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Abstract

Three-point correlation function in perturbed conformal field theory coupled to two-dimensional quantum gravity (perturbed Liouville gravity) 
is explicitly computed by using the free field approach. The representation considered here is the one recently proposed in [G. Giribet. Nucl. 
Phys. B 737 (2006) 209] to describe the string theory in AdSy space. Consequently, this computation extends previous results which presented 
free field calculations of particular cases of string amplitudes, and confirms that the free field approach leads to the exact result. Remarkably, this 
representation allows to compute winding violating three-point functions without making use of the spectral flow operator.
© 2006 Elsevier B.V. Open access under CC BY license.

1. Introduction

In a recent paper [1], a new free field representation of string theory in AdSy was introduced in order to realize the explicit iden­
tities that, according to what was proven in [2], turn out to connect the correlation functions in both Liouville and SL(2)g WZNW 
theories. Such representation corresponds to a perturbed conformal field theory coupled to two-dimensional quantum gravity (per­
turbed Liouville gravity). Then, this enables to make use of all what we have learned about Liouville field theory and then gain 
information about the WZNW model. The purpose of this brief note is that of emphasizing the usefulness of such realization by 
explicitly showing how the free field approach can be used to compute three-point scattering amplitudes in AdSy. It is known that 
the free field approach and the Coulomb gas-like prescription were previously employed to this end [3]; however, the computation 
here regards those cases that were not worked out in previous free field calculations. Our attention will be focussed on the three- 
point functions that violate the winding number conservations. In fact, even though free field computations of such observables 
were previously presented in the literature [4], it was done by assuming some kind of kinematic restriction, e.g. the assumption 
that one of the incoming strings was represented by a highest-weight state of the .ST (2. Rf. representations. Moreover, previous 
free field computations also considered particular relations between left-moving m and right-moving m momenta, imposing in such 
a way certain constraints on the angular momentum of the interacting strings. Here, we relax such assumptions and calculate the 
generic "winding violating” three-point amplitude in AdSy within the framework of the Coulomb gas-like prescription. Besides, 
we are able to compute correlations involving states of generic winding number, without introducing intricate tricks for the def­
inition of states with winding number grater than one and, remarkably, without resorting to the introduction of the spectral flow 
operator.

In the following section we briefly review the free field representation that will be used. In Section 3, we compute the three-point 
amplitude that violates the winding conservation. We do this in detail, by emphasizing the steps through the calculation.
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2. Perturbed Liouville gravity

2.1. Free field representation

Let us begin by briefly reviewing the free field representation we will employ. The action of the model is that of a matter 
conformal model Sm coupled to the Liouville action .S'/_. This takes the form

(1)

where Q = b + Z?_1, and we define the convenient notation Z?-2 = k - 2 e R>0. We will set the value of the Liouville cosmological 
constant as p = 1 by properly rescaling the zero mode of <p(z) (see [5] for an excellent review on Liouville theory). The specific 
model representing the "matter sector" corresponds to a c < 1 conformal field theory defined by the action

sM = ±f d2z (dx°dx° - dx^dx1 - is/kRX1 + i>aux),

where the auxiliary field ^auxU) is a perturbation, represented by a relevant primary operator of the matter sector and properly 
dressed with the coupling to the Liouville field in order to turn it into a marginal deformation. This takes the form

^aux(<) = (1/Q)e (2)

where ct is simply a ^-dependent numerical factor, see [2] for details. This is a perturbed CFT coupled to Liouville gravity in the 
spirit of the models studied in Ref. [6]. The stress tensor of the theory is then given by

r(z) = -|w)2 + -y=d2<P - j^x1)2 - i^x1 + |(ax0)2,

and leads to the central charge

3k

The fields X°(z) and X^z) have time-like and space-like signatures respectively; namely

(X°(zi)X°(z2)) = -(X^zifX1^ = 21n |zi - z2\.

Auxiliary field ^aux(z) enters in the action as an interaction term, involving the Liouville field <p(z) and coupling it with the 
field X^z). From the viewpoint of the computation of correlation functions, both the operator 0aux(z) and the cosmological term 
pe',/2'''<"': 1 play the role of screening charges in the Coulomb gas-type realization. Actually, these are (1, l)-operators of the theory. 
Then, different amounts of both operators would be required for the correlation functions to be non-vanishing. However, we will 
focus the attention to those correlators that do not involve insertion of the perturbation field ^auxU). These cases lead to the 
violation of winding number conservation. A similar free field realization was independently considered in [7],

The vertex operators in the theory are given by

= ckV^~m ~ J) ™
r(7 + l + /n) '11X"

where h.c. stands for the anti-holomorphic part, which also contains the dependence on m. It is worth pointing out that the nor­
malization is the Precisely the one required in order to reproduce the one-to-one correspondence between correlation
functions in WZNW theory and Liouville theory. These are primary operators and have conformal dimension

1. .11
7(7+ D

k — 2
k 2

— ma>---- ar.

This yields the mass spectrum of the theory through the Virasoro constraint hj^a, = 1. On the other hand, the energy of the string 
states is given by the quantity E = m + m + ka>, which includes both kinetic and winding contributions. Now, we move to the 
correlation functions involving these states.

2.2. Particular correlation functions

Here, we are interested in particular TV-point correlation functions in the theory. These are denoted as

.....=/<*wl <-r.\cb,v-
Jl,j2i’"GNlml,rn2,’’’,rnN ' Ji,W7i,mi J2,^2^2VA’Z/ J N O™ N-.m N ”
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and are those satisfying the particular relation &>i + &>2 + ■ ■ ■ + = 2 - TV. According to the free field realization described in [1],
these observables admit an integral representation of the form

n I n
r=l \n=la=l

X

s 1-1 N b-1nr> - “4^ n n -^i
1=1t=l b=lc=l

(jb+i )(jc+y-2(mi,+mc+a>bmc+a>cmi,)+k(l-a>i,a>c) (4)

and, as it was mentioned above, correspond to those correlators which do not receive perturbations of the form f d2w ^aux(m) but 
merely contributions of the Liouville screening charge / These represent "maximally violating winding" scattering
amplitudes in AdS3 spacetime. In fact, except for the case of the 2-point function, the total winding number is not conserved in such 
correlation functions as can be verified from the following conservations laws

^9 ji + (N — 2)— + 5 + 1 — 0,
i = l
N

+A-2 = 0.
Z = 1

(5)

(6)

These conservation laws are due to 8(v)-functions arising in the integration over the zero modes of the fields <p(z), X°(z) and 
X^z). Besides, correlators that also include "screenings" of the type f d2w do satisfy a different compensation relation,
in particular: «1 + «2 + ■ ■ ■ + con = 2 - N + M, where M is the amount of screening fields f d2w ^aux(m) involved in the 
correlators (see [1] for details). Then, in the case of the three-point function, the only non-trivial result including the perturbation 
field ^aux(u’) would be the conserving winding three-point function which is certainly well known. Let us focus on the non­
conservative amplitude.

3. The three-point function

3.1. Integral representation

The intention is to compute the three-point function that describes string scattering amplitudes in AdS3 for the case where the 
conservation of the total winding number is violated; and we want to do this by using free fields and without imposing any kinematic 
restriction on the involved states. We denote such correlation function as

.ru|,«n,w_4 (- \<b ~1 ~ '--'Cb'"- 0
71,72,73;ì«1,mì2,ì«3 Ji.nn.m-, Ul _));3^ _„-;i _„-;3 '^y3,i«32«3 ■ /

where the quantum numbers are such that satisfy the conservation laws leading to the non-vanishing result. Then, we will compute 
it by using the approach described in [1], By means of the standard techniques of the Coulomb gas-like prescription, this leads to 
the following multiple integral in the whole complex plane

1 I

3

= C(-s)ck H Iz« - zs|2(ai+a2+a3-2^-2^)

3

nT(— mc — jc)
r< i, + 1 T nic

c=l • r=i \n=l /=1/=1

x 3(/«i + m2 + m3 - k/2)8(mi + m2 + m3 - k/2)8(s + ji + j2 + ji + 1 + k/2),

d2wr

(7)

where f d2wr = f dwr f d wr. The integration over the zero-mode of the fields </>(z), X°(z) and X\z) states that the amount of 
integrals to be performed is given by 5 = -Ji - 72 - J3 - 5 - 1, while the momenta obey the conservation laws m\ + m2 + m3 = 
m3 + m2 + m3 = Consequently, the conservation of the winding number is violated in one unit, namely &>i + «2 + m3 = -1. 
Notice that the integral (7) is a Dotsenko-Fateev integral (similar to those arising in the minimal models) and can be explicitly 
solved by using the results of Ref. [8], It is worth pointing out that, as it is usual within similar contexts, the integral formula of 
the type (4) has to be understood formally, and a kind of analytic extension of it is required in order to construct generic correlators 
with non-integer 5. The features related to such analytic extension are basically two: First, it is evident that the products of the
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form n^=iin (7) only make sense for positive integers 5. Then, the analytic continuation of the formulas containing such products 
(after integration) is needed in order to consider generic values of the momenta (see Ref. [10] for more details). For instance, this 
is similar to what occurs in the computation of correlation functions in 2D minimal gravity, [9], The second issue is the presence 
of the overall factor r(-s), which arises after integrating over the zero mode of the Liouville field <p(z). This factor diverges for 
positive integers 5, and such a divergence is associated to the non-compactness of the theory, [11], Here, we follow standard paths 
in this kind of computation and proceed by assuming an analytic continuation of the formulas obtained after the integration. Then, 
we can integrate out (7) by using the following identity (see Ref. [4])

s n / n s I— 1 \
Is(Ji, J2; k) - J~[ I d2w,l ]~[ |w„|^71-2|l - w„\^j2 ]""[ ]”[\w, - wt\^ j

i-t“ \„=1 i=it=i /

= (fc-2)/ ^(¿2) V V<-\-Ji-h-J3')V(2h+\')VUi-h-Ji')V<-Ji-h + Ji') 

H-s) \T(1 - T(2 + Ji + J2 + J3)r(-2J2)r(l - J1 + h + .73)171 + Ji + h - Ji)

x GH-2 -J1-J2- 73)GH-1 - J1 + j2 - J3)GH-1 + Ji - J2 - J3)GH-1 -J1-J2 + J3) 
GÀ.(-l)GÀ.(-2Ji - l)GÀ.(-2Ji - 1)GÀ.(-2J3 - 1)

where J3 has been defined by J3 = s - Ji - J2 - 1, and where the special function Gk(x) is defined through

Gk(x~) = (k — T2(-^|l, - 2)T2(£ - 1 + jc| 1, & — 2),

where the Barnes function f2(x 11, v) is given by

00 00

lnr2(x|l, v) = lim — (u + n + /nv)_e
n=0m=0

- (1 -3„,o3m,o)(n +r«y) e),

where the presence of the factor (1 - 3„,o3m,o) in the right hand side means that the sum in the second term does not take into 
account the step m = n = 0.

Some useful functional relations of these functions are the following

Gk(x) = Gk(—x - £ + 1),
G*(x) = Gk(x + l)y (1 +

Gk(x) = Gk(x - k + 2)(£ - 2)2y+1]/( —x),

(9)

(10)

(ID
where we have made use of the standard notation

y 7) =
ru)

T(l-v)’

The Gk(x) function develops simple poles at v = p + q(k - 2) and v = -1 - p - (1 + q)(k - 2), for p,q e Z^o- The functional 
properties (9)—(11), due to the fact that these involve the y(v) function as well, can be used to prove the above integral formula 
for Is(Ji, J2\ k) in the case one prefers starting with the Dotsenko-Fateev expression in terms of product of T(x) functions (see 
Appendix of Ref. [8]). The important point here is that the integral Is(Ji, J2\ k) precisely agrees with the one we have to compute 
through the identification Ji = -1 - Ji, J2 = - | - J2 and J3 = -1 - 73. Then, we are ready to evaluate the three-point function. 
First, notice that the relations ( 9)-( 11) help us in writing

G*( —1 — 71 + 72 + 73 + 7/2) —
Gkdl 72 73 7/2) _ 2’)À--l-2(y1->2-73)

y (-7'1 + 72 + 73 +7/2)
Gy.(-1 + Ji + 72 - 73+7/2) = Gk\ .7 * . 72 + , ^/2) (7 -

y (71 + 72 - 73 +7/2)

and also

272 + 7 - 1\
k-2 )'

Since we are mainly interested in the string theory applications (and consequently in "correlation numbers" instead of correlation 
functions) we can make use of the projective invariance and set the worldsheet inserting points as usual: <1 = 0, z2 = 1 and 
Z3 = 00. By integrating out and using the functional relations (9)-( 11) we find the following expression for the violating three-point 
correlation number
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(12)

( ( 1 CkY(_mx _ _ j3)
— <k — 2)1 rry I ------ ----------------------------------- ------------------- -—

\ \k-2j) r(./i + i + /Mi)r(j2 +1+ 7«2)r(j3 +1+ /«3)

Gk(ji + 72 + J3 + - j2 + h ~ ^1Gk(ji — j2 - ji - 5 )<?*( 1 + ji - jï + 73 ~ 5)

Y(-n - 72 - J3 - ^y(-^-)Gk(-l)Gk(2j1 + l}Gk(l - k - 2j2)Gk(2j3 + 1)

x 3(/Ml + m2 + m3 - k/2)8(mi + m2 + m3 - k/2)8(s + ji + j2 + J3 + 1 + k/2/ 

where we preferred writing this in such a way because it permits to compare with the results in the literature ( although the replace­
ment ji — — ji is still necessary to compare with Ref. [12]). In fact, this formula exactly agrees with the one found in the literature 
by using rather different approaches (see also [13]). Besides, this extends previous computations which were done by using free 
field techniques because it does represent the "generic" three-point violating winding amplitude in AdS3. Notice that this computa­
tion does not require the insertion of the spectral flow operator (conjugate representations of the identity operator) and seems to be 
valid for states with generic winding number ( spectral flow parameter <w). In particular, the fact that this computation did not make 
use of the spectral flow operator is actually interesting. The inclusion of such additional vertex in the correlators with the purpose 
of realizing the violation of the winding number is actually one of the most ingenious tricks; however, from the viewpoint of the 
standard prescription for computing correlation functions, the introduction of such an operator could appear as a little heterodox; 
then, having found an alternative way of calculating seems to be a good point. Besides, it is worth mentioning that the formula 
above is consistent with the FZZ conjecture (cf. Ref. [14]).

3.2. Remarks on the pole structure

Some remarks are in order: First, besides the usefulness of expression (12) in order to compare with the results of [12] and [13], 
the result can be also written in a way such that the symmetry under interchanges ji ♦— jj for /, j e [1, 2, 3} turns out to be explicit. 
By using the relations (9) and (10) we can write (12) in the following form, where such symmetry manifestly appears,

V(-mb - jh}Gk(2jh - ELi j« ~

C(jb + 1 + mb)Gk(2jb + 1)

x
CkyG + Eq = l ja + ^/2)<JÂ-(Eq = l Ja 3~k/2) I y—y

Gk(—1) I 2-\ q = l
3

+ 3) ja + 1 + k/2
q=l

On the other hand, notice that we can obtain the two-point function by properly performing the limit j2 —* —k/2 in the expression 
for the three-point function we just obtained. This is because the 2-point function does conserve the winding number. In fact, by 
taking into account the functional relation

Gk(e -x)Gk(e + v)
lim------------------- :------
f—>0 Gk(2s +1)

—2zri(k — 2)Gk( — l)y

and using (10) we find that in the limit e = -j2 - k/2 — 0 the expression (11) reduces to

qz (2jì + i)r(-/M 1 - jiirpM 1 — ji ) 
z(-^ÿ)r(7i +1 + /«i)r(ji +1 - mi)

x 3(m?i +m/3 — k/2)8(mi + m3 — k/2)8(Ji — j3). (13)

This is, up to a ^-dependent factor, the reflection coefficient, and is non vanishing only for the cases fulfilling the conditions 
m?i + m3 = mi + m3 = &>i + &>3 =0.

Other comment regards the operator product expansion. The OPE and, consequently, the fusion rules of the theory are codified 
in the pole structure of the three-point function. The OPE for the = 0 sector of the Hilbert space was studied in detail in Ref. [15] 
and was analyzed in relation with the four-point function in Ref. [12], Here, we want to make a few remarks on the mixing between 
sectors = 0 and = 1. Let us consider the short distance behavior

j dJ dmdm\zi -z2\1(hi’m’°~hh^o-hh.«‘2.^

" Jc

x Qk(j\, j2, 7; M/1, m/2, m/; «){0"m(o '! H’ (14)
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where the dots "■ ■ ■" stand for "other contributions", and where the coefficient (MJi, j2, j', »H, m2, /«; &>) is given by a quotient 
between the structure constant (12) and the reflection coefficient (13) of two states with winding number = 1. To be precise, 
a change of sign in such expression also appears because of a replacing z/z3 —> —m. Because the pole structure of the structure 
constants determines the OPE, the arising of the factor y_1(-Ji - J2 — J3 -k/2) in (12) turns out to be important since it cancels a 
simple pole coming from the function Gk(ji + 72 + J3 + k/2). The sum yct> over the quantum number 02 stands for making explicit 
that the fusion rules can lead to the mixing of sectors due to the spectral flow symmetry and eventually yield the violation of the 
winding conservation up to one in the three-point function; accordingly, 02 e {0, ±1}. On the other hand, the region of integration C, 
schematically represented in the formal sum fcdj dm dm, is defined in such a way that the integration over the indices j e + z'R 
and a e [0, 1) of the continuous series Cj’" is performed, and so for the contributions due to the poles corresponding to states of 
the discrete series I.e. the definition of C is understood as running over the sets C"’M = [j, m I j e + z'R, a e [0,1),
m e o' + Z>o} and encloses the poles belonging to the sets = [j, m I J e R^_i, m = ±(j - n), n e Z>0}- These sets 
parameterize the (universal covering of the) unitary representations of 51(2, R) that are relevant for the string theory applications. 
For "picking up" the poles corresponding to the discrete states contributions, the contours included in C have to be properly chosen 
and a regularization procedure is required in those cases where different poles turn out to coincide, [15], Besides, the sum over the 
quantum numbers j, m, m and 02 in the OPE (14) has to take into account the fact that certain states of discrete representations of 
both sectors &> = 0 and &> = 1 are related one each other through the identification ~ similarly as what occurs in
the compact 517(2)* case. Besides, a lower bound on the sum over j is required in order to guarantee the unitarity of the spectrum; 
namely 2j > 1 - k. In the case on which we were interested here, unlike the case when the OPE is considered as being closed 
among the states of sector 02 = 0, it is not necessary to distinguish between discrete and continuous series C"’M in order to 
analyze the m-dependent pole structure of Qk(ji, J2, j; mi, m2, m; 1). This is due to the fact that, remarkably, the dependence of 
the violating winding amplitude (12) on the parameters m and m turns out to be substantially simpler than the one that corresponds 
to the winding conserving case. This is explained by the fact that the field 0aux(<) depends on XJ(z) as well. Hence, the whole pole 
structure of Qk(ji, J2, Gmi,m2, m; 1) is basically given by the poles of (12) and by the poles of the T(x (-functions (occurring at 
v e Z<o) arising in the denominator of (13). Within this framework, it would be certainly interesting to extend the study made in 
[15] and [16] for the case of violating amplitudes. This could help in understanding the factorization properties of the four-point 
function in the 51(2, R)k WZNW model. As mentioned before, the OPE was studied in connection to the four-point function in 
Ref. [12], where it was proven that two incoming states belongings to the sector = 0 can produce intermediate states with both 
02 = 0 and <22 = 1. However, further study is necessary to fully understand the factorization of the four-point function and our hope 
is that the free field representation can help in doing this.

3.3. Remarks on the sl(2)k invariance

Now, let us make some remarks about the sl(2)k symmetry of the action (1). Such symmetry should to be present in the theory 
since what one is actually doing is asserting the identity between the free field realization Liouville x C7(l)xZ7(l) and the 51(2, R)k 
WZNW model. In fact, ab initio, we know that this construction actually presents such sl(2)k symmetry since it turns out to 
reproduce those solutions of the Knizhnik-Zamolodchikov equations that Ribault has found in Ref. [2]. However, even though the 
solutions we obtain have the appropriate symmetry, the question arises as to why does it happen if the Liouville interaction term 

¿oes not seem t0 have regUiar ope with the 51(2, R>k currents though. To be precise, even though one knows that the 
free field representation presented in Ref. [1] turns out to transform properly by construction (it reproduces solutions of the KZ 
equation), it is also true that it is not obvious that the Liouville interaction term regarded as a screening charge commutes with the 
free field representation of the sl(2)k current algebra as one could naively expect. Again, why does it happen? The answer to this 
question yields from noticing that also the vertex operators (z) do not satisfy the usual OPE that the vectors of the 51(2, R)
representations satisfy according to the usual picture. In particular, it is worth noticing that the m-dependent overall factor of such 
vertex operators plays a crucial role for this condition to hold. To be precise, let me make the following observation: The stress­
tensor of the free field theory presented here can be thought of as the Sugawara construction starting from the following generators 
of the sl(2)k affine algebra

which follow from the free field redefinition [1]

■°L)+y1D) °L)+y1D) j\z) = iJk-dY°(z)

p(z) = (1 - k)<p(z) + iy/k(k - 2) X' (z), y1^) = (k - DX^z) + iy/k(k - 2)<p(z), Y°(z} = -X°(z).

Then, as it can be verified, these currents do not have regular OPE with the Liouville cosmological constant term as one could naively 
expect. However, the non trivial point is that this is precisely what makes the 51(2, R)k to be recovered. Namely, these currents 
do not presents regular OPE with the Liouville cosmological term but these do not satisfy the usual OPE with the vertex
operators -t (z) either; and both facts seem to combine in such a way that explain why the formulas obtained for the correlators 
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by using this free field representation turn out to be 51(2, R)k invariant. Let me emphasize that the proof of such 51(2, R)k 
invariance of the correlators simply follows from the fact that these exactly solve the KZ equation, since lead to the solutions of [2] 
with the appropriate normalization factor, as by means of the Coulomb gas-like prescription in [1], Furthermore, let us notice that 
this is precisely one of the two aspects that make of this free field construction in terms of the product Liouville x U(l) x U(l) 
a non trivial one. Namely, the first non trivial point is the fact that this construction does not seem to follow from a simple field 
redefinitions (i.e. there is no clear way for obtaining this tachyonic interaction term through bosonization, for instance), and the 
second non trivial point is precisely the use of this non standard representations t- which, once combined with the Liouville 
cosmological term, restores the 51(2, R)k invariance that the correlators one computes manifest.

4. Conclusion

By using the free field representation introduced in [1], we have computed the three-point winding violating amplitude in AdS¡ 
for the generic case, i.e. without imposing the highest-weight state condition ma ± ja = 0 on any vertex and without making 
assumptions on the angular momenta ma — ma. Besides, this computation seems to involve vertex operators of generic winding 
number , without resorting to subtle tricks for defining the vertex of sectors > 1. Then, it shows that the free field method turns 
out to be powerful enough to reproduce the three-point winding violating amplitude on the sphere in complete agreement with other 
calculations. Notice that even the factor y—1 (—ji - — j¡ - has been reproduced here and the correct /«-dependent factor has
been also obtained. This result represents a consistency check for the realization proposed in [1], which now has shown to be useful 
to compute string scattering amplitudes. We emphasize that our result is based on the free field representation of Ref. [1], which 
was defined to exactly realize the solutions of the Knizhnik-Zamolodchikov equation given in Ref. [2].
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