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Abstract

The clique graph of G. K(G). is the intersection graph of the family of cliques (maximal complete sets) of G. Clique-critical 
graphs were defined as those whose clique graph changes whenever a vertex is removed. We prove that if G has m edges then any 
clique-critical graph in K~l(G) has at most 2m vertices, which solves a question posed by Escalante and Toft [On clique-critical 
graphs. J. Combin. Theory B 17 (1974) 170-182]. The proof is based on a restatement of their characterization of clique-critical 
graphs. Moreover, the bound is sharp. We also show that the problem of recognizing clique-critical graphs is NP-complete.

1. Introduction and basic definitions

We consider simple, finite, undirected graphs. Given a graph G.V(G) and E(G) denote, respectively, the vertex and 
edge sets of G. A complete set of G is a subset of V (G) inducing a complete subgraph. A clique is a maximal complete 
set. Let ^(G) be the family of cliques of G, the clique graph ofG. K(G), is the intersection graph of #(G). It is said 
that G is a clique graph if there exists H such that K (H) = G. Not every graph is a clique graph; characterizations of 
clique graphs are given in [4.1], however the time complexity of the problem of recognizing clique graphs is still open.

For a given G. let K_1 (G) be the set of graphs H such that K(H) = G. The operation of adding to H a new vertex 
adjacent to all vertices of a given clique does not alter its clique graph, i.e. if H' is the resulting graph, then H' e A--1 (G) 
if and only if H e Af_1(G). It follows that if /f_1(G) is not empty then it is an infinite set.

On studying if_1(G), it is natural not to take into consideration the graphs obtained by that or other enlarging 
operation . This motivated the notion of clique-critical graph introduced in [2] as minimal graphs in K _1 (G), minimality 
in the sense that no induced subgraph belongs to K _1 (G). Escalante and Toft proved that the number of clique-critical 
graphs in K_1 (G) is always finite and they described the way of adding vertices to clique-critical graphs to obtain all 
graphs in Af_1(G).

We present next a restatement of the characterization of clique-critical graphs given by Escalante and Toft and obtain 
a simpler description of the way of adding vertices to a graph without changing its clique graph. In Section 2, we prove 
that any clique-critical graph in 7f_1(G) has at most 2|£’(G)| vertices. At the end of their paper [2], in a later note 
added in proof. Escalante and Toft suggest 3|E(G)| for this bound. We show that our bound is tight. In Section 3, we 
prove that the problem of determining if a graph is clique-critical is NP-complete.
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Let H be a graph and v e V(H). As usual, H - v denotes the graph induced by V(H)\{t>}. The vertex v is critical 
(or clique-critical) if K(H) Kill- v). A graph His criticalfot clique-critical) if every one of its vertices is critical.

The following lemma is a reformulation of the characterization of critical vertex given by Escalante and Toft in (6) 
of [2] in terms of the cliques of the graph.

Lemma 1. A vertex v of a graph H is critical if and only if there exist cliques ofH, Ci and C2, such that either

(i) {v} = Ci\C2,or
(ii) {v} = Ci n C2.

Corollary 2. A graph H is critical if and only if for each vertex v ofH there exist cliques ofH, Ci and C2, such that 
either

(i) {v} = Ci\C2,or
(ii) {v} = Ci n C2.

The way of adding vertices to a graph without changing its clique graph is described in the following corollary. For 
x ^V(H) and V' c V(H), let H + xy/ denote the graph obtained by adding to H the vertex x and making it adjacent 
to every vertex of V'; and let H[V'] be the subgraph of H induced by the vertices of V'.

Corollary 3. The equality K(H) = K(H + xy/) holds if and only if

(i) the cliques ofH[V'] are cliques ofH, and
(ii) the cliques ofH[V'] are pairwise intersecting.

2. Bound

The following lemma gives an upper bound for the number of vertices of any critical graph belonging to /f_1(G). 
Notice as a consequence of it that a graph G with m edges is a clique graph if and only if there exists H with at most 
2m vertices such that K(H) = G.

Lemma 4. Let Gbea clique graph with m > 1 edges. Any critical graph belonging to K'^G) has at most 2m vertices.

Proof. We can assume G is connected and non-trivial. Let Hbe a critical graph such that K(H) = G and let C„ denote 
the clique of H corresponding to the vertex it of G. If H is a star, G is a complete, then the bound is true. Assume H is 
not a star and let A be the set of cardinality 2m whose elements are the ordered pairs (u, v) for u v e E(G). We claim 
that the following application/, from a subset of A into V (H), is surjective, thus |A| = 2m > | V(Z/)|.

CU\CV if|C„\C„| = L
c„ nCv if |C„\c.vI 1 and |C„ nc„| = i.

Indeed, if x e V(H), since H is critical, by Lemma 1, there exist C„ and Cv, cliques of H, such that {x} = C„ \CV or 
{x} = C„ n Cv.

If {x} = CU\CV, then /(«, t>) = CU\CV = {x}.
If {x} = CH n Cv and |C„ \CV| = 0, then CH c Cv, this is a contradiction since they are maximal complete sets.
If {x} = C„ n Cv and IGACJ > 1, then /(«, t>) = C„ n Cv = {x}.
If {x}=CHnC1) and |C„\Ci,| = l, then there are two possibilities: first, |Ci,\C„ | > 1, in this case/(t>, i«)=CvnC„={x}; 

and second, |CV\C„ | = 1, in this case, both cliques have exactly two vertices and, since m > 1 and G is connected, there 
exists another clique C/; intersecting C„ or Cv, moreover, the intersection contains exactly one vertex. If this vertex is 
not x, (Fig. la), then {x} = Cu\Ch and thus f(u, h) = Cu\Ch = {x}. If the vertex is x, since H is not a star, we can 
assume either |C/;\CH | > 1, (Fig. lb), in this case /(/?, u) = Ch n Cu = {x}; or |C/Z\C„| = 1 and there exists Cw such 
that Cw ACj / 0 and x f Cw, (Fig. lc), in this case /(/?, w) = Ch\Cw = {x}. The proof is completed. □
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Fig. 1. The cliques Cu, Cv, C^, and Cw.

To show that the bound is sharp, we will exhibit, for each positive integer m > 1, a graph G with m edges and a 
critical graph H e 1 (C?) with Im vertices.

The graph G is the bipartite graph Ki,m which, clearly, has m edges. The graph H can be depicted as the complete 
graph Km plus a vertex v' and an edge vv' for each vertex t> of /^„.Trivially, | V (//)| =2/n; by Corollary 2, His critical; 
and, clearly, KOI') = Ki,m.

3. Recognizing clique-critical graphs

In this section, we study the time complexity of recognizing clique-critical graphs.

Theorem 5. The problem of recognizing clique-critical graphs is NP-complete.

Proof. Let H be any graph. A certificate of //being a critical graph is, for each vertex of //, a pair of cliques satisfying 
(i) or (ii) of Corollary 2. Verifying the exactness of this certificate requires polynomial time, thus the problem belongs 
to NP.

In [3], it was proved that determining if a connected graph has two disjoint cliques is NP-complete, we will reduce 
our problem from that one.

Given a non-trivial connected graph G and x V(G), let G' be the graph obtained from G + xV(G) by adding a 
vertex v' and one edge t> v' for each of the vertices t> e V(G), (Fig. 2). We claim that G has two disjoint cliques if and 
only if G' is critical. Indeed, clearly, any vertex v' is a clique difference and any vertex t> is a clique intersection, then, 
by Corollary 2, we need only see what happens with x. In no case, since G is connected and non-trivial, x can be a 
clique difference and, on the other hand, x is a clique intersection if and only if G has two disjoint cliques. The proof 
is complete. □
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