
H′

∈S is an induced subgraphwithn vertices of a graphHwith k vertices,
then |EH′ | = f (n, k).S f

Trees f (n, k) = n − 1 for n ≥ 1
Paths f (n, k) = n − 1 for n ≥ 1
Unicycles f (n, k) = n for n ≥ 3
Cycles f (n, k) = n for n ≥ 3

Complete graphs f (n, k) =


n
2


for n ≥ 1

Maximal planar graphs f (n, k) =


n − 1
3n − 6

for 1 ≤ n ≤ 2
for n ≥ 3

Table 2
ClassS satisfies property C with classH .H S f

Paths Paths f (n, k) = n − 1 for n ≥ 1
Trees Trees f (n, k) = n − 1 for n ≥ 1

Cycles Arcs = Cycles ∪ Paths f (n, k) =


n − 1
n

for 1 ≤ n ≤ k − 1
for n = k

h-Unicycles h-Unicycles ∪ (h − 1)-Trees f (n, k) =


n − 1
n

for 1 ≤ n ≤ h − 1
for n ≥ h

Planar graphs Maximal planar graphs f (n, k) =


n − 1
3n − 6

for 1 ≤ n ≤ 2
for n ≥ 3

Let H be a spanning subgraph of K(G); we have that

w(H) =


e∈EH

w(e) =


e∈EH

|{v ∈ VG/e ∈ EKv }|

=


v∈VG

|{e ∈ EH/e ∈ EKv }| =


v∈VG

|EH[Q (v)]|. �

Next, we propose properties to be satisfied by the classesS and H in order to obtain different characterizations of the
clique-H–S-supports. Afterwards, we give several examples of classes satisfying the properties.

We say that the classS satisfies Property A with the classH when there exists a function f such that

H ∈ H,H′ is an induced subgraph of H,H′
∈S ⇒ |EH′ | = f (|VH′ |, |VH|).

We say that the classS satisfies Property B with the classH whenS satisfies property AwithH and, in addition,

H ∈ H,H′ is an induced subgraph of H ⇒ |EH′ | ≤ f (|VH′ |, |VH|).

We say that the classS satisfies Property C with the classH whenS satisfies property A withH and, in addition,

H ∈ H,H′ is an induced subgraph of H,H′
∉S ⇒ |EH′ | < f (|VH′ |, |VH|).

It is clear that property C implies property B which in turn implies property A.
LetH be any graph class. Table 1 shows examples of classesS satisfying property AwithH . The corresponding function f

is showed in the second column. A unicycle, or unicyclic graph, is any connected graph with a unique cycle, this is a tree plus
one edge. Intersection graphs of families of subtrees of a unicycle have been studied in [8].

Notice that, in these examples, f does not depend on k. A case in which f depends on k is shown in the third row of
Table 2.

On the other hand, given any function f : N → N, a graph classS satisfying property AwithH can be defined asS = {S/|VS| = n and |ES| = f (n)}.

The class Paths satisfies property Bwith the class Trees, but not property C . Examples of classes satisfying property C and
the corresponding functions are showed in Table 2; some of them are explained immediately after the table. An h-unicycle
is any unicycle with a cycle of size h and an (h − 1)-tree is a tree with at most h − 1 vertices.H = Trees,S = Trees: let H be a tree with k vertices, k ≥ 1, and H′ an induced subgraph with n vertices. If H′

∈S,H′ is
also a tree; then the number of edges of H′ is n − 1. If H′ is not a tree, then it is not connected and so the number of edges
of H′ is less than n − 1.H = Cycles,S = Arcs: let H be a cycle with k vertices, k ≥ 3, and H′ an induced subgraph with n vertices. If H′

∈S and
n < k, then H′ must be a path with n vertices and thus the number of edges of H′ is n − 1. If H′

∈S and n = k, then H′ must
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be the whole cycle and thus the number of edges of H′ is n. If H′
∉S, then it is not connected. It follows that the number of

edges of H′ is less than n − 1.H = h-Unicycles,S = h-Unicycles ∪ (h − 1)-Trees: for any h ≥ 3, let H be an h-unicycle with k vertices, k ≥ h, and H′ an
induced subgraph with n vertices. If H′

∈S and n ≤ (h − 1), then H′ must be an (h − 1)-tree. It follows that the number of
edges of H′ is n − 1. If H′

∈S and n ≥ h, then H′ must be an h-unicycle. It follows that the number of edges of H′ is n. If H′ is
not inS, it is clear that the number of edges of H′ is less than n.

In what follows, assume that G is an arbitrary fixed graph. Let cv and cG be the number of cliques containing the vertex v
and the number of cliques of G, respectively. In other words, cv = |Q (v)| and cG = |VK(G)|.

Theorem 8. LetS be a graph class satisfying property A with a classH and a function f . If H is a clique-H–S-support of G, then

w(H) =


v∈VG

f (cv, cG).

Proof. Let H be a clique-H–S-support of G, this means that H is a spanning subgraph of K(G) satisfying H ∈ H and
H[Q (v)] ∈S, for all v ∈ VG.

By property A and since H[Q (v)] is an induced subgraph of H,

|EH[Q (v)]| = f (|VH[Q (v)]|, |VH|) = f (|Q (v)|, |VK(G)|) = f (cv, cG).

On the other hand, since H is a spanning subgraph of Kw(G), by Lemma 1,

w(H) =


v∈VG

|EH[Q (v)]| =


v∈VG

f (cv, cG). �

For a graph classH , a maximum spanning H-subgraph of Kw(G) is a spanning subgraph H of Kw(G) such that H ∈ H and
w(H) ≥ w(H0) for any other H0 spanning subgraph of Kw(G) belonging toH.

Theorem 9. LetS be a graph class satisfying property B with a classH and a function f . If H is a clique-H–S-support of G, then
H is a maximum spanning H-subgraph of Kw(G).

Proof. Let H be a clique-H–S-support of G, thus H ∈ H,H is a spanning subgraph of K(G), and H[Q (v)] ∈S, for all v ∈ VG.
Since property B implies property A, by Theorem 8,

w(H) =


v∈VG

f (cv, cG).

We claim that H is maximum spanningH-subgraph. Indeed, let H0 ∈ H be a spanning subgraph of Kw(G). By Lemma 1,

w(H0) =


v∈VG

|EH0[Q (v)]|.

By property B, since H0 ∈ H and H0[Q (v)] is an induced subgraph of H0, we obtain

|EH0[Q (v)]| ≤ f (|VH0[Q (v)]|, |VH0 |) = f (cv, cG), for every v ∈ VG.

Hence,

w(H0) =


v∈VG

|EH0[Q (v)]| ≤


v∈VG

f (cv, cG) = w(H).

It follows that H is a maximum spanningH-subgraph of Kw(G). �

Theorem 10. LetS be a graph class satisfying property C with a classH and a function f . Consider a spanning subgraph H ∈ H
of K(G). If

w(H) =


v∈VG

f (cv, cG),

then H is a clique-H–S-support of G. �

Proof. Assume H ∈ H is a spanning subgraph of Kw(G) with weight

w(H) =


v∈VG

f (cv, cG).

By Lemma 1,

w(H) =


v∈VG

|EH[Q (v)]|;
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thus 
v∈VG

|EH[Q (v)]| =


v∈VG

f (cv, cG). (1)

Let v be any vertex of G. By property B, since H ∈ H and H[Q (v)] is an induced subgraph of H, we have

|EH[Q (v)]| ≤ f (|VH[Q (v)]|, |VH|) = f (cv, cG).

It follows from Eq. (I) that |EH[Q (v)]| = f (|VH[Q (v)]|, |VH|) and thus, by property C,H[Q (v)] ∈S. We have proved that H is a
clique-H–S-support of G. �

Corollary 1. LetS be a graph class satisfying property C with a class H. If a graph G admits a clique-H–S-support, then every
maximum spanning H-subgraph of Kw(G) is a clique-H–S-support.
4. Chordal, interval and Helly circular-arc graphs

A connected induced subgraph of a cycle is called an arc of the cycle. A graph G is a circular-arc graph if there exists
a cycle C and a family A of arcs of C such that G is the intersection graph of A. The pair (C, A) is called a circular-arc
representation of G, and C is the support of the representation. When an edge of C is covered by no arc of the family, C
can be reduced to a path and the arcs become intervals of the path; in this case, we speak of interval graphs and interval
representations.

Any family of subtrees of a tree has the Helly property, but not every family of arcs of a cycle has the Helly property.
Graphs admitting aHelly circular-arc representation, i.e. a circular-arc representation such that the family of arcs satisfies the
Helly property, are the graphs belonging to the well known class of Helly circular-arc graphs [4]. Interval graphs are included
in the intersection of chordal graphs and Helly circular-arc graphs. For a general review of the class of circular-arc graphs
and its subclasses, we refer the reader to [10].

In accordance with the terminology of the previous sections and [7,6], chordal, interval and Helly circular-arc graphs can
be defined as follows.

• A graph is a chordal graph if and only if it is the intersection graph of an induced Helly separating Trees–Trees-family.
• A graph is an interval graph if and only if it is the intersection graph of an induced Helly separating Paths–Paths-family.
• A non interval graph is a Helly circular-arc graph if and only if it is the intersection graph of an induced Helly separating

Cycles-Arcs-family.

Applying Theorem 7 to these classes we obtain respectively Theorem 2 and the following two already known
theorems [7].

Theorem 11. A graph G is an interval graph if and only if there exists a spanning path P of K(G) such that, for every v ∈ VG, the
subgraph induced in P by Q (v) is a subpath of P.

Theorem 12. A non interval graph G is a Helly circular-arc graph if and only if there exists a spanning cycle C of K(G) such that,
for every v ∈ VG, the subgraph induced in C by Q (v) is an arc of C.

Notice that, in accordance with the terminology of Definition 1, the spanning tree in Theorem 2, the spanning path in
Theorem 11 and the spanning cycle in Theorem 12 are a clique-Trees–Trees-support, a clique-Paths–Paths-support and a
clique-Cycles-Arcs-support of G, respectively.

We showed in Table 2 that the class Paths satisfies property C with the class Paths, and also that the class Arcs satisfies
property C with the class Cycles. It follows that Theorems 8–10 can be applied to chordal, interval and Helly circular-arc
graphs in order to obtain the support of any canonical representation by its weight in the valuated clique graph. For this, it
is necessary to evaluate the functions given in Table 2.

For a chordal or an interval graph G, the function to be used is the same function given in the first and in the second row
of Table 2. So, for chordal and interval graphs,

v∈VG

f (cv, cG) =


v∈VG

(cv − 1) =


v∈VG

cv


−


v∈VG

1


.

An easy exercise shows that
v∈VG

cv =


Q∈C(G)

|Q |.
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Fig. 3. Graph G and its valuated clique graph Kw(G).

As a consequence, we obtain the following theorems.

Theorem 13 (Theorem 3). Let G be a graph. A spanning tree T of Kw(G) is a clique − Trees–Trees−support of G if and only if

w(T) =

 
Q∈C(G)

|Q |


− |VG|.

Moreover, in this case, T is a maximum spanning tree of Kw(G).

Theorem 14. Let G be a graph. A spanning path P of Kw(G) is a clique−Paths–Paths−support of G if and only if

w(P) =

 
Q∈C(G)

|Q |


− |VG|.

Moreover, in this case, P is a maximum spanning path of Kw(G).

For a Helly circular-arc graph G, the function to be used is the one given in the third row of Table 2. To evaluate this
function we partition the vertex set of G into the set UG of all universal vertices of G and its complement UG.

If v ∈ UG, then cv = cG and so f (cv, cG) = cv . If v ∈ UG, then cv < cG and so f (cv, cG) = cv − 1. It follows that
v∈VG

f (cv, cG) =


v∈UG

f (cv, cG) +


v∈UG

f (cv, cG)

=


v∈UG

cv +


v∈UG

(cv − 1) =


v∈VG

cv −


v∈UG

1

=

 
Q∈C(G)

|Q |


− |UG|.

We obtain the following theorem,

Theorem 15. Let G be a graph. A spanning cycle C of Kw(G) is a clique−Cycles − Arcs−support of G if and only if

w(C) =

 
Q∈C(G)

|Q |


− |UG|.

Moreover, in this case, C is a maximum spanning cycle of Kw(G).

The following theorem is proved in an analogous way.

Theorem 16. Let G be a graph and h an integer larger than 2. A spanning h-unicycle A of Kw(G) is a clique-[h-Unicycles] −

[h-Unicycles ∪ (h − 1)-Trees]-support of G if and only if

w(A) =

 
Q∈C(G)

|Q |


− |Vh−1|,

where Vh−1 is the set of vertices v ∈ G with cv ≤ h − 1.
Moreover, in this case, A is a maximum spanning h-unicycle of Kw(G).

In the following section we apply these theorems in a particular example.

5. Examples

On the left side of Fig. 3, we have the graph G of Fig. 1. Each vertex v is labeled with cv , the number of cliques containing
v; and the five cliques are indicatedwith capital letters. On the right, the valuated clique graph of G is presented, the vertices
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Fig. 4. The maximum spanning cycles of Kw(G) and the corresponding representations.

Fig. 5. The only maximum 4-unicycle of Kw(G) and the corresponding representation of G.

are labeled as the corresponding cliques, and the edges with the number of vertices in the intersection that each of them
represents. The following values are easily calculated. Recall that Vk = {v ∈ VG/cv ≤ k}.

|VG| = 6 |UG| = 6


Q∈ C(G)

|Q | = 15

|V2| = 3 |V3| = 5 |V4| = 6.

In agreement with Theorem 13, to represent G as the intersection of a Helly separating family of trees of a tree, we need
a maximum spanning tree T of Kw(G) with weight equal to w(T) =


Q∈ C(G) |Q | − |VG| = 15 − 6 = 9. Any maximum

spanning tree has weight 8, thus G is not a chordal graph; indeed vertices 1, 2, 5 and 6 induce a cycle.
Using Theorem 15, to represent G as the intersection of a Helly separating family of arcs of a cycle, we need a maximum

spanning cycle C of Kw(G) with weight equal to w(C) =


Q∈C(G) |Q | − |UG| = 15 − 6 = 9. There are exactly two such
cycles. They are shown in Fig. 4. Each one gives a representation of G. No other canonical representation is possible.



L. Alcón, M. Gutierrez / Discrete Mathematics 312 (2012) 1148–1157 1157

From Theorem 16, to represent G as intersection of a Helly separating family of induced subgraphs of a 3-unicycle, the
subgraphs being 3-unicycles or trees with less than 3 vertices, we need a spanning 3-unicycle A of Kw(G) with maximum
weight equal tow(A) = (


Q∈C(G) |Q |)−|V3−1| = 15−3 = 12. Since any spanning unicycle is a spanning tree plus an edge,

and the maximum spanning tree has weight 8 and any edge has weight less than or equal to 2, there is no such 3-unicycle,
thus the required representation is not possible.

To represent G as intersection of a Helly separating family of induced subgraphs of a 4-unicycle, the subgraphs being
4-unicycles or trees with less than 4 vertices, we need a spanning 4-unicycle A of Kw(G) with maximum weight equal to
w(A) = (


Q∈C(G) |Q |) − |V4−1| = 15 − 5 = 10. Since any spanning unicycle is a spanning tree plus and edge and the

maximum spanning tree has weight 8 and any edge has weight less than or equal to 2, if such a 4-unicycle exists, then
it must be obtained using the 5 edges of Kw(G) with weight 2; these edges actually form a 4-unicycle. Fig. 5 shows the
maximum 4-unicycle of Kw(G) and the only way of representing G as intersection of a Helly separating family of induced
subgraphs of a 4-unicycle which can be 4-unicycles or trees with at most 3 vertices.
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