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The ichthyocidal activity of Pfiesteria piscicida dinospores was examined in an aquarium bioassay format by 
exposing fish to either P/ies/ena-containing environmental sediments or clonal P. piscicida. The presence of 
Pfiesteria spp. and the complexity of the microbial assemblage in the bioassay were assessed by molecular 
approaches. Cell-free water from bioassays that yielded significant fish mortality failed to show ichthyocidal 
activity. Histopathological examination of moribund and dead fish failed to reveal the skin lesions reported 
elsewhere. Fish larvae within “cages” of variable mesh sizes were killed in those where the pore size exceeded 
that of Pfiesteria dinospores. In vitro exposure of fish larvae to clonal P. piscicida indicated that fish mortality 
was directly proportional to the dinospore cell density. Dinospores clustered around the mouth, eyes, and 
operculi, suggesting that fish health may be affected by their direct interaction with skin, gill epithelia, or 
mucous surfaces. Molecular fingerprinting revealed the presence of a very diverse microbial community of 
bacteria, protists, and fungi within bioassay aquaria containing environmental sediments. Some components 
of the microbial community were identified as potential fish pathogens, preventing the rigorous identification 
of Pfiesteria spp. as the only cause of fish death. In summary, our results strongly suggest (i) that this aquarium 
bioassay format, which has been extensively reported in the literature, is unsuitable to accurately assess the 
ichthyocidal activity of Pfiesteria spp. and (ii) that the ichthyocidal activity of Pfiesteria spp. is mostly due to 
direct interactions of the zoospores with fish skin and gill epithelia rather than to soluble factors.

Pfiesteria piscicida is a heterotrophic dinoflagellate that has 
been associated with fish mortality and human health problems 
in estuaries along the Atlantic shore of the United States (6, 
11, 19; http://www.epa.gov/OWOW/estuaries/pfiesteria/, http: 
//www.pfiesteria.seagrant.org/). Evidence of this association 
has relied on the detection of motile P. piscicida cells in water 
samples collected from sites where fish mortality has occurred 
(11, 13, 29) or close to areas where unusual dermal, respira
tory, and neurological symptoms were reported by individuals 
upon exposure to environmental water (2, 17, 38). The ich
thyocidal activity of P. piscicida, routinely assessed in an aquar
ium bioassay format (12), was reported to become apparent 
only when the vegetative forms (dinospores) emerge from rest
ing cysts present in environmental sediments in the presence of 
fish (7). By analogy to other dinoflagellates, it was proposed 
that P. piscicida produces one or more toxins that affect fish 
and other organisms, including mammals (5, 8, 27, 34, 36). It 
has been hypothesized that the action of these toxins on fish 
would result in skin lesions, loss of neural function, and even

tually death (16, 22, 28). Despite significant efforts by several 
laboratories directed towards the isolation and identification of 
the proposed toxin(s), no success has been reported in the 
peer-reviewed literature to date. The situation has been com
plicated further by the description of nontoxic or temporarily 
nontoxic strains that revert to toxicity under certain environ
mental cues (8, 9) and by an unusually complex life cycle with 
24 stages of variable toxicity (8, 10). However, rigorous exper
imental data in support of the aforementioned claims have 
been lacking, and the existence of the amoeba stage and Pfi
esteria toxin(s) has recently been questioned in detailed studies 
(1, 24, 32, 42). A recent in vitro study of the ichthyocidal 
activity of clonal P. piscicida in a culture flask bioassay format 
indicated that active proliferation of the dinospores can be 
associated with fish death, although the cause(s) remains un
known (33).

The goal of this study was to examine the ichthyocidal ac
tivity of P. piscicida dinospores in a controlled laboratory set
ting, using the standard aquarium bioassay format, to gain 
insight into possible icthyocidal mechanisms. The report that 
the presence of live fish during the excystment of P. piscicida 
zoospores from the sediment is a requirement for its toxicity or 
ichthyocidal activity (8, 9) was taken into account as a key 
factor in the experimental design. Accordingly, live fish were 
exposed either to sediments that contained Pfiesteria spp. or to 
P. piscicida clonal cultures, their health was monitored 
throughout the experiments, and mortalities were recorded. 
The presence of Pfiesteria spp. and the complexity of the mi-
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FIG. 1. Experimental aquarium design. Aquaria were fitted with Plexiglas lids with ports for charcoal-filtered vents, feeding, and dead fish 
retrieval. Activated or naive crushed coral filters and aeration pumps were used to maintain water quality and oxygen concentration in the bioassay 
at desired levels. For the cage experiment, standard 50-ml Falcon tubes fitted with membranes of selected pore sizes (60 pm, 10 pm, and 30 kDa) 
were filled with sterile ASW, fish larvae were introduced, and the tubes were placed in the experimental aquarium.

crobial assemblage in the experimental system were examined 
by molecular approaches, and water quality parameters were 
monitored to assess their potential modulatory role in the 
effects of P. piscicida on fish. In vitro experiments were con
ducted to study in further detail the possible mechanism(s) of 
the observed ichthyocidal activity of P. piscicida.

MATERIALS AND METHODS

Clonal dinoflagellate cultures. Clonal P. piscicida, a generous gift from K. A. 
Steidinger (Florida Department of Environmental Protection, St. Petersburg), 
was isolated in 1997 by K. A. Steidinger and J. M. Burkholder (Center for 
Applied Aquatic Ecology, North Carolina State University) from the Chicama- 
comico River, Maryland. It was propagated in f/2 medium at a salinity of 7 or 15 
ppt with artificial seawater (ASW) (Instant Ocean; Aquarium Systems Inc., 
Mentor, Ohio) (18) at 23°C under a 14-h light, 10-h dark cycle (white fluorescent; 
150 mol of photon m-2 s-3) and was fed with live cryptomonads (Rhodomonas 
sp. strain CCMP 768, obtained from the Provasoli-Guillard National Center for 
Culture of Marine Phytoplankton, West Boothbay Harbor, Maine). P. piscicida 
was harvested or used for experiments after it reached cell density of above 105 
cells ml-1. Karlodinium micrum was provided by D. K. Stoecker (Center of 
Environmental Studies, University of Maryland, Cambridge) and D. W. Coats 
(Smithsonian Environmental Research Center, Edgewater, Md.). COMB4872, a 
presumptive Oxyrrhis strain, was isolated from a water sample (collection site 
unknown) provided by the Maryland Department of Natural Resources as a part 
of the “Pfiesteria and Fish Health” field monitoring program (http://www.d- 
nr.state.md.us/bay/cblife/algae/dino
/pfiesteria/monitoringjipdates.html) by the Core Facility for Culture of Toxic 
Dinoflagellates at the Center of Marine Biotechnology (COMB), University of 
Maryland Biotechnology Institute, Baltimore.

Environmental samples. Sediment and water samples were collected from 
selected fish ponds at Hyrock Fish Farm, an aquaculture facility along the 
Manokin River, Princess Anne, Md., and at several sites along the Neuse River 
in North Carolina, in which fish kills attributed to harmful algal blooms associ
ated with P. piscicida have been reported (7; http://www.pfiesteria.org/). Sedi
ment samples from all ponds tested positive for P. piscicida by a species-specific 

PCR assay (see below). Sediment samples from ponds 1, 4, 8, and 10 were 
selected for this study based on the frequency of recent fish kill events.

Experimental fish. Adult (2- to 3-cm-long) and larval (1- to 2-day-old) sheep- 
shead minnows (Cyprinodon variegatus) were purchased from Aquatic Biosys
tems Inc. (Fort Collins, Colo.) and gradually acclimated to a salinity of 7 ppt (pH 
8.0) at 23°C for at least 2 weeks prior to use.

Bioassay for ichthyocidal activity in aquarium format, (i) Biosafety proce
dures. Bioassays were carried out in a biosafety level 3 laboratory equipped with 
a glove box (model 8'18-GB; PLAS-LABS Inc., Lansing, Mich.) and a class II type 
B2 biological safety cabinet (Purifier Class II Total Exhaust; LABCONCO Co., 
Kansas City, Mo.). Exhaust air exiting the cabinet was processed through pleated 
bag dust filters, separate HEPA filters, and nuclear-grade charcoal filters before 
being exhausted from the building (http://www.cdc.gov/od/ohs/biosfty/bmbl 
/section3.htm). All experiments were conducted according to established stan
dard operating procedures for Pfiesteria cultivation and experimental methodol
ogies, in accordance with Center for Disease Control and Prevention (Atlanta, 
Ga.) guidelines (http://www.cdc.gov/mmwr/preview/mmwrhtml/00049554.htm) as 
administered by the University of Maryland Department of Environmental 
Health and Safety.

(ii) Experimental aquarium design. Aquaria (8 or 40 liters) were filled with 6 
or 30 liters of ASW at a salinity of 7 ppt and fitted with either “naive” or 
“activated” crushed-coral filters (200 g of coral in a filter) for aeration with a 
standard air pump (500 ml min-1). Activated biofilters were prepared by placing 
naive filters in a 40-liter aquarium with 15 fish for at least 2 weeks, to allow for 
bacterial colonization of the substrate surface. Aquaria were sealed with tightly 
fitting Plexiglas lids specifically designed to avoid any release of potentially toxic 
aerosols generated by the aeration devices to the environment (Fig. 1). For this 
purpose, lids were fitted with inlets for air and feeding, and air outlets were fitted 
with built-in activated-charcoal filters. Aquaria were placed in a glove box, and 
all experiments were performed within the biosafety level 3 facility.

(iii) Bioassay for ichthyocidal activity. Sediment samples (20 or 100 ml) were 
resuspended with ASW (salinity, 7 ppt; pH 8.0; aerated overnight and filter 
sterilized [0.2-|jLm-pore-size filter]; sediment/ASW ratio, 1:5) into a sluny and 
sequentially sieved through a coarse metal mesh and a 60-|j,m-pore-size nylon 
filter (Spectrum Laboratories, Inc., Savannah, Ga.). The sieved sediment slurry 
was placed in the bioassay aquaria (100 ml in 8-liter aquaria or 500 ml in 40-liter 
aquaria), and the volume was completed with ASW. Fish were introduced into
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FIG. 2. Organization of P. piscicida and prokaryotic rRNA genes and locations of the molecular probes used in this study. The primers for P. 

piscicida species-specific PCR (NTS2F, NTS3R, and NTS4R) and for ALH fingerprinting and cloning (protists, ProlSSf and DA436r; eubacteria, 
Bact27f and Bact355r) are in panels A and B, respectively.

the bioassay aquaria to a final density of 2 fish liter-1, and their health and 
behavior were monitored throughout the experimental period. Dead fish were 
immediately removed from the aquarium and replaced by the same number that 
died in order to maintain the fish density at 2 fish liter-1. Sediment sample 
controls were prepared by autoclaving (steam sterilization at 121°C and 15 lb/in2 
gauge for 20 min) the sediment slurry (sediment/ASW ratio, 1:5) and processed 
as described above. Experimental control aquaria were inoculated with either 
clonal culture of P. piscicida to a final density of 103 cells ml-1, autoclaved 
sediment, or ASW without a dinoflagellate or sediment inoculum.

(iv) Emergence of P. piscicida dinospores from sediment. A slurry (50 ml) of 
pond 10 sediment processed as described above, with an additional 450 ml of 
ASW, was incubated in a 750-ml vented cap culture flask with or without one fish 
for a period of 30 days. The appearance of P. piscicida dinospores in the water 
column was monitored by PCR, and Pfiesteria-like dinoflagellates were identified 
by direct observation under an optical microscope. Water samples for DNA 
extraction (15 ml) and for cell counts (1 ml) were collected from each experi
mental flask at 18 time points during the experimental time period. P. piscicida- 
specific PCR was carried out under conditions reported elsewhere (37). A quan
titative assessment of P. piscicida dinospores at selected time points was carried 
out by PCR on serial dilutions of the DNA samples spiked with an internal 
standard (2 X 103 copies in a 20-pl reaction mixture) as described by Saito et al. 
(37).

(v) Water quality analyses. Concentrations of ammonia, nitrate, and nitrite in 
experimental aquaria were measured with colorimetric assay kits (HACH Co., 
Loveland, Colo.) as reported earlier (33), but with the assays adapted to a 96-well 
plate format.

(vi) Cell counts. Dinoflagellate cell densities were assessed by direct counting 
of formalin-fixed cells in a hemocytometer. Water samples (15 ml) were collected 
from the bioassay aquaria (every 7 days) and concentrated by centrifugation at 
2,000 ' ' g followed by removal of 14 ml of supernatant. The cell pellet was 
resuspended in the remaining supernatant (1 ml) and fixed with 4% formalin.

(vii) Histopathological examination of fish. Histopathological examinations 
were carried out on euthanatized moribund fish or immediately after death in the 
experimental tanks. After the gross necropsy examination was performed, spec
imens were fixed in 10% buffered formalin, embedded into paraffin, and sec
tioned (5-pm sections). The physiological and pathological examinations were 
carried out on sections stained with hematoxylin and eosin.

(viii) Cell-free ichthyocidal activity bioassay. Water samples (500 ml) from 
experimental and control aquaria were filtered through a 0.2-pm-pore-size filter 
(Nalge Nunc International Co., Rochester, N.Y.) and transferred into a 750-ml 
culture flask fitted with aeration. One small fish (approximately 1 cm in length) 
was introduced into each flask, and its health and behavior were monitored 
throughout the exposure period (10 days).

(ix) Size-selective exposure bioassay. “Cages” for exposure of fish larvae in the 
bioassay aquaria were constructed by cutting a 3-cm-diameter hole into the lids 
of 50-ml plastic tubes (BD Biosciences, Bedford, Mass.). The tubes were filled 
with 7-ppt-salinity ASW, and fish larvae (1 to 2 days old; 5 or 30 larvae cage-1) 
were introduced. The tube opening was covered with a nylon mesh or cellophane 

membrane of the selected pore size, and the lids were screwed onto the tubes 
over the mesh or membrane covers. Tubes were placed into the bioassay aquaria 
of control fish, fish with clonal P. piscicida (aquarium CPP), and fish with 
sediment pond 10 (aquarium P10), and survival of larvae was examined after 16 h 
of exposure.

PCR-based detection assay for P. piscicida. The presence of P. piscicida in the 
bioassay aquaria was examined by a species-specific PCR-based detection assay 
reported elsewhere (37). DNA was extracted from cell pellets obtained from 
water samples (15 ml) with the FastDNA spin kit for soil (Q • BlOgene, Inc., 
Carlsbad, Calif.). PCR primers (NTS2F and NTS4R in Fig. 2) that amplify a 
523-bp target sequence in the nontranscribed spacer (NTS) within the intergenic 
spacer of the P. piscicida rRNA locus were used for the detection. Integrity of the 
DNA templates was confirmed by PCR amplification with universal actin primers 
designed to amplify actin genes from lower eukaryotes to vertebrates (amplicons, 
=730 bp; primers, G-480 and G-482 [kindly provided by G. W. Warr, Medical 
University of South Carolina, Charleston]).

Characterization of microbial assemblages by ALH fingerprinting, (i) DNA 
extraction and PCR conditions for ALH fingerprinting. Whole community 
genomic DNA was extracted as described above for the species-specific PCR- 
based detection assay (37). PCR amplification of the first two variable regions of 
the small-subunit (SSU) rRNA was performed with a fluorescently (6-carboxy- 
fluorescein) labeled forward primer and a nonfluorescent reverse primer (Fig. 2). 
These primers were a conserved eukaryotic primer, ProtlSSf (5'-6-carboxyflu 
orescein-GGTTGATCCTGCCAGTAGTCATATGCTTG-3') and a primer 
that was conserved in both amoebae and dinoflagellates, DA436r (5'-TTRCGC 
GCCTGCTGCYTTCCTT-3'). For positive controls, DNAs from pure labora
tory? cultures were used, while in negative controls, the DNA was replaced with 
diethyl pyrocarbonate-treated water. Final concentrations or amounts in PCR 
mixtures were l x PCR buffer, 0.25 mM MgSO4, 0.25 mM deoxynucleoside 
triphosphates (Boehringer Gmbh, Mannheim, Germany), 0.5 pM forward and 
reverse primers, 0.25 U of Tfl DNA polymerase (Promega Corp., Madison, 
Wis.), 0.1% (wt/vol) bovine serum albumin, (fraction V; ICN Biomedicals Inc., 
Aurora, Ohio), 10 to 40 ng of DNA, and DEPC-treated water to make up the 
final volume. Amplicon length heterogeneity (ALH) PCR products were diluted, 
mixed with 1.5 pl of internal standard (GeneScan-1000 ROX; Applied Biosys
tems, Foster City, Calif.), denatured in deionized formamide (98%; Sigma, St. 
Louis, Mo.), and loaded directly onto 4.25% denaturing polyacrylamide gels 
(bisacrylamide/acrylamide ratio, 19:1; Bio-Rad, Richmond, Calif.) on an ABI377 
instrument (Applied Biosystems) for 7 h.

(ii) Data analyses. ALH fingerprint profiles were analyzed by using the ABI 
Prism GeneScan and ABI Prism Genotyper software (Applied Biosystems) and 
Microsoft Excel (Microsoft Corp.). In GeneScan, the ALH-PCR profiles were 
analyzed by using analysis parameters set to the local Southern size calling, no 
peak correction for the shorter products, and leftmost peak correction for the 
longer products. The minimum noise threshold was set at 50 fluorescence units. 
A Visual Basic routine written in Microsoft Excel was used to calculate the 
relative abundance of each peak in the fingerprint by dividing each individual 
peak area by the total peak area of each electropherogram.
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(iii) Cloning and sequencing of the microbial assemblages. Samples from 
experimental bioassay aquaria were pooled, and whole-community genomic 
DNA was extracted as described above for ALH fingerprinting. PCR amplifica
tion of the first two variable regions of the SSU rRNA for both the eubacterial 
community and the protist community was performed with either the eukaryotic 
primer set Prot'lSSf and DA436r (see “DNA extraction and PCR conditions for 
ALH fingerprinting” above) or the standard eubacterial primer set Bact27f and 
Bact355r (25, 41).

Prior to cloning, PCR amplicons from each pooled tank community were 
cleaned with a Wizard Prep kit (Promega) according to the manufacturer’s 
protocol. The concentrated PCR amplicons were sized via electrophoresis on a 
low-melting-temperature agarose gel. Amplicons within a selected size range 
were excised from the gel and isolated with a Wizard purification kit as described 
in the Promega Notes bulletin 118, section IV, for cloning. Ligation, transfor
mation, incubation, and screening of the inserted fragments were done with 
either pCR 2.1 or TOPO II vector (Invitrogen Corp., Carlsbad, Calif.) according 
to the manufacturer’s protocol.

Sequence data were obtained for all isolates with ABI BigDye Terminator 
version 2 according to the protocol of the manufacturer (Applied Biosystems). 
Contigs obtained from all clones were assembled with Sequencher 4.1 software 
(Gene Codes Co., Ann Arbor, Mich.). The sequence data for each community in 
this study were then used for BLAST searches in GenBank (National Center for 
Biotechnology Information, Rockville, Md.). The results of the BLAST search 
were parsed with a PERL script to enumerate the multiple hits for each com
munity.

Exposure of fish to high cell densities of P. piscicida dinospores. P. piscicida 
dinospore densities of above 6 X 105 cells ml-1 were obtained from a standard 
culture (1 X 10s to 2 X 105 cells ml-1) by selectively isolating a broad layer, 
approximately 1 cm from the bottom of the flask, where the P. piscicida dinos
pores concentrate during stationary? culture. The isolated culture layer (approx
imately 30 ml) was adjusted to the experimental cell densities (0.001 X 10s to 1 
X 10s, 1 X 10s to 4 X 10s, or 4 X 10s to 7 X 10s cells ml-1) by dilution in f/2 
medium (salinity, 15 ppt) and transferred into a 25-ml culture flask, and a small 
fish (approximately 1 cm in length) was introduced. Control fish were maintained 
in f/2 medium (salinity, 15 ppt) in the absence of P. piscicida dinospores. Exper
iments were carried out at room temperature (around 21 to 23°C), and fish 
health, behavior, and time of death monitored for 16 h. Interactions of P. 
piscicida dinospores with fish were examined in six-well plates containing one fish 
larva (1 to 2 days old) and P. piscicida dinospores (2 X 10s cells ml-1) in 3 ml of 
f/2 medium (salinity, 15 ppt) in each well. Wells were examined under an 
inverted light microscope (magnification, X100 to x.200), and interactions were 
documented by digital photography.

RESULTS

Characterization of the aquarium bioassay format, (i) Op
timization of the bio filtration system. Aquaria fitted with naive 
crushed-coral filtration systems and inoculated with sediments 
from ponds 1, 4, 8, and 10 (Hyrock Fish Farm) revealed that 
dinoflagellates appeared in the water column within 24 to 48 h, 
with dinospore densities reaching maximal levels in 5 to 10 
days (data not shown). The increase in dinospore density was 
concurrent with fish death, which ranged from approximately 
20% (pond 1) to 55% (ponds 4 and 10). Pond 10 showed the 
highest fish mortality relative to dinospore density. The water 
quality assessment revealed that ammonia concentrations 
gradually increased, reaching the highest levels (about 6 to 12 
mg of N liter 1) within 5 to 10 days, and later declined as the 
nitrite concentrations increased, presumably by microbial con
version of the former to the latter. Although the control aquar
ium yielded 20% fish mortality, this was the only one in which 
ammonia continued to increase throughout the course of the 
experiment, reaching levels toxic to fish (>6 to 10 mg of N 
liter 1 within a pH range of 7.8 to 8.0).

Aquaria fitted with activated crushed-coral filters, contain
ing either fresh or autoclaved sediments, showed little or no 
increase in ammonia and nitrite concentrations, likely due to

Days 0.51234 5 7 9 11 13 15 n 19 21 23 25 27 29 

w/fish

wo/fish

FIG. 3. Detection of P. piscicida dinospores emerged from sedi
ment with (w/) and without (wo/) fish by species-specific PCR. The 
emergence of P. piscicida from Hyrock Farm pond 10 sediment with 
fish (top panel) or without fish (bottom panel) was examined in a flask 
bioassay format. Water samples (1 and 15 ml) were collected for 
detection of P. piscicida and counting of Pfiesteria-like dinoflagellates, 
respectively, following the time course (days 0.5, 1, 2, 3, 4, 5, 7, 9, 11, 
13, 15, 17, 19, 21, 23, 25, 27, and 29).

the activity of the microbial biofilm present on the surface of 
the coral. Aquaria inoculated with fresh pond 10 sediments 
maintained constant low levels of ammonia and nitrites and 
remained positive for P. piscicida throughout the 35-day ex
periment. Aquaria inoculated with autoclaved pond 10 sedi
ments exhibited a water quality profile similar to those from 
aquaria with naive filters described above: ammonia levels 
increased at about day 5 and declined at day 20, the time at 
which nitrite levels increased (data not shown). This suggests 
that the microbial flora present in the sediments is a major 
contributor to water quality. As expected, no P. piscicida was 
detected in the water of the latter aquaria.

(ii) Effects of the presence of fish on emergence of P. pisci
cida dinospores from sediments. The effect of fish or fish prod
ucts on the emergence of dinospores from sediments was ex
amined in the flask format bioassay (33) by incubating pond 10 
sediments in ASW either with or without fish and assessing the 
presence of P. piscicida in the water column by use of a species
specific PCR. The earlier detection of P. piscicida in the former 
samples suggests that the presence of fish may promote cyst 
germination from the sediment, followed by either dinospore 
proliferation or grazing pressure reduction (Fig. 3).

(iii) Ichthyocidal activity in bioassay aquaria inoculated 
with sediments. The ichthyocidal activity of microorganisms 
present in sediments from the Maryland fish farm and the 
Neuse River, North Carolina, was examined in the aquarium 
bioassay format characterized above, with the goal of identi
fying and isolating soluble factors potentially toxic to fish that 
may be secreted or excreted by P. piscicida dinospores or 
another component(s) of the microbial assemblage. Aquaria 
(40 liters) fitted with activated crushed-coral filters were inoc
ulated with sediment from either pond 10 from the Maryland 
fish farm (aquarium P10), sediment from Neuse River (aquar
ium NR), or clonalP. piscicida (aquarium CPP) and monitored 
for the presence of P. piscicida and fish death. Within 24 to 
48 h postinoculation, Pfiesteria Aike dinoflagellates were ob
served in the sediment-inoculated aquaria, and the water 
tested positive for P. piscicida by PCR. All aquaria remained 
positive for P. piscicida throughout the experiment (240 days), 
although dinospore densities were lower (<102 cells ml ') 
than those observed in the preliminary experiments described 
above. At day 41 from the start of the experiment, the first fish 
died in aquarium P10. During the course of the experiment, 
fish died in aquarium P10 at intervals varying from two to three
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FIG. 4. Bioassay in aquarium format with an activated biofilter. 
Hyrock Farm (Maryland) pond 10 sediments (A) or clonal P. piscicida 
culture (B) and Neuse River (North Carolina) sediments (not shown) 
were inoculated into bioassay aquaria. Fish mortality was recorded for 
240 days. Shaded areas indicate phases I and II of ichthyocidal activity. 
Water samples from all three aquaria tested positive for P. piscicida, 
and water quality remained compatible with fish health throughout the 
experimental period. Samples for analysis of microbial assemblage by 
ALH and denaturing gradient gel electrophoresis were taken from 
assay aquaria PIO and CPP.

fish per day to one fish in 2 weeks, with two periods in which 
fish deaths increased in frequency: phase I (days 50 to 90) and 
phase II (days 140 to 170) (Fig. 4A). In contrast, only occa
sional fish deaths occurred in aquarium CPP (Fig. 4B). No fish 
deaths were observed in aquarium NR (data not shown). His
topathological analysis of tissues from moribund or dead fish 
from this experiment (aquaria P10 and CPP) failed to reveal 
skin lesions or any common signs that would indicate a unique 
cause for death, such as the action of a soluble toxin. In gen
eral, the liver, adipose, intestine, and swim bladder tissues were 
histologically normal. In some specimens, granulomatous 
branchitis (an inflammatory process in the gills), presence of 
protozoan cysts in skin and mesentery, necrosis in melanomac- 
rophages in kidney, and focal granulomatous encephalitis were 
observed. Water quality (ammonia, nitrate, and nitrite levels) 
remained within limits (nitrite, <0.005 mg of N liter am
monia, <0.02 mg of N liter 1) compatible with fish health in 
the three aquaria.

(iv) Cell-free ichthyocidal activity bioassay. In order to elu
cidate the cause(s) of the ichthyocidal activity observed in 
aquarium P10, the presence of a putative soluble factor(s) in 
the water column was examined by exposing fish to “cell-free” 
P10 and CPP water collected during the period at which high 
fish mortality was observed in aquarium P10 (150 days) (Fig. 
4). Cell-free exposure experiments were carried out in culture 
flasks filled with filtered (0.2-p.m-pore-size filter) aquarium 
water, with one adult fish per flask. In all experiments fish 
remained healthy during a 10-day exposure, with no particular 
signs of stress, while fish deaths continued to occur in aquar
ium P10.

(v) Size-selective exposure bioassay. This assay enabled the 
selective exposure of the fish larvae to soluble components 
(30-kDa-cutoff cellophane membrane), bacteria or small 
dinoflagellates (10-p.m-pore-size nylon mesh), or other larger 
protozoa or dinoflagellates (60-p.m-pore-size nylon mesh) that 
may be present in the bioassay system. Greater fish mortality 
occurred in the P10 aquarium (60% total mortality; n = 105 

fish larvae) than in CPP aquarium (3% total mortality; n = 105 
fish larvae) and the control aquarium (0% total mortality; n = 
105 fish larvae) within a 16-h exposure period. In aquarium 
P10, fish mortality was higher in those cages with larger-pore- 
size mesh: 20% mortality in the cage with a <30-kDa cutoff, 60 
to 80% in the cage with a <10-p.m cutoff, and 90 to 100% in 
the cage with a <60-pun cutoff. Microscopic examination of the 
cage contents revealed the presence of Pfiesteria-like 
dinoflagellates within the 10 and 60-p.m-cutoff mesh cages.

(vi) Characterization of the microbial assemblage by ALH 
fingerprinting. In order to examine which organism(s) may be 
associated with the fish deaths observed in the bioassay and 
cage experiments described above, we attempted to character
ize the composition and dynamics of the microbial assemblage 
in aquarium P10. To assess the biodiversity present in the 
water column, selected samples (days 91 through 244) were 
analyzed by ALH fingerprinting. The samples selected repre
sent a time period in which we observed two bursts of ichthyo
cidal activity in the P10 tank bioassay (phase I, days 50 to 90; 
phase II, days 140 to 170). ALH fingerprinting characterizes 
the organisms in a community by amplifying variable regions of 
the rRNA and separating the natural variation of amplicon 
length on a denaturing polyacrylamide gel. Each amplicon 
peak in the profile represents the presence of very few distinct 
species, and the peak area is proportional to the abundance of 
those species in the community. The ALH fingerprints depict 
the protist community at days 91, 187, and 222.

The predicted amplicon size for both P. piscicida and P. 
shumwayae was 434 bp. Pfiesteria spp. were a major component 
of the community at day 91 and were associated with the phase 
I ichthyocidal activity. In contrast, Pfiesteria spp. were not a 
major component of the community during the rest of the P10 
tank assay, although both P. piscicida and P. shumwayae were 
still detectable with our standard PCR assay (Fig. 5) through
out the entire tank bioassay. The phase I ichthyocidal activity 
was also correlated with the presence of other protist taxa, as 
there were two other major amplicon peaks present at this time 
period. In fact, over 50% of the community fingerprint was 
represented by an amplicon of 424 bp, thus precluding any 
correlation of ichthyocidal activity to the abundance of Pfies
teria spp. The ALH profile at day 187 reveals that the Pfiesteria 
amplicon had been reduced to less than 1% of the ALH com
munity profile (see shoulder on the peak at 436 bp), and seven 
other amplicon peaks had emerged at this time period, with 
only one (at 431 bp) shared with the day 91 profile. Finally, the 
ALH profile from day 222 shows the emergence of three new 
amplicons (peaks at 423, 431, and 439 bp) and the loss of four 
amplicons (peaks at 410, 422, 424, and 428 bp). Figure 5A 
illustrates the overall diversity of the protist community cycling 
through the selected sampling period. A total of 26 different 
amplicon lengths (each potentially revealing the presence and 
abundance of at least one distinct taxon) were observed to 
cycle throughout the test period, with some taxa persisting for 
extended time periods (i.e., amplicons at peaks of 424 and 477 
bp), while others appeared for only short time periods (i.e., 
amplicons at peaks of 427 and 444 bp). Some taxa appeared 
only once (i.e., amplicons at peaks of 426 bp), while others (i.e., 
amplicons at peaks of 430 bp) appeared at several time points 
during the course of the experiment.

The correlation of the abundance (blooms) of specific mi-
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crobial taxa with phase I and II ichthyocidal activity in aquar
ium PIO is shown in Fig. 5B. The number of killed fish per day 
was plotted as a percentage of the total accumulated dead fish, 
and the number of taxa (amplicon lengths) present at each day 
was plotted as a percentage of the total community diversity 
(26 taxa), along with the community dynamics of three selected 
peaks. A fairly complex community was observed during the 
first phase of ichthyocidal activity, and two small protist blooms 
occurred at days 190 and 220, neither of which correlated with 
phase II of ichthyocidal activity at day 180. The bloom of the 
amplicon at the peak of 434 bp, which corresponded to the 
predicted size for P. piscicida and P. shiunwayae, was associ-

FIG. 5. Representative ALH fingerprints of PIO aquarium bioas
say. A: Total community fingerprints of the PIO aquarium bioassay. 
Samples of the PIO bioassay aquarium were collected from day 91 to 
244, and ALH fingerprinting was performed. A percentage of the 
community for each amplicon length was calculated and plotted. The 
amplicon length (434 bp) representing Pfiesteria spp. is indicated on 
the plot. B: Plot of the accumulated fish death in the PIO bioassay 
aquarium versus the total community diversity. Samples of the PIO 
bioassay aquarium were analyzed by ALH fingerprinting as described 
for panel A. The accumulated fish death (O) was plotted as a percent
age of the total community abundance. The number of amplicons at 
each time point (■) was plotted as a percentage of the total community 
diversity. The relative abundances of peaks at 424 (□), 434 (Pfiesteria 
spp.) ( ' ), and 435 (A) bp was also plotted. The pooled PCR amplicons 
obtained with universal primer sets for eubacterium and protist SSU 
rRNAs were cloned and sequenced. The results of BLAST searches 
with sequences are listed in Table 1 (bacteria) and Table 2 (protists).

ated with phase I but not with phase II of ichthyocidal activity. 
In fact, the putative Pfiesteria peak at 434 bp had virtually 
disappeared from community by 110 days, although Pfiesteria 
spp. were still present in small numbers as determined by PCR. 
The bloom of the amplicon at peak 435 bp correlated with 
phase II of ichthyocidal activity but was not present during the 
first phase. Interestingly, the amplicon at the peak of 424 bp 
correlated with both phase I and II of ichthyocidal activity. 
Although it was by far the most abundant component of the 
protist community during phase I of ichthyocidal activity 
(>50%), it was only a minor community component during 
phase II of ichthyocidal activity (~ 16%). The identity of either 
the amplicon at 424 bp or the amplicon at 435 bp has yet to be 
determined.

To identify the components of the diverse microbial assem
blage present in P10 and CPP aquaria, DNAs extracted from
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TABLE 1. Bacterial communities in experimental aquaria

Aquarium and 
accession no. No. of hits

Closest relative

Species Taxonomic description

PIO
AB078038 3 Flexibacter aggregans Flexibacteraceae
AJ224416 2 Cytophaga sp. Sphingobacteria ; Flexibacteraceae
AJ400946 1 Methylobacterium sp. strain NP19 a-Proteobacteria
AF414882 1 a-Proteobacterium P708 a-Proteobacteria
AJ419674 1 Pseudomonas sp. strain 2N1-1 y-Proteobacteria
AJ430587 1 Caldithrix abvssi Anaerobic bacterium
AJ244689 1 Cyclobacterium sp. strain V4.MS.32 Sphingobacteria ; Flexibacteraceae
AY241567 1 Marine bacterium HP34 Sphingobacteria ; Flexibacteraceae
AF029039 1 Benzene-mineralizing consortium clone SB-1 Environmental
X72770 1 Methylococcus capsulatus y-Proteobacteria

CPP
AY183115 43 Cvanobium sp. strain LB03 Cyanobacteria
AY162047 15 a-Proteobacterium PI GH2.1.D5 a-Proteobacteria
X76084 7 Nanochlorum eucaryotum Green microalgae; Chlorophyta
AY154889 6 Flavobacterium sp. strain SRI Flavobacteria
AJ224414 4 Cytophaga sp. Sphingobacteria ; Flexibacteraceae
AB078038 3 Flexibacter aggregans Sphingobacteria ; Flexibacteraceae
AB000478 3 Aquaspirillum itersonii a-Proteobacteria
AF182021 2 Cytophaga sp. strain BAL50 Sphingobacteria ; Flexibacteraceae
AE016801 2 Vibrio vulnificus CMCP6 y-Proteobacteria
AE016795
AF330253 2 Synechococcus sp. strain BS 5 Cyanobacteria
AB069650 1 Rhizobium sp. JEYF16 a-Proteobactericr, Rhizobium-Agrobacterium group
AY217769 1 Agrobacterium sp. strain SP25 a-Proteobactericr, Rhizobium-Agrobacterium group
AY162083 1 a-Proteobacterium GMD37F4 a-Proteobacteria
AY162115 1 a-Proteobacterium GMD13F07 a-Proteobacteria
AF041446 1 Bradvrhizobium sp. strain SH 283012 a-Proteobacteria
AY190148 1 Sphingobium sp. strain S14 a-Proteobacteria
AF408866 1 Pseudomonas sp. strain NZWM5 y-Proteobacteria
AY187028 1 Pseudoalteromonas sp. strain MMM18 y-Proteobacteria
AB064358 1 Aeromonas sp. strain AER 102 y-Proteobacteria
AF430120 1 Aeromonas sp. strain VKM B-2261 y-Proteobacteria
AF539686 1 Aeromonas sp. strain Ni46 y-Proteobacteria
X74677 1 Aeromonas hydrophila y-Proteobacteria
AJ431219 1 Proteobacterium BH160-11 Proteobacteria
M62797 1 Flavobacterium aquatile Flavobacteria
M28236
D89036 1 Microcystis holsatica Cyanobacteria
AF025552 1 Cytophagales strain MED9 Bacteroidetes-Chlorobi group
AY241563 1 Marine bacterium HP28 Sphingobacteria ; Flexibacteraceae
AB015264 1 Cytophaga sp. Sphingobacteria ; Flexibacteraceae
AY275498 1 Pedobacter sp. strain MSB3023 Sphingobacteria
D78456 1 Brevibacillus borstelensis Paenibacillaceae
AF538743 1 Bacterium CAGY1 Eubacteria
AF001655 1 Environmental clone OCS31 Environmental
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pooled water samples were amplified, cloned, and sequenced. 
Based on sequencing of randomly selected clones, at least 95 
organisms were identified by BLAST search (Tables 1 and 2). 
Three bacteria were found in both aquaria and were identified 
as Flexibacter aggregans and a Cytophaga sp. (both Flexibacte- 
racae) and a Pseudomonas sp. (y-Proteobacteria). Brevibacillus 
borstelensis and Pseudoaltermonas spp., which are categorized 
by the Advisory Committee on Dangerous Pathogens as group 
1 pathogens; Vibrio vulnificus, which is a widely distributed 
pathogen that causes disease in fish, shellfish, and humans; and 
cyanobacteria, which can also be toxic or pathogenic, were 
detected only in the CPP aquarium. It is noteworthy that P. 
piscicida was the only protist common to both the PIO and CPP 
aquaria.

Exposure of fish to high cell densities of P. piscicida dinos- 
pores. In the course of these experiments and previous work 
(33), we observed that fish mortality could be associated with 
increased densities of Pfiesteria-fike dinoflagellates and/or Pfi- 
esteria spp. To investigate a possible correlation between P. 
piscicida dinospore density and fish mortality, we exposed fish 
to various cell densities of clonal P. piscicida and monitored 
fish health and mortality within a 16-h experimental period. 
We obtained high densities of clonal P. piscicida by selectively 
collecting the lower layers of the culture flask, where dinos- 
pores accumulate during stationary culture. Results of the 
high-density exposure experiments are summarized in Fig. 6A. 
About 80% of the fish exposed to P. piscicida dinospore den
sities of 4 x 105 to 7 x 105 cells ml 1 died within 16 h. A
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TABLE 2. Protist communities in experimental aquaria

Aquarium and 
accession no. No. of hits

Closest relative

Species Taxonomic description

PIO
X80341 11 Neocallimastix frontalis Fungi
AF194410 8 Malteria grandinella Ciliates
AF164241 7 Powellomvces variabilis Fungi
U97112 5 Strombidium purpureum Ciliates
AF192386 4 Pseudoperkinsus tapetis Ichthvosporea
AF368505 3 Basidiobolus microsporus Fungi
AF374481 3 Thalassiosira pseudonana Diatoms
Y17504 2 Hvaloraphidium curvatimi Fungi
AF290539 2 Crvothecomonas aestivalis Heterotrophic flagellates
AF448162 2 Proscoloplos cvgnochaetus Polychaetes
AY212807 2 Parauronema longum Ciliates
Y16938 2 Ankistrodesmus bibraianus Green algae
AY112746 1 Pfiesteria piscicida Dinophvceae
AF335515 1 Epistvlis wenrichi Ciliates
AY103190 1 Uronema elegans Ciliates
AF508769 1 Oxvtricha sp. strain Steamboat Hot Springs Ciliates
AJ310493 1 Gonostomum strenuum Ciliates
AJ488910 1 Novistrombidium testaceum subsp. ligusticum Ciliates
AB041250 1 Phvllosticta pvrolae Fungi
AF164237 1 Spizellomvces kniepii Fungi
AF322420 1 Penicillidia sp. strain VH-2001 Fungus-metazoan group
L10824 1 Diaphanoeca grandis Choanoflagellates
AF421220 1 Mastigamomeba sp. strain ATCC50617 Mastigamoebidae
AF462059 1 Thalassiosira rotula Thalassiosiraceae
AF457128 1 Lecudina sp. strain BSL-2002 Apicomplexans
AY039208 1 Aurelia aurita Jellyfishes; Scvphozoa
AF534709 1 Chlamvdaster sterni Centrohelids
X74324 1 Phytophthora capsici Heterokonts (plant disease)
X79096
U20320 1 Minchinia teredinis Alveolates

CPP
AY212807 23 Parauronema longum Ciliates
L27633 17 Cafeteria roenbergensis Bicosoecids
M32704 12 Ochromonas danica Golden algae
J02950
X06425 6 Nanochlorum eucarvotum Green algae
AB022864 5 Paraphvsomonas foraminifera Golden algae
AY112746 4 Pfiesteria piscicida Dinophvceae
X56104 4 Scenedesmus vacuolatus Green algae
AF290540 2 Crvothecomonas longipes Crvothecomonas
AF174364 2 Cafeteria roenbergensis Bicosoecids
AF174365 2 Cafeteria sp. strain EWM2 Bicosoecids
U52357 1 Scrippsiella nutricula Symbiotic dinoflagellates; Dinophvceae
AF289081 1 Nuclearia-like filose amoeba N-Por Cercozoa
AF513373 1 Scenedesmus sp. strain SEV3VF49 Green algae
AF388379 1 Dimorphococcus lunatus Green algae
AB037097 1 Tetradesmus wisconsinensis Green algae
AY220081 1 Nannochloris sp. strain ANR-9 Green algae
AY197621 1 Scenedesmid sp. strain Mary 9/21 BT-16w Green algae
AF164261 1 Chvtridiales sp. strain JEL207 Fungi
X54864 1 Podospora anserina Fungi
AF047888 1 Paracanthonchus caecus Nematoda
Y15814 1 Ostreococcus tauri Prasinophytes
L27633 1 Cafeteria roenbergensis Bicosoecids
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significant portion of these died within 5 h of exposure, during 
which they showed increasing signs of anoxia, such as gulping 
for air at the surface. Although dissolved oxygen was relatively 
low in the experimental flasks (1.5 mg of O2 liter 1), they were 
comparable to the control flasks in that the unexposed fish 
lived for extended periods of time without showing any signs of 
anoxia.

Observation of fish larvae exposed to P. piscicida dinospores 
in six-well plates revealed that within a few minutes high num
bers of P. piscicida dinospores concentrated around the larvae, 
in particular the operculi, eyes, mouth, and fins, clearly attach
ing to the skin (Fig. 6B). The fish appeared to be irritated by 
the swarming and attachment of the dinospores and would 
swim erratically, becoming obviously stressed as the exposure
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A

B

FIG. 6. Fish mortality after exposure to a high density of P. pisci
cida. A: Fish mortality within 16 h upon exposure to increasing den
sities ofP. piscicida dinospores (n = 39). B: Distribution of P.piscicida 
dinospores around fish larvae. Fish larvae were exposed to clonal P. 
piscicida in a six-well plate bioassay format. P. piscicida dinospores 
clustered around the mouth (a) as well as the eyes and operculi (b).

time increased. This behavior was not observed in fish main
tained in the absence of P. piscicida.

DISCUSSION

In this study we examined the potential ichthyocidal activity 
of P. piscicida in an aquarium format bioassay and investigated 
the possibility that soluble factors secreted or excreted by this 
dinoflagellate species may be responsible for such activity. Pre
vious work from our laboratory (33), aimed at assessing the 
ichthyocidal activity of P. piscicida in a small-scale and high- 
throughput flask format assay, revealed the association of fish 
death with proliferation of P. piscicida within the first 2 weeks 
of the experiment course. However, the deteriorated water 
quality and proliferation of multiple microorganisms after that 

initial period hindered the unambiguous establishment of 
cause-effect relationships linking P. piscicida and fish death. 
Furthermore, the relatively small volumes of crude samples 
produced in those experiments precluded the development of 
rigorous and systematic fractionation and purification proce
dures that may lead to the identification and isolation of the 
toxins or bioactive compounds that may have caused fish 
deaths. The aquarium bioassay format characterized in the 
present study was developed with the goal of addressing the 
abovementioned problems. Although the presence of Pfiesteria 
spp. and the observation of fish death in the bioassay revealed 
similarities with bioassays reported elsewhere (6, 10, 13), the 
detailed analysis and interpretation of the results questioned 
the unambiguous association of Pfiesteria spp. with fish deaths 
and suggested that a more complex analysis is required to 
explain the observations.

The presence of fish in the bioassay induced a rapid appear
ance of Pfiesteria spp. and Pfiesteriadinoflagellates in the 
water column, most likely by excystment from pond sediments 
and proliferation. Because some of the sediments tested were 
from dry ponds, it is unlikely that dinospores observed in the 
water column were already present in interstitial spaces be
tween the sediment particles but rather is likely that they 
emerged from resting cysts. This is consistent with earlier re
ports suggesting that P. piscicida dinospores rapidly emerge 
from cysts present in sediments and enhance proliferation of 
dinospores in the presence of fish (13), although the induction 
mechanism(s) remains unknown.

The absence of skin lesions in the moribund and dead fish in 
the bioassay was inconsistent with previous reports describing 
skin ulcers as the result of toxic activity by Pfiesteria spp. (5). A 
recent study suggests that these are probably due to the fungal 
pathogen Aphanomyces invadens, the causative agent of 
epizootic ulcerative syndrome (3, 4, 23). In the present study, 
histological analysis indicated pathologies commonly associ
ated with bacterial and protozoan infections.

The lack of even noticeable changes in fish health upon 
exposure to dinospore-free water collected from aquaria where 
fish deaths were observed suggested that either the putative 
ichthyocidal soluble factor was extremely labile, as proposed 
elsewhere (6, 27), or fish mortalities were caused by biotic 
components of the bioassay system. Furthermore, experiments 
designed to examine possible correlations between particle size 
and fish death revealed that fish were killed at the highest rates 
in those cages where the pore size exceeded that of medium
sized protists, including Pfiesteria dinospores, suggesting that 
the largest contribution to the fish deaths was from direct 
interaction with components of the microbial assemblage. 
However, a 10% increase in fish death relative to the controls 
was observed in cages fitted with a membrane through which 
only soluble factors could diffuse, suggesting that a soluble 
factor(s) present in the bioassay may have a limited yet signif
icant contribution to the overall fish mortality observed. How
ever, no evidence that would support attributing its source to 
Pfiesteria spp. or to any particular component of the bioassay 
microbial flora was obtained.

ALH fingerprinting, a robust and well-established method 
for analyzing biocomplexity (14, 35, 41), was used to examine 
the composition and dynamics of the microbial flora in exper
imental and control bioassay systems and the possible associ
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ation of Pfiesteria spp., other protists, or bacteria with the fish 
deaths. Although a major peak of Pfiesteria spp. obtained by 
ALH coincided with phase I of ichthyocidal activity, it was not 
present in significant amounts during phase II. Furthermore, 
Pfiesteria was not the only taxon correlated with phase I, sug
gesting that although it may play a part in some events under 
specific conditions (i.e., when present at high density), its mere 
presence should not immediately imply causality. In addition 
to P. piscicida, at least 95 species of prokaryotic and eukaryotic 
organisms, including other dinoflagellate species, ciliates, al
gae, fungi, nematodes, and diatoms, were tentatively identified 
by BLAST analysis on the ALH amplicon library. Among the 
diverse components of the assemblage, the presence of poten
tially pathogenic bacteria and toxin producers was noteworthy 
because of their possible deleterious effects on fish health. 
ALH analysis also confirmed the fluctuation of dinospore den
sities in the water column of the experimental and control 
bioassays detected by direct cell counts. The natural cycling of 
heterotrophic dinoflagellates from dinospore to either division, 
digestion, or conversion resting cysts (24, 30, 31) may be mod
ulated by the availability of prey and physical environmental 
conditions, such as temperature, light, salinity, etc. (13, 20), 
and could be responsible for this fluctuation. A second possible 
cause is the potential effect of grazing of Pfiesteria spp. by other 
components of the microbial assemblage (21). Pfiesteria spp. 
are vulnerable to predation by protozoan ciliates, rotifers, and 
the microcrustacean copepod zooplankton (39, 40). Our pre
liminary studies suggest that Oxyrrhis sp., a large dinoflagellate 
species identified in the bioassay system, is an active grazer on 
P. piscicida dinospores (data not shown).

The development and optimization of the flask bioassay 
format revealed the association of P. piscicida dinospore den
sities in the water column and fish deaths (33). Because the 
populations of Pfiesteria dinospores fluctuated in a similar fash
ion within the aquarium bioassay format, it became critical to 
experimentally test this possible association. Our results not 
only clearly confirm the proposed quantitative relationship be
tween Pfiesteria dinospore density and fish mortality but also 
suggest that relatively large numbers of dinospores (> 105 cells 
ml 1) are required to kill fish larvae. Microscopic observation 
of the interactions of the dinospores with the fish indicated that 
high numbers of P. piscicida dinospores concentrated around 
the larvae, in particular the operculi, eyes, mouth, and fins, 
clearly attaching to the skin. This behavior is similar to that 
reported by Vogelbein et al. (42) for P. shumwayae but is in 
sharp contrast with their findings that P. piscicida cultured in 
the laboratory did not attach to, feed on, or exhibit pathoge
nicity for fish. Studies by others have confirmed our observa
tions concerning the aggressive behavior of P. piscicida towards 
fish (W. Litaker, personal communication), suggesting that 
genetic and/or environmental factors may affect the behavior 
of Pfiesteria spp. towards prey.

In conclusion, this study documents for the first time that in 
addition to Pfiesteria spp., a very diverse assemblage of bacte
ria, protists, and fungi, including potential pathogens of fish, 
are present in the aquarium bioassay. In the absence of his
topathological signs that could be specifically assigned to Pfi
esteria spp., this observation makes it impossible to unambig
uously attribute the cause of fish death to Pfiesteria spp. Based 
on field observations and experimental evidence from various 

bioassay formats (5, 8-11, 13, 26), it has been proposed that 
Pfiesteria spp. kill fish by the release of one or more toxins. 
However, results have been inconsistent between laboratories, 
and the existence of a Pfiesteria toxin has yet to be demon
strated. Association does not necessarily imply causality, and 
bioassay systems need to be examined rigorously and alterna
tive hypotheses need to be tested before conclusions are 
drawn. Some of the problems in bioassay interpretation reside 
in the lack of experimental evidence demonstrating that a 
clonal axenic culture of P. piscicida is ichthyocidal and that a 
cell-free supernatant from this culture is ichthyotoxic. Because 
in this study only a minor portion of the fish death could be 
attributed to soluble components, it is unlikely that under the 
experimental conditions established, the fish deaths in an 
aquarium bioassay are caused by a toxin, as proposed by others 
for similar bioassay formats (6, 8, 27). Moreover, considering 
the complexity of the microbial assemblage, there is no valid 
reason to attribute to the Pfiesteria spp. present the synthesis 
and secretion or excretion of such a soluble component) s). The 
evidence presented here also supports reexamination of the 
rationale for the interpretation of results obtained in cell re
ceptor assays using bioassay supernatants, as well as environ
mental water (15). Our results suggest that, as described for P. 
shumwayae (43), any contribution of Pfiesteria spp. to fish 
death in the bioassay system would be mostly mediated by 
direct interactions of the dinospore with fish external surfaces, 
as a result of their feeding behavior. The relevance of this 
behavior to ichthyocidal activity in the natural environment 
remains to be examined.
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