L
View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by El Servicio de Difusién de la Creacién Intelectual

Available online at www.sciencedirect.com

scmucs@mnsc-r- DISCRETE
I APPLIED
sl MATHEMATICS
ELSEVIER Discrete Applied Mathematics 154 (2006) 1799 - 1802
www.elsevier.com/locate/dam
Clique-critical graphs: Maximum size and recognition
Liliana Alcén
Departamento de Matemdtica. Universidad Nacional de La Plata, C.C. 172 (1900) La Plata, Argentina
Received 22 December 2004 received in revised form 10 May 2005 accepted 18 January 2006
Available online 18 May 2006
Abstract

The clique graph of G. K (G). is the intersection graph of the family of cliques (maximal complete sets) of G. Clique-critical
graphs were defined as those whose clique graph changes whenever a vertex is removed. We prove that if G has m edges then any
clique-critical graph in K ~1(G) has at most 2m vertices. which solves a question posed by Escalante and Toft [On clique-critical
graphs. J. Combin. Theory B 17 (1974) 170-182]. The proof is based on a restatement of their characterization of clique-critical
graphs. Moreover, the bound is sharp. We also show that the problem of recognizing clique-critical graphs is NP-complete.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction and basic definitions

We consider simple, finite, undirected graphs. Given a graph G, V(G) and E(G) denote, respectively, the vertex and
edge sets of G. A complete set of G is a subset of V(G) inducing a complete subgraph. A cligue is a maximal complete
set. Let ¥(G) be the family of cliques of G, the clique graph of G, K(G), is the intersection graph of 4(G). It is said
that G is a clique graph if there exists H such that K (H) = G. Not every graph is a clique graph; characterizations of
clique graphs are given in [4.1], however the time complexity of the problem of recognizing clique graphs is still open.

For a given G. let K~!(G) be the set of graphs H such that K (H) = G. The operation of adding to H a new vertex
adjacent to all vertices of a given clique does not alter its clique graph, i.e. if H' is the resulting graph, then H' ¢ K ~!(G)
if and only if H € K~!(G). It follows that if K ~!(G) is not empty then it is an infinite set.

On studying K ~1(G), it is natural not to take into consideration the graphs obtained by that or other enlarging
operation. This motivated the notion of clique-critical graph introduced in [2] as minimal graphs in K =1 (G), minimality
in the sense that no induced subgraph belongs to K ~1(G). Escalante and Toft proved that the number of clique-critical
graphs in K ~!(G) is always finite and they described the way of adding vertices to clique-critical graphs to obtain all
graphs in K ~1(G).

We present next a restatement of the characterization of clique-critical graphs given by Escalante and Toft and obtain
a simpler description of the way of adding vertices to a graph without changing its clique graph. In Section 2, we prove
that any clique-critical graph in K ~1(G) has at most 2| E(G)| vertices. At the end of their paper [2], in a later note
added in proof, Escalante and Toft suggest 3| E(G)| for this bound. We show that our bound is tight. In Section 3, we
prove that the problem of determining if a graph is clique-critical is NP-complete.
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Let Hbe a graph and v € V(H). As usual, H — v denotes the graph induced by V (H)\{v}. The vertex v is critical
(or clique-critical) if K(H) & K(H —v). A graph H is critical(or clique-critical) if every one of its vertices is critical.

The following lemma is a reformulation of the characterization of critical vertex given by Escalante and Toft in (6)
of [2] in terms of the cliques of the graph.

Lemma 1. A vertex v of a graph H is critical if and only if there exist cliques of H, Cy and C,, such that either

(1) {v} =Ci\Cy, or
(i) {v}=C1NCy.

Corollary 2. A graph H is critical if and only if for each vertex v of H there exist cliques of H, Cy and Cy, such that
either

(1) {v} =Ci\Cy, or
(i) {v}=C1NCy.

The way of adding vertices to a graph without changing its clique graph is described in the following corollary. For
x ¢ V(H)and V' C V(H), let H + xy denote the graph obtained by adding to H the vertex x and making it adjacent
to every vertex of V'; and let H[V'] be the subgraph of H induced by the vertices of V',

Corollary 3. The equality K(H)= K(H + xvy+) holds if and only if

(i) the cligues of H[V'] are cliques of H, and
(ii) the cligues of H[V'] are pairwise intersecting.

2. Bound

The following lemma gives an upper bound for the number of vertices of any critical graph belonging to K ~1(G).
Notice as a consequence of it that a graph G with m edges is a clique graph if and only if there exists H with at most
2m vertices such that K(H) =G.

Lemma 4. Let G be a clique graphwithm > 1 edges. Any critical graph belonging to K ~'(G) has at most 2m vertices.

Proof. We can assume G is connected and non-trivial. Let H be a critical graph such that K (H) = G and let C;, denote
the clique of H corresponding to the vertex « of G. If H is a star, G is a complete, then the bound is true. Assume H is
not a star and let A be the set of cardinality 2m whose elements are the ordered pairs (u, v) for uv € E(G). We claim
that the following application f; from a subset of A into V (H ), is surjective, thus |A| =2m > |V (H)|.

Flu, ) = c\C, if|C,\Cy|=1.
' C,NnC, if|C,\Cy|=1and |C, NCy|=1.

Indeed, if x € V(H), since H is critical, by Lemma 1, there exist C,, and C,, cliques of H, such that {x} = C,,\C,, or

x}=C,NCy.

If {x} = C,\Cy, then f(u, v) =Cy,\C, = {x}.

If {x} =C, NC, and |C,\C,| =0, then C, < C,, this is a contradiction since they are maximal complete sets.

If {x} =C, N Cy and |C, \Cy| > 1, then f(u,v)=C, NC, = {x}.

If {x}=C,NC, and |C,\C,|=1, then there are two possibilities: first, |C,\Cy, | > 1,in thiscase f (v, u)=C,NC,={x};
and second, |C,\C, | =1, in this case, both cliques have exactly two vertices and, since m > 1 and G is connected, there
exists another clique Cy, intersecting Cy, or C,, moreover, the intersection contains exactly one vertex. If this vertex is
not x, (Fig. 1a), then {x} = C,\Cj and thus f(u, h) = C,\Cj, = {x}. If the vertex is x, since H is not a star, we can
assume either |Cp\Cy| > 1, (Fig. 1b), in this case f(h, u) =C, N C, = {x}; or |C,\Cy| = 1 and there exists C,, such
that Cy, N Cy, %~ B and x ¢ Cy,, (Fig. 1¢), in this case f(h, w) = Cy\Cy, = {x}. The proof is completed. [



L. Alcon/ Discrete Applied Mathematics 154 (2006) 1799— 1802 1801

('.h -

° ™ .
C, 6 C; G
P ek 5 (& b x
e C C,
[ ] ° G °
(a) (b) ()

Fig. 1. The cliques Cy, Cy, Cy,, and Cyy.

To show that the bound is sharp, we will exhibit, for each positive integer m > 1, a graph G with m edges and a
critical graph H € K ~1(G) with 2m vertices.

The graph G is the bipartite graph K ,, which, clearly, has m edges. The graph H can be depicted as the complete
graph K, plus a vertex v’ and an edge vv’ for each vertex v of Ky,. Trivially, |V (H)|=2m; by Corollary 2, H is critical;
and, clearly, K(H) = Ky .

3. Recognizing clique-critical graphs
In this section, we study the time complexity of recognizing clique-critical graphs.
Theorem 5. The problem of recognizing clique-critical graphs is NP-complete.

Proof. Tet H be any graph. A certificate of H being a critical graph is, for each vertex of H, a pair of cliques satisfying
(i) or (ii) of Corollary 2. Verifying the exactness of this certificate requires polynomial time, thus the problem belongs
to NP.

In [3], it was proved that determining if a connected graph has two disjoint cliques is NP-complete, we will reduce
our problem from that one.

Given a non-trivial connected graph G and x ¢ V(G), let G’ be the graph obtained from G + xy () by adding a
vertex v’ and one edge vv’ for each of the vertices v € V(G), (Fig. 2). We claim that G has two disjoint cliques if and
only if G’ is critical. Indeed, clearly, any vertex v’ is a clique difference and any vertex v is a clique intersection, then,
by Corollary 2, we need only see what happens with x. In no case, since G is connected and non-trivial, x can be a
clique difference and, on the other hand, x is a clique intersection if and only if G has two disjoint cliques. The proof
is complete. [

Fig. 2. The graph & .
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