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Search for pair-produced heavy quarks decaying to Wq in the two-lepton channel at√
s = 7 TeV with the ATLAS detector

The ATLAS Collaboration

A search is presented for heavy-quark pair production (QQ̄) under the decay hypothesis QQ̄ →
W+qW−q̄ with q = d, s, b for up-type Q or q = u, c for down-type Q. The search is performed
with 1.04 fb−1 of integrated luminosity from pp collisions at

√
s = 7 TeV collected by the ATLAS

detector at the CERN LHC. Dilepton final states are selected, requiring large missing transverse
momentum and at least two jets. Mass reconstruction of heavy quark candidates is performed by
assuming that the W boson decay products are nearly collinear. The data are in agreement with
Standard Model expectations; a heavy quark with mass less than 350 GeV is excluded at 95%
confidence level.

PACS numbers: 12.60.-i, 13.85.Rm, 14.65.-q, 14.65.Jk, 14.80.-j

The addition of one or more heavy quarks is a nat-
ural extension to the Standard Model, capable of pro-
viding an additional source of CP violation in Bs de-
cays and accommodating a heavy Higgs boson [1, 2].
Searches for heavy quarks with the Collider Detector
at Fermilab (CDF) constrain the mass of heavy quarks
(Q) that decay as Q → Wq, where q = d, s, b
for up-type Q or q = u, c for down-type Q, to be
mQ > 340 GeV [3]. More specific searches have also con-
strained the mass of up-type heavy quarks (t0) that de-
cay as t0 → Wb to be mt0 > 358 GeV [3] and the mass of
down-type heavy quarks (b0) decaying via b0 → Wt to be
mb0 > 372 GeV [4]. The D0 experiment at Fermilab has
set a mass limit of mQ > 285 GeV [5] on heavy quarks
that decay as Q → Wq. All previous searches used the
“lepton+jets” channel, where only one of the produced
W bosons decays hadronically.

In this Article, a search is presented for pair produc-
tion of a heavy quark (QQ̄) in data corresponding to an
integrated luminosity of 1.04 fb−1 from proton-proton
collisions at

√
s = 7 TeV collected by the ATLAS ex-

periment. The heavy quark is assumed to decay via
Q → Wq where q = d, s, b for up-type Q or q = u, c for
down-type Q. This search does not include states with
q = t, i.e. d0 → Wt decays are assumed not to happen.
The search is performed in the dilepton channel, where
bothW bosons decay leptonically. Fourth-generation up-
type quarks (t0) decaying through weak charged currents
(t0 → Wb, t0 → Ws, and t0 → Wd) are used as a bench-
mark.

Three complementary searches for fourth-generation
quarks were performed with the ATLAS detector using
1.04 fb−1 of 2011 data. These searches all implement
b-quark identification algorithms and are thus targeted
towards more specific heavy quark decay modes. The
channels considered are t0t̄0 → W+W−bb̄ in the lepton
plus jets channel (setting a limit mt0 > 404 GeV [6]),
b0b̄0 → W+W−tt̄ → W+W−W+W−bb̄ in the lep-
ton plus jets channel (mb0 > 480 GeV [7]), and
b0b̄0 → W+W−tt̄ → W+W−W+W−bb̄ with two same
sign leptons in the final state (mb0 > 450 GeV [8]).”

The dileptonic final state arises in a way similar to that

of pair-produced top quarks: QQ̄ → ‘+νq‘−ν̄q̄, where ‘
is either e or µ. Leptonically-decaying intermediary τ
leptons are able to contribute to this final state if addi-
tional neutrinos are considered. The signature is at least
two jets, two oppositely charged leptons, and missing
transverse momentum (Emiss

T ) from undetected neutri-
nos. Top quark pair production is the dominant source
of background. To distinguish a potential heavy-quark
signal, heavy-quark mass reconstruction is performed by
taking advantage of the larger boost each W boson re-
ceives from the decay of a heavy quark compared to the
decay of a top quark. This large boost makes each unde-
tected neutrino approximately collinear with an observed
charged lepton.

The following sections contain descriptions of the
ATLAS detector (Section I), simulated samples (Sec-
tion II), object reconstruction (Section III), baseline
event selection (Section IV), data-driven background
estimates (Section V), mass reconstruction strategy
(Section VI), validation of background modeling (Sec-
tion VII), final event selection (Section VIII), binned
maximum-likelihood ratio fit using the reconstructed
mass (Section IX and Section X), and final results (Sec-
tion XI).

I. THE ATLAS DETECTOR

The ATLAS detector [9] is a multi-purpose particle
detector with precision trackers, calorimeters and muon
spectrometers. The momenta of charged particles with
pseudorapidity |η| < 2.51 are measured by the inner de-
tector (ID), which is a combination of silicon pixels, sili-

1 ATLAS uses a right-handed coordinate system with its origin at
the nominal interaction point (IP) in the center of the detector
and the z-axis along the beam pipe. The x-axis points from the
IP to the center of the Large Hadron Collider (LHC) ring and
the y-axis points upward. Cylindrical coordinates (r, φ) are used
in the transverse plane, φ being the azimuthal angle around the
beam pipe. The pseudorapidity is defined in terms of the polar
angle θ as η = − ln tan(θ/2).
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con microstrips and a straw-tube tracker. The ID oper-
ates in a uniform 2 T axial magnetic field produced by
a superconducting solenoid. The pixel detector measure-
ments enable precise determination of production ver-
tices.

Electromagnetic (EM) calorimetry for electron and
photon reconstruction is provided by a high-granularity,
three layer liquid argon (LAr) sampling calorimeter with
lead absorbers in the region |η| < 3.2. A presampler is
used to correct for energy lost by electrons and pho-
tons in material in front of the calorimeter for |η| < 1.8.
Hadronic calorimetry for |η| < 1.7 is provided by a scin-
tillating tile sampling calorimeter with steel absorbers,
and for 1.5 < |η| < 3.2 it is provided by a LAr sampling
calorimeter with copper-plate absorbers.

Muons are detected with a multi-system muon spec-
trometer (MS). Precision measurements in the η coordi-
nate are provided by monitored drift tubes for |η| < 2.7.
These are supplemented by cathode-strip chambers mea-
suring both the η and azimuth (φ) coordinates for
2.0 < |η| < 2.7. Fast measurements required for initi-
ating trigger logic are provided by resistive-plate cham-
bers for |η| < 1.05 and then by thin-gap chambers for
1.05 < |η| < 2.4. The muon detectors operate in a non-
uniform toroidal magnetic field generated by a supercon-
ducting air-core magnet system.

The ATLAS detector uses a three-level trigger sys-
tem to select events for offline analysis. For this search,
events are required to have at least one lepton satis-
fying trigger requirements. Electron trigger candidates
must have transverse energy ET > 20 GeV, must sat-
isfy shower-shape requirements [10] and must have an
ID track matched to the EM shower. Muon trigger can-
didates must have transverse momentum pT > 18 GeV
and matching tracks in the ID and MS.

II. SIMULATED SIGNAL AND BACKGROUND
SAMPLES

Simulated samples are used to evaluate the contribu-
tions from the QQ̄ signal (assuming an up-type heavy
quark) and most background processes. Unless other-
wise noted, all events are showered and hadronized with
herwig v6.5 [11, 12], using jimmy [13] for the underly-
ing event model. After event generation, all samples are
processed with the geant4-based [14] simulation of the
ATLAS detector [15] and subject to the same reconstruc-
tion algorithms as the data.

The CERN LHC instantaneous luminosity varied
during data-taking from about 2× 1032 cm−2s−1 to
1× 1033 cm−2s−1 [16, 17]. At maximum luminosity nu-
merous proton-proton (pp) interactions were superim-
posed in each bunch crossing. This pileup background
produces additional activity in the detector, affecting
variables such as jet reconstruction and isolation ener-
gies. Monte Carlo (MC) events simulate the pileup back-
ground by adding minimum bias events on top of the

hard scatter. The MC events are later reweighted such
that the simulated instantaneous luminosity distribution
matches that in data.

A. Heavy-quark pair production

Production and decay of heavy-quark pairs (QQ̄) is
modeled with the leading-order (LO) generator pythia
6.421 [18] using MRST 2007 LO* [19] parton distribu-
tion functions (PDFs). The production cross-section is
calculated using hathor [20] with approximate next-
to-next-to-leading-order (NNLO) QCD calculations with
CTEQ6.6 PDFs [21] for several heavy-quark masses
(mQ). In addition, scale uncertainties are evaluated in
the rangemQ/2 to 2×mQ and PDF uncertainties are cal-
culated from the CTEQ6.6 error eigenvectors. The cross-
sections and uncertainties for each heavy-quark mass con-
sidered in this analysis are shown in Table I. Samples are
generated with either t0 → Wb, t0 → Ws, or t0 → Wd
final states; final results are verified with all three decay
modes.

TABLE I. NNLO cross-sections, scale uncertainties and PDF
uncertainties calculated using hathor for QQ̄ production in√
s = 7 TeV pp collisions with CTEQ6.6 PDFs for different

heavy-quark mass assumptions. Other uncertainties related
to the cross-sections are neglected. The 1σ uncertainties are
each represented by ∆.

mQ σQQ̄ Scale ∆ PDF ∆

(GeV) (pb) (pb) (pb)

300 8.0
+0.2 +1.0

−0.5 −0.8

350 3.2
+0.1 +0.4

−0.2 −0.4

400 1.4
+0.1 +0.2

−0.1 −0.2

450 0.68
+0.02 +0.11

−0.04 −0.09

500 0.34
+0.01 +0.06

−0.02 −0.04

B. Top quark pair production

The background due to tt̄ production is modeled us-
ing the next-to-leading-order (NLO) generator mc@nlo
v3.41 [22] with an assumed top quark mass of 172.5 GeV
and the NLO PDF set CTEQ6.6. The cross-section for
tt̄ production is normalized to the value obtained from
an approximate NNLO calculation [20].
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C. Z boson, diboson and single-top quark
production

The background from Z/γ∗ boson production in asso-
ciation with jets is modeled with the LO generator alp-
gen v2.13 [23]. The LO PDF set CTEQ6.1 [21] is used
to generate Z/γ∗+jets events with dilepton invariant
mass m‘‘ > 10 GeV. For WW , WZ and ZZ production,
events are generated with the LO generator herwig v6.5
and the LO PDF set CTEQ6.1. For the small background
from single-top production, mc@nlo is used with the
NLO PDF set CTEQ6.6, invoking the diagram removal
scheme [24, 25] to remove overlaps between the single-
top and tt̄ final states. The cross-sections for Z/γ∗+jets
samples are determined using NNLO inclusive calcula-
tions from fewz [26, 27] and from a data-driven tech-
nique where possible, while the cross-sections for dibo-
son samples are determined using NLO calculations with
mc@nlo. The cross-sections for single-top samples are
normalized to an approximate NNLO prediction [28, 29].

III. OBJECT SELECTION

Electrons are found by a calorimeter-seeded recon-
struction algorithm and must have a track that matches
an energy deposit in the calorimeter. They are re-
quired to satisfy Ecluster/ cosh(ηtrack) > 25 GeV, where
Ecluster is the energy deposited in the calorimeter clus-
ter and ηtrack is the pseudorapidity of the matching
track. Electrons are required to be in a pseudorapid-
ity range |ηcluster| < 2.47, excluding the transition region
1.37 < |ηcluster| < 1.52 between the EM calorimeter bar-
rel and endcap. They must also satisfy a calorimeter
isolation Ical < 3.5 GeV requirement in ∆R < 0.2, where
∆R =

p
(∆η)2 + (∆φ)2. Calorimeter isolation is defined

as the energy reconstructed within a cone of a certain
radius around the lepton that is not associated with that
lepton, and it is represented by Ical. The calorimeter
shower shape is required to closely resemble what is ex-
pected for electrons [10].

Jets are reconstructed from topological clusters of en-
ergy deposits in the calorimeter [30] using the anti-
kt algorithm with distance parameter R = 0.4 [31, 32].
These jets are calibrated to the hadronic energy scale us-
ing a correction factor obtained from simulation which
depends on pT and η [33] They are required to sat-
isfy pT > 25 GeV and |η| < 2.5. Jets that fall within
∆R < 0.2 of accepted electrons are rejected.

Muons are found by requiring that a track recon-
structed in the MS has a matching track in the ID. A
loose cosmic ray rejection is applied by removing all muon
pairs that are back-to-back azimuthally (∆φ(µ, µ0) > 3.1)
and whose transverse impact parameter with respect
to the beam line is greater than 0.5 mm. Muon can-
didates must satisfy pT > 20 GeV and |η| < 2.5. The
muon must be isolated, satisfying calorimeter isola-
tion Ical < 4 GeV in ∆R < 0.3 and tracking isolation

Itrk < 4 GeV in ∆R < 0.3. Tracking isolation is defined
as the sum of track momenta within a cone of a certain
radius around the lepton vertex, and it is represented by
Itrk. The muon must also not fall within ∆R < 0.4 of
any jet with pT > 20 GeV.

The Emiss
T is constructed from the vector sum of

calorimeter topological cluster energies projected onto
the transverse plane [34]. Calorimeter deposits not asso-
ciated to a jet are calibrated at the EM energy scale. De-
posits associated with selected jets contribute at the cor-
rected hadronic energy scale. Muon transverse momenta
are included after correcting for muon energy losses in
the calorimeters.

IV. BASELINE EVENT SELECTION

The QQ̄ pair decay yields two charged leptons, two
jets and Emiss

T from the undetected neutrinos. An ini-
tial dilepton selection is applied to validate the modeling
of the Z/γ∗ boson production background as well as the
identification of leptons, reconstruction of jets and mea-
surement of Emiss

T .

The initial dilepton selection [35, 36] first requires that
an event contains a high-quality reconstructed primary
vertex. The event must also have exactly two leptons (e
or µ) with opposite charges, at least one of which must be
associated with the object that triggered the event. The
two leptons must not share a track in the ID. At this
stage, the data sample is dominated by Z/γ∗ → ‘‘ de-
cays (the Drell-Yan process), although the contribution
from tt̄ production is evident at large jet multiplicity, as
can be seen in Figures 1 and 2. These figures show good
agreement between the data and background expecta-
tion.

To reduce the background from Z/γ∗ → ‘‘ decays, the
baseline selection requires:

• All events must have at least two jets, each with
pT > 25 GeV and |η| < 2.5;

• Same-flavor events (ee and µµ) must satisfy
a missing transverse momentum requirement,
Emiss

T > 60 GeV;

• The dilepton invariant mass of same-flavor events
(ee and µµ) must be greater than 15 GeV and must
fall outside a window around the Z boson mass,
defined as 81 GeV < m‘‘ < 101 GeV;

• In different-flavor events (eµ), HT, defined as the
scalar sum of ET from every lepton and jet passing
the object selection criteria, must exceed 130 GeV.
The HT requirement reduces the Z/γ∗ → ττ back-
ground, where a Emiss

T requirement is insufficient
due to the presence of neutrinos.
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FIG. 1. Jet multiplicity after initial dilepton selection in (a)
ee, (b) µµ, and (c) eµ channels. The shaded region indicates
the magnitude of cross-section and luminosity uncertainties.
Samples are stacked in the same order as they are presented in
the legend, from left to right; the first entry in the legend is at
the bottom of the stack. The data-driven Drell-Yan estimate
defined in Section VA has not been applied here.
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FIG. 2. Dilepton mass after initial dilepton selection in (a) ee,
(b) µµ, and (c) eµ channels. The shaded region indicates the
magnitude of cross-section and luminosity uncertainties. The
last bin contains overflow events, and the first bin contains
underflow events. Samples are stacked in the same order as
they are presented in the legend, from left to right; the first
entry in the legend is at the bottom of the stack. The data-
driven Drell-Yan estimate defined in Section VA has not been
applied here.
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V. DATA-DRIVEN ESTIMATES

A. Drell-Yan events

The total number of Drell-Yan ee and µµ events re-
maining after the baseline selection has been applied is
estimated with a data-driven technique that extrapolates
from a control region (CR) [37]. Events in the CR have
dilepton invariant mass in the range 81 GeV – 101 GeV
with at least two jets and Emiss

T > 30 GeV. The number
of data events in the control region, Data(CR), and MC
Z/γ∗+jets events in the control region, MCDY(CR), are
used to scale the prediction of Z/γ∗+jets events in the
signal region, MCDY. Non-Z/γ∗ background processes
in the control region, MCother(CR), are subtracted from
the data using MC predictions. The estimated number
of Z/γ∗+jets events in the signal region, NDY, in the ee
and µµ channels is calculated with Equation 1:

NDY =
(Data(CR)−MCother(CR))

MCDY(CR)
×MCDY. (1)

B. Fake lepton events

A small fraction of the background consists of events
in which a jet or a non-prompt lepton is misidentified
as a prompt lepton from W boson decay. Prompt lep-
tons and misidentified non-prompt leptons are referred
to as real and fake leptons, respectively. Fake muons
are predominantly produced from semi-leptonic b or c
quark decays in which the muon passes the isolation re-
quirements despite being produced in association with a
jet. There are three principal mechanisms for producing
fake electrons: heavy-flavor decay, light flavor jets with a
leading π0 overlapping with a reconstructed track from a
charged particle, and asymmetric conversion of photons
into e+e−. The largest source of events with fake leptons
is W boson production with associated jets, including
lepton plus jets decays of top quark pairs.

A matrix method [36] is used to estimate the fraction of
the sample that comes from fake lepton events. A looser
lepton selection is defined, and the number of observed
dilepton events with two tight leptons (NTT), one loose
and one tight lepton (NTL, NLT) or two loose leptons
(NLL) is counted. The leptons are ordered by pT such
that the leading lepton in NTL is tight and the leading
lepton in NLT is loose. Tight leptons pass the selection
criteria defined in Section III. Loose electrons need to
pass the same selections as the electrons defined in Sec-
tion III except for looser shower shape and calorimeter
isolation requirements [10]. Loose muons only need to
satisfy pT > 20 GeV, |η| < 2.5 and the muon-jet overlap
requirements defined in Section III.

The probabilities for real and fake leptons that pass the
loose identification criteria to also pass the tight criteria
are defined as r‘ and f‘, respectively. These two probabil-

ities are measured separately for ‘ = e and ‘ = µ. Using
r‘ and f‘, linear expressions are obtained for the observed
yields as a function of the number of events with zero,
one and two real leptons together with two, one and zero
fake leptons (NFF, NRF and NFR, NRR; in NRF the real
lepton has greater pT than the fake lepton, and vice versa
for NFR):


NTT

NTL

NLT

NLL

 = M


NRR

NRF

NFR

NFF

 , (2)

where M is a 4× 4 matrix containing terms proportional
to r‘ and f‘. The matrix is inverted in order to extract
the real and fake content of the observed dilepton event
sample. The method explicitly accounts for the presence
of events with two fake leptons.

The probability (r‘) for a real loose lepton to pass
the tight criteria is measured in Z → ‘‘ events in data
with a tag-and-probe method. The probability for a fake
loose electron to satisfy the tight requirements (fe) is
measured by requiring exactly one loose electron in an
event with Emiss

T < 10 GeV. The probability for a fake
loose muon to satisfy the tight requirements (fµ) is mea-
sured in a control region obtained by requiring exactly
one loose muon with |∆φ(µ,Emiss

T )| < 0.5. The baseline
selection requirements from Section IV are not applied
when checking these control regions.

VI. MASS RECONSTRUCTION

After the baseline selection has been applied, mass re-
construction of heavy quark candidates is performed in
order to discriminate the heavy-quark decays from the
dominant tt̄ background. Direct reconstruction is not
possible, as two neutrinos escape the detector. However,
a unique feature of the heavy quark is the large momen-
tum of the daughter W boson, which makes its decay
products approximately collinear in the detector as seen
in Figure 3.

Both neutrino momentum vectors are reconstructed
by assuming that the neutrinos are the sole contribu-
tors to Emiss

T and that they are approximately collinear
with the leptons. The optimal values of each |∆η(ν, ‘)|
and each |∆φ(ν, ‘)| are fit by minimizing the mass differ-
ence between the two reconstructed heavy quarks using
minuit [38]. The fitted direction of each neutrino is con-
strained to be within ∆R < 2.5 of the direction taken by
the neutrino’s leptonic partner from the W boson decay,
and all jet combinations are considered during each step
of the mass difference minimization. A solution of the
minimization procedure is penalized if the scalar sum of
neutrino momenta exceeds the scalar sum of lepton mo-
menta by at least 30%. The square of the difference be-
tween each reconstructed W boson mass and 80.4 GeV is
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added to the square of the heavy-quark mass difference
in the minimized function; the preferred solutions pro-
duce W bosons with reconstructed masses that are close
to the W boson mass. The full minimization function is:
fmin = (mQ1

−mQ2
)2 + (mW1

− (80.4 GeV))2 + (mW2
−

(80.4 GeV))2.

The two reconstructed mass values tend to be more
correlated for signal than background, as shown in Fig-
ure 4. This is because the collinear approximation does
not work well for single-top, diboson, Drell-Yan, and fake
lepton events. An event is only kept if the two values of
reconstructed mass are within 25 GeV of each other. The
selection efficiency for this requirement is greater than
99% for each signal, 95% for tt̄, and only 75% – 90% for
other backgrounds.

The final reconstructed mass (mCollinear) is taken to
be the average of the two reconstructed masses in the
event. Distributions of mCollinear for various simulated
QQ̄ samples and the tt̄ background are shown in Figure 5.
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FIG. 3. True pT of parent W boson versus true ∆R between
its daughter lepton and neutrino. The scale, shown on the
right, indicates the number of generated MC events.

The expected background yields and number of ob-
served events after the baseline selection are given in Ta-
ble II. Distributions of HT and mCollinear are shown in
Figure 6.

VII. BACKGROUND VALIDATION

Event samples with the baseline selection and low HT,
low lepton pT, low jet pT or low Emiss

T are examined
to validate the modeling of the background (Figure 7).
These conditions cause the distributions to be depleted
of signal. In each case, the data is described well by the
background model, within uncertainties.

 [GeV]Collinear1m
0 100 200 300 400 500 600 700 800 900

 [G
eV

]
C

ol
lin

ea
r2

m

0

200

400

600

800

1000

1200

1400
 = 350 GeVQm

Background

 25 GeV± Collinear2 = mCollinear1m

 SimulationATLAS

FIG. 4. Correlation between reconstructed masses
for QQ̄ pairs produced with mQ = 350 GeV and for
background samples. The fitting method selects solu-
tions with correlated mass values, however this correla-
tion is smaller for background events. Events within
|mCollinear1 −mCollinear2 | < 25 GeV are kept; this region is
found between the two lines in the figure.

 [GeV]
Collinear

m

0 100 200 300 400 500 600 700 800

F
ra

c
ti
o
n
 o

f 
E

v
e
n
ts

 /
 4

0
 G

e
V

0

0.05

0.1

0.15

0.2

0.25

0.3
 SimulationATLAS

tt

 = 350 GeVQm

 = 400 GeVQm

 = 450 GeVQm

 [GeV]
Collinear

m

0 100 200 300 400 500 600 700 800

F
ra

c
ti
o
n
 o

f 
E

v
e
n
ts

 /
 4

0
 G

e
V

0

0.05

0.1

0.15

0.2

0.25

0.3
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quark pairs. Each histogram is normalized to unit area. The
distributions have long tails that are produced by wrong jet
assignment in events where at least one of the correct jets fails
selection requirements.

VIII. FINAL EVENT SELECTION

The baseline selection provides excellent discrimina-
tion against Z/γ∗ production and other backgrounds,
but additional selection requirements are necessary
to suppress the dominant tt̄ background. A tri-
angular selection in HT + Emiss

T versus mCollinear,
HT + Emiss

T > X − 0.4×mCollinear with X dependent
on the assumed signal mass, is applied. Mass-dependent
requirements on Emiss

T and leading jet pT are imposed
as well. These selection requirements are optimized in
MC simulation by seeking a point of maximum signif-
icance, S/

√
S +B, while simultaneously varying all of
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FIG. 6. Expected and observed distributions of (a) HT and
(b) mCollinear for the sum of ee, µµ and eµ channels after
the baseline selection. The last bin contains overflow events.
Samples are stacked in the same order as they are presented
in the legend, from left to right; the first entry in the legend
is at the bottom of the stack. The signal has been amplified
to 20 times the expected rate.

TABLE II. Expected and observed number of events after
baseline selection. Uncertainties shown are statistical and
systematic, added in quadrature.

Process ee eµ µµ

tt̄ 190 +40
−30 1140 +250

−200 370 +80
−70

single-top 9.4 +2.2
−1.9 60 +14

−11 24 +5
−5

Z/γ∗ → ee 6.3 +2.0
−1.9 0.0 +0.1

−0.0 0.0 +0.1
−0.0

Z/γ∗ → µµ 0.0 +0.1
−0.0 2.2 +1.1

−1.1 17 +5
−4

Z/γ∗ → ττ 7.3 +2.4
−2.2 62 +15

−12 16 +4
−4

WW , WZ, ZZ 8.7 +2.2
−1.9 49 +11

−10 12.7 +3.0
−2.6

fake leptons 3.7 ±2.8 70 ±40 0.5 ±0.8

Total Bg 230 +50
−40 1380 +310

−250 440 +90
−80

Observed 243 1410 460
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FIG. 7. Distributions of mCollinear in events that have (a)
HT< 400 GeV, (b) two leptons with pT < 60 GeV, (c) all jets
with pT < 60 GeV or (d) Emiss

T < 80 GeV. Each histogram
contains the sum of the ee, µµ and eµ channels. The last bin
contains overflow events. Samples are stacked in the same
order as they are presented in the legend, from left to right;
the first entry in the legend is at the bottom of the stack.
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the selection requirement parameters. Distributions of
HT + Emiss

T versus mCollinear for background and signal
are shown in Figure 8. Tables III and IV list the full set
of optimized selection requirements at each mass point.
Table V lists the expected backgrounds, expected signal
and observed data for each mass point after this final se-
lection. Figure 9 shows the distributions in mCollinear for
two signal samples after the final selection.
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FIG. 8. HT + Emiss
T versus mCollinear for (a) background and

(b) mQ = 350 GeV signal events for the sum of ee, µµ, and eµ
channels. The scale, shown on the right, indicates the number
of reconstructed MC events per bin passing the baseline selec-
tion and weighted to

R
Ldt = 1.04 fb−1. The shaded region

is removed by the triangular selection requirement shown in
Table III.

IX. SYSTEMATIC UNCERTAINTIES

The major sources of systematic uncertainty are due to
modeling of the signal and most sources of background.

The uncertainties due to simulation of the lepton trig-
ger, reconstruction and selection efficiencies are assessed

TABLE III. List of HT + Emiss
T versus mCollinear requirements

for each mQ.

mQ (GeV) Triangle Requirement (GeV)

300 HT + Emiss
T > 610− 0.4×mCollinear

350 HT + Emiss
T > 700− 0.4×mCollinear

400 HT + Emiss
T > 790− 0.4×mCollinear

450 HT + Emiss
T > 880− 0.4×mCollinear

500 HT + Emiss
T > 970− 0.4×mCollinear

TABLE IV. List of jet pT and Emiss
T requirements for each

mQ.

mQ (GeV) Jet pT (GeV) Emiss
T (GeV)

300 Leading jet pT > 80 —

350 Leading jet pT > 120 —

400 Leading jet pT > 130 Emiss
T > 70

450 Leading jet pT > 130 Emiss
T > 70

500 Leading jet pT > 130 Emiss
T > 70

TABLE V. Expected background, expected signal and ob-
served data in ee, µµ, and eµ channels for mQ = 300 − 500
GeV after final selection. The uncertainties shown include
both statistical and systematic contributions.

mQ Expected Expected Observed

(GeV) Background Signal Data

300 300 +40
−40 95 +14

−12 315

350 148 +22
−18 35 +5

−4 180

400 75 +11
−10 17.1 +2.5

−2.1 89

450 49 +8
−6 8.4 +1.2

−1.0 57

500 30 +5
−4 4.4 +0.6

−0.5 36

using leptons from Z → ee and Z → µµ in data [36].
MC events are corrected for differences in data and sim-
ulation. The statistical and systematic uncertainties in
these corrections are included in the uncertainties on the
acceptance values. Uncertainties in the modeling of the
lepton energy scale and resolution are studied using re-
constructed Z boson mass distributions. The jet energy
scale (JES) and its uncertainty are derived by combining
information from test-beam data, LHC collision data and
simulation [33]. The JES uncertainty varies as a func-
tion of jet pT and η and also accounts for the presence
of nearby jets and event pileup. There is additional un-
certainty associated with jets originating from b quarks
in simulation. Smaller uncertainties are associated with
the jet energy resolution and jet finding efficiency.

Uncertainties related to the Emiss
T arise due to uncer-

tainties associated with low momenta jets, event pileup,
and calorimeter energy not associated with reconstructed
leptons or jets [34]. There is also some uncertainty in esti-
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FIG. 9. Distributions of mCollinear for the sum of ee, µµ,
and eµ channels after applying the final selection for (a)
mQ = 350 GeV and (b) mQ = 400 GeV. The last bin con-
tains overflow events. The uncertainty bands include all sta-
tistical and systematic background uncertainties. The signal
samples are normalized using the cross-sections in Table I.
Samples are stacked in the same order as they are presented
in the legend, from left to right; the first entry in the legend
is at the bottom of the stack.

mating the effect of a readout problem affecting a subset
of the LAr calorimeter channels in a part of the data set.

The use of simulated samples to calculate the signal
and background acceptances gives rise to systematic un-
certainties from the generator choice, the amount of ini-
tial and final state radiation (ISR/FSR), and from the
PDF choice. The uncertainty due to the choice of gener-
ator for tt̄ events is evaluated by comparing the predic-
tions of mc@nlo with those of powheg [39] interfaced
to either herwig or pythia. The uncertainty due to
ISR/FSR is evaluated by studies using the AcerMC [40]
generator interfaced to pythia, varying the parameters
controlling ISR and FSR in a range consistent with exper-
imental data [41]. For Z/γ∗+jets events, the generator
uncertainty is evaluated by comparing the predictions of
alpgen with the PDF set CTEQ6.1 and sherpa [42]
with the PDF set CTEQ6.6. Finally, the uncertainty in

TABLE VI. Overall normalization uncertainties for each back-
ground, which are either due to cross-section uncertainties or
uncertainties related to data-driven methods.

Background +1σ Unc. −1σ Unc.

tt̄ 7 % 10 %

single-top 7 % 7 %

Z/γ∗ → ee 60 % 30 %

Z/γ∗ → µµ 40 % 30 %

Z/γ∗ → ττ 40 % 40 %

WW , WZ, ZZ 5 % 5 %

fake leptons 50 % 50 %

the PDFs used to generate signal, tt̄ and single-top events
is evaluated using the procedure adopted in a measure-
ment of the tt̄ cross-section [36].
The integrated luminosity measurement carries a 3.7%

uncertainty [16, 17]. Each sample also has an uncer-
tainty associated with its theoretical cross-section or with
its data-driven rate. For tt̄ [20], single-top [28, 29] and
Z/γ∗ → ττ [43] the rate uncertainty is estimated from
theoretical calculations. Z/γ∗ → ee, Z/γ∗ → µµ and
fake lepton event rate uncertainties are evaluated with
the data-driven fitting described in Section V. The cross-
section uncertainty for each signal point comes from
hathor NNLO calculations and can be found in Table I.
The background normalization uncertainties are listed in
Table VI.
The effects of the systematic uncertainties on the over-

all background yield are summarized in Table VII for the
cuts used for mQ = 350 GeV.

X. RESULTS AND DISCUSSION

A binned maximum-likelihood ratio technique is used
to fit distributions of mCollinear to the observed data in
order to measure the most likely QQ̄ production cross-
section, σ(pp → QQ̄). In the fitting technique, all events
with mCollinear > 760 GeV are considered to belong in
the same bin. A shape fit is performed on background
and signal simultaneously; this allows the background
normalization to float, but maintains the bin-to-bin rela-
tionships which defines the background and signal shapes
in mCollinear. This fitting procedure allows for the possi-
bility of an underestimated or overestimated background
in the signal region. To take into account system-
atic uncertainties, the signal and background shapes are
smoothly deformed in generated samples of pseudo-data
by random variations consistent with these uncertainties
as shown in Table VI and Table VII; these fluctuations
are not constrained by the data. Most of the systematic
uncertainties are assumed to be correlated between signal
and background; the uncertainties due to cross-section or
data-driven estimates, Drell-Yan modeling, tt̄ modeling,
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TABLE VII. The effects of the ±1σ systematic uncertainties
on the overall background yield.

Source +1σ Unc. −1σ Unc.

Lepton trigger 1 % 1 %

Lepton ID and reconstruction 2 % < 1 %

Jet reconstruction 3 % 3 %

Jet energy resolution 2 % 2 %

Jet energy scale 13 % 11 %

µ momentum resolution 2 % 2 %

µ momentum scale 1 % 2 %

e energy resolution 1 % 1 %

e energy scale < 1 % < 1 %

e isolation pileup term 1 % 1 %

e isolation pT term < 1 % < 1 %

Emiss
T uncertainties 1 % < 1 %

LAr readout problem 2 % 2 %

ISR/FSR: tt̄ 8 % 5 %

MC generator: tt̄ 1 % < 1 %

MC fragmentation/model: tt̄ 1 % 1 %

Drell-Yan model 7 % 7 %

and tt̄ generation are uncorrelated between signal and
background.

A small excess is observed over the background expec-
tation for each hypothetical Q mass.

Since the statistical interpretation uses the full shape
of the signal and background distributions, the results
the results in Table V do not entirely determine the re-
sults; only a signal-like excess would weaken the observed
limits. The excess shape in the mCollinear distribution is
not particularly signal-like and the data are found to be
in better agreement with the background-only than the
signal+background hypothesis.

Statistical interpretation of the fitted cross-section σ
is made using the CLs technique [44, 45]. This tech-
nique performs fits in pseudo-data generated from the
background model and varying levels of injected signal to
measure the ability of the fit to distinguish between the
background-only and background-plus-signal hypotheses.
In the case that the data are in better agreement with
the background-only hypothesis, 95% CL upper limits on
the signal cross-section σ95 are derived. The limit σ95 is
chosen so that

ps
1− p0

< 0.05

where ps is the fraction of fits in pseudo-data with in-
jected signal σ95 which give a result as seen in the data,
and p0 is the corresponding fraction from pseudo-data
drawn from the background hypothesis. Thus the per-
formance of the fitting technique in ensembles of pseudo-
data is naturally accounted for. Figure 10 shows the

observed and expected limits on the production cross-
section σ(pp → QQ̄).
The upper limit on the production cross-section is

converted into a lower limit on mQ by finding the
point of intersection with the theoretical prediction as
a function of mQ. This analysis finds a lower limit of
mQ > 350 GeV at 95% confidence level (C.L.) whereas
a limit of mQ > 335 GeV was expected. This limit as-
sumes that the branching ratio (BR) of Q → Wq is
100%. Limits were calculated for simulated samples of
Q → Wb, Q → Ws, and Q → Wd, but the results were
approximately the same for all samples. The results from
Q → Wu and Q → Wc were assumed to be analogous
for Q → Ws and Q → Wd, respectively.
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FIG. 10. Observed and median expected 95% C.L. cross-
section upper limits on QQ̄ production, compared to the the-
oretical prediction. The limit was calculated for five signal
masses, and a linear interpolation has been made between
mass points. Limits were calculated for simulated samples
of Q → Wb, Q → Ws, and Q → Wd, but the results were
approximately the same for all samples. The results from
Q → Wu and Q → Wc were assumed to be analogous for
Q → Ws and Q → Wd, respectively.

XI. CONCLUSIONS

This Article presents a search for pair production of
heavy quarks decaying to Wq in the dilepton channel at
the CERN LHC. This search allows q = d, s, b for up-
type Q final states or q = u, c for down-type Q final
states. The analyzed data correspond to an integrated
luminosity of 1.04 fb−1 collected by the ATLAS detector
in pp collisions at

√
s = 7 TeV. To enhance the sensi-

tivity to a new quark, mass reconstruction is performed
by exploiting the boost received by the heavy-quark de-
cay products. The reconstructed mass is used for binned
maximum-likelihood ratio fitting.
The data are found to be in agreement with the ex-

pectation from the Standard Model. A lower limit is
set on the mass mQ > 350 GeV at 95% confidence level.
This limit assumes BR(Q → Wq) = 100% and is appli-
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cable to many exotic models [46, 47], including up-type
fourth-generation quarks t0, down-type fourth generation
quarks b0, and quarks with exotic charges (such as −4/3)
decaying to light quarks.
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T. Göttfert98, S. Goldfarb86, T. Golling174, A. Gomes123a,b, L.S. Gomez Fajardo41, R. Gonçalo75,
J. Goncalves Pinto Firmino Da Costa41, L. Gonella20, A. Gonidec29, S. Gonzalez171, S. González de la Hoz166,
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N. Krumnack63, Z.V. Krumshteyn64, A. Kruth20, T. Kubota85, S. Kuday3a, S. Kuehn48, A. Kugel58c, T. Kuhl41,
D. Kuhn61, V. Kukhtin64, Y. Kulchitsky89, S. Kuleshov31b, C. Kummer97, M. Kuna77, N. Kundu117, J. Kunkle119,
A. Kupco124, H. Kurashige66, M. Kurata159, Y.A. Kurochkin89, V. Kus124, E.S. Kuwertz146, M. Kuze156,
J. Kvita141, R. Kwee15, A. La Rosa49, L. La Rotonda36a,36b, L. Labarga79, J. Labbe4, S. Lablak134a, C. Lacasta166,
F. Lacava131a,131b, H. Lacker15, D. Lacour77, V.R. Lacuesta166, E. Ladygin64, R. Lafaye4, B. Laforge77,
T. Lagouri79, S. Lai48, E. Laisne55, M. Lamanna29, C.L. Lampen6, W. Lampl6, E. Lancon135, U. Landgraf48,
M.P.J. Landon74, J.L. Lane81, C. Lange41, A.J. Lankford162, F. Lanni24, K. Lantzsch173, S. Laplace77, C. Lapoire20,
J.F. Laporte135, T. Lari88a, A.V. Larionov 127, A. Larner117, C. Lasseur29, M. Lassnig29, P. Laurelli47,
V. Lavorini36a,36b, W. Lavrijsen14, P. Laycock72, A.B. Lazarev64, O. Le Dortz77, E. Le Guirriec82, C. Le Maner157,
E. Le Menedeu9, C. Lebel92, T. LeCompte5, F. Ledroit-Guillon55, H. Lee104, J.S.H. Lee115, S.C. Lee150, L. Lee174,
M. Lefebvre168, M. Legendre135, A. Leger49, B.C. LeGeyt119, F. Legger97, C. Leggett14, M. Lehmacher20,
G. Lehmann Miotto29, X. Lei6, M.A.L. Leite23d, R. Leitner125, D. Lellouch170, M. Leltchouk34, B. Lemmer54,
V. Lendermann58a, K.J.C. Leney144b, T. Lenz104, G. Lenzen173, B. Lenzi29, K. Leonhardt43, S. Leontsinis9,
C. Leroy92, J-R. Lessard168, J. Lesser145a, C.G. Lester27, A. Leung Fook Cheong171, J. Levêque4, D. Levin86,
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F. Ruggieri133a,133b, A. Ruiz-Martinez63, V. Rumiantsev90,∗, L. Rumyantsev64, K. Runge48, Z. Rurikova48,
N.A. Rusakovich64, J.P. Rutherfoord6, C. Ruwiedel14, P. Ruzicka124, Y.F. Ryabov120, V. Ryadovikov127, P. Ryan87,
M. Rybar125, G. Rybkin114, N.C. Ryder117, S. Rzaeva10, A.F. Saavedra149, I. Sadeh152, H.F-W. Sadrozinski136,
R. Sadykov64, F. Safai Tehrani131a, H. Sakamoto154, G. Salamanna74, A. Salamon132a, M. Saleem110, D. Salihagic98,
A. Salnikov142, J. Salt166, B.M. Salvachua Ferrando5, D. Salvatore36a,36b, F. Salvatore148, A. Salvucci103,
A. Salzburger29, D. Sampsonidis153, B.H. Samset116, A. Sanchez101a,101b, V. Sanchez Martinez166, H. Sandaker13,
H.G. Sander80, M.P. Sanders97, M. Sandhoff173, T. Sandoval27, C. Sandoval 161, R. Sandstroem98, S. Sandvoss173,
D.P.C. Sankey128, A. Sansoni47, C. Santamarina Rios84, C. Santoni33, R. Santonico132a,132b, H. Santos123a,
J.G. Saraiva123a, T. Sarangi171, E. Sarkisyan-Grinbaum7, F. Sarri121a,121b, G. Sartisohn173, O. Sasaki65, N. Sasao67,
I. Satsounkevitch89, G. Sauvage4, E. Sauvan4, J.B. Sauvan114, P. Savard157,d, V. Savinov122, D.O. Savu29,
L. Sawyer24,l, D.H. Saxon53, L.P. Says33, C. Sbarra19a, A. Sbrizzi19a,19b, O. Scallon92, D.A. Scannicchio162,
M. Scarcella149, J. Schaarschmidt114, P. Schacht98, U. Schäfer80, S. Schaepe20, S. Schaetzel58b, A.C. Schaffer114,
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