
Bayesian Networks Optimization Based on Induction 
Learning Techniques

Paola Britos 1, Pablo Felgaer 2, and Ramon Garcia-Martinez 3

Abstract Obtaining a bayesian network from data is a learning process that is divided in 
two steps: structural learning and parametric learning. In this paper, we define an automatic 
learning method that optimizes the bayesian networks applied to classification, using a 
hybrid method of learning that combines the advantages of the induction techniques of the 
decision trees with those of the bayesian networks.

1 Introduction

Data mining tasks can be classified in two categories: descriptive data mining and 
predictive data mining; some of the most common techniques of data mining are 
the decision trees (TDIDT), the production rules and neuronal networks. On the 
other hand, an important aspect in the inductive learning, is to obtain the 
dependency data between the variables involved in the phenomenon, in the 
systems where it is desired to predict the behavior of some unknown variables 
based on certain known variables, a representation of the knowledge that is able to 
capture this information on the dependencies between the variables is the bayesian 
networks [1]. A bayesian network is a directed acyclic graph in which each node 
represents a variable and each arc a probabilistic dependency, in which specifies 
the conditional probability of each variable given its parents; the variable at which 
it points the arc is dependent (cause-effect) of the variable in the origin of this one.
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Obtaining a bayesian network from data is a learning process that is divided in two 
phases: the structural learning and the parametric learning. First of them, consists 
of obtaining the structure of the bayesian network, that means, the relations of 
dependency and independence between the involved variables. The second phase 
has the purpose to obtain the a priori and conditional probabilities from a given 
structure. Some characteristics of the bayesian networks are that they allow to 
learn dependency and causality relations, they allow to combine knowledge with 
data [2] and they can handle incomplete data [1] [3]. The bayesian networks can 
make the classification task -a particular case of prediction- that it is characterized 
to have a single variable of the database (class) that is desired to predict, whereas 
all the others are the data evidence of the case that is desired to classify. A great 
amount of variables in the database can exist; some of them directly related to the 
class variable but also other variables that have not direct influence on the class. In 
this work, a method of automatic learning is defined that helps in the pre-selection 
of variables, optimizing the configuration of the bayesian networks in 
classification problems.

2 Proposed hybrid learning method

We propose a hybrid learning method that combines the advantages of the 
induction decision trees techniques with those of the bayesian networks. For it, we 
integrate to the process of structural and parametric learning of the bayesian 
networks, a previous process of pre-selection of variables. In this process, it is 
chosen from all the variables of the domain, a subgroup with the purpose of 
generating the bayesian network for the particular task of classification and this 
way, optimizing the performance and improving the predictive capacity of the 
network. The method for structural learning of bayesian networks is based on the 
algorithm developed by Chow and Liu to approximate a probability distribution 
by a product of probabilities of second order, which corresponds to a tree. The 
joint probability of variables can be represented like:
P (X1, X 2,..., Xn) = n P (X,) P ( X,|X, (,))

i=1

where Xj(i) is the cause or parent of Xi. Consider the problem like one of 
optimization and it is desired to obtain the structure of the tree that comes near 
more to the “real” distribution. A measurement of the difference of information 
between the real distribution (P) and the approximate one (P*) is used:
I (P , P *) = P (X )log( P (X )/ P * (X ))

Then the objective is to minimize I. A function based on the mutual 
information between pairs of variables is defined as:
I (X,, X,) = '£ P(X,, Xj )log( P(X,, Xj)/P{ X,) P(X,))

(1)

(2)

(3)
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In this context, to find the more similar tree is equivalent to find the tree with 
greater weight. Based on that, the algorithm to determine the optimal bayesian 
network from data is shown on table 1.

Table 1. Algorithm to determine the optimal bayesian network

2.
1. Calculate the mutual information between all the pairs of variables (n(n-1)/2). 

Sort the mutual information in descendent order.
3. Select the arc of greater value as the initial tree.
4. Add the next arc while it does not form cycles. If it is thus, reject.
5. Repeat (4) until all the variables are included (n - 1 arcs).

(4)

Rebane and Pearl (1989) extended the algorithm of Chow and Liu for poly­
trees. In this case, the joint probability is:

P (X ) = n P (Xi|Xj■,(i). X , ),■■■, X m (,))
, = 1

where {Xj1(i), Xj2(i),…, Xjm(i)} is the set of parents for the variable Xi. In order 
to compare the results obtained when applying the complete bayesian networks 
(RB-Complete) and the preprocessed bayesian networks with induction algorithms 
C4.5 (RB-C4.5), we used the databases “Cancer” and “Cardiology” obtained at the 
Irving Repository of Machine Learning databases of the University of California 
[4]. Table 2 summarizes these databases in terms of amount of cases, classes, 
variables (excluding the classes), as well as the amount of resulting variables of 
the preprocessing with the induction algorithm C4.5.

Table 2. Databases description

Database Variables Variables C4.5 Classes Control cases Validation cases Total cases

Cancer 9 6 2 500 199 699

Cardiology 6 4 2 64 31 95

The algorithm used to carry out the experiments with each one of the evaluated 
databases, is detailed in table 3. The step (1) of the algorithm makes reference to 
the division of the database in the control and the validation ones. In most cases, 
the databases obtained from the mentioned repositories were already divided. For 
the pre-selection of variables by the induction algorithms C4.5 of the step (2), we 
introduced each one of the control databases in a decision trees TDIDT generating 
system. From there, we obtained the decision trees that represent each one of the 
analyzed domains. The variables that integrate this representation perform the 
subgroup that was considered for the learning of the preprocessed bayesian 
networks. Next (3) a ten iteration process begins, in each one of these iterations 
processed 10%, 20%, 100% of the control database for the networks structural and 
parametric learning. The objective of the repetitive structure of the step (3.1) is to 
minimize the accidental results that do not correspond with the reality of the 
model in study.
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Table 3. Algorithm used to carry out the experiments

1.

2.

3.

Divide the database in two. One of control or training (approximately 2/3 of 
the total database) and the another one of validation (with the remaining 
data)
Process the control database with the induction algorithm C4.5 to obtain 
subgroup of variables that will conform the RB-C4.5 
Repeat for 10%, 20%, …, 100% of the control database 
3.1. Repeat 30 times, by each iteration

3.1.1. Take randomly X% from the 
percentage that corresponds to

3.1.2. With that subgroup of cases

the

the

4.

control database according to 
the iteration
of the control database, make 

structural and parametric learning of RB-Complete and the RB- C4.5 
3.1.3. Evaluate the predictive power of both networks using the validation 

database
3.2. Calculate the average predictive power (from the 30 iterations) 
Graph the predictive power of both networks (RB-Complete and RB-C4.5) based on 
the cases of training

the

It is managed to minimize this effect, taking different data samples and average 
the obtained values. In the steps (3.1.x) it is made the structural and parametric 
learning of the RB-Complete and the RB-C4.5 from the subgroup of the control 
database (both networks are obtained from the same subgroup of data). Once 
obtained the network, it is come to evaluate the predictive capacity with the 
validation databases. This database is scan and for each row, all the evidence 
variables are instantiated and it is analyzed if the inferred class by the network 
corresponds with the indicated one in the file. Since the bayesian network does not 
make excluding classifications (it means that it predicts for each value of the class 
the probability of occurrence), is considered like the inferred class, the class with 
the greater probability. The predictive capacity corresponds to the percentage of 
cases classified correctly respect to the total evaluated cases. In the point (3.2) it is 
calculated the predictive power of the network, dividing the obtained values 
through all the made iterations. Finally, in the step (4) it is come to graph the 
predictive power average of both bayesian networks based on the amount of 
training cases.

3 Results

As it can be observed in Figure 1 (“Cancer” domain), the predictive power of the 
RB-C4.5 is superior to the one of RB-Complete throughout all its points. Also, it 
is possible to observe how this predictive capacity is increased, almost always, 
when it takes more cases of training to generate the networks. Finally, it is 
observed that from the 350 cases of training the predictive power of the networks 
become stabilized reaching its maximum level. When analyzing the graph of 
Figure 2 corresponding to the database “Cardiology”, also an improvement on the 
RB-C4.5 can be observed respect to RB-Complete. Although the differences 
between the values obtained with both networks are smaller that in the previous 
case, the hybrid algorithm presents a better approach to the reality that the other 
one.
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Fig. 1. Results on database “Cancer” Fig. 2. Results on database “Cardiology”

4 Discussion and Conclusions

As it is possible to observe, all the graphs that represent the predictive power 
based on the amount of cases of training are increasing. This phenomenon occurs 
independently of the domain of data used and the evaluated method (RB- 
Complete or RB-C4.5). Of the analysis of the results obtained in the 
experimentation, we can (experimentally) conclude that the learning hybrid 
method used (RB-C4.5) generates an improvement in the predictive power of the 
network with respect to the obtained one without making the preprocessing of the 
variables (RB-Complete). In another aspect, the RB-C4.5 has a lesser amount of 
variables (or at the most equal) that RB-Complete, this reduction of the amount of 
involved variables produces a simplification of the analyzed domain, which carry 
out two important advantages; first, they facilitate the representation and 
interpretation of the knowledge removing parameters that do not concern on a 
direct way to the objective (classification task). Second, it simplifies and 
optimizes the reasoning task (propagation of the probabilities) which originates 
the improvement of the processing speed. In conclusion, from the obtained 
experimental results, we concluded that the hybrid learning method proposed in 
this paper optimizes the configurations of the bayesian networks in classification 
tasks.
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