
Accelerating Smith-Waterman Alignment of

Long DNA Sequences with OpenCL on FPGA

E. Rucci1, C. Garcia2, G. Botella2, A. De Giusti1, M. Naiouf3, and M.
Prieto-Matias2

1 III-LIDI, CONICET, Facultad de Informática, Universidad Nacional de La Plata
La Plata (1900), Buenos Aires, Argentina

Email: {erucci,degiusti}@lidi.info.unlp.edu.ar
2 Depto. Arquitectura de Computadores y Automática,

Universidad Complutense de Madrid, Madrid 28040, Spain
Email: {gbotella,garsanca,mpmatias}@ucm.es

3 III-LIDI, Facultad de Informática, Universidad Nacional de La Plata
La Plata (1900), Buenos Aires, Argentina
Email: {mnaiouf}@lidi.info.unlp.edu.ar

Abstract. With the greater importance of parallel architectures such as
GPUs or Xeon Phi accelerators, the scientific community has developed
efficient solutions in the bioinformatics field. In this context, FPGAs
begin to stand out as high performance devices with moderate power
consumption. This paper presents and evaluates a parallel strategy of the
well-known Smith-Waterman algorithm using OpenCL on Intel/Altera’s
FPGA for long DNA sequences. We efficiently exploit data and pipeline
parallelism on a Intel/Altera Stratix V FPGA reaching upto 114 GCUPS
in less than 25 watt power requirements.

1 Introduction

In recent years, genome research projects have produced a vast amount of biolog-
ical data. In fact, biologists are working in conjunction with computer scientists
to extract relevant biological information from these experiments. The compar-
ison of millions of sequences [13] is one of the most useful mechanisms known in
Bioinformatics, commonly solved by heuristic methods.

Smith-Waterman (SW) algorithm compares two sequence in an exact way
and corresponds to the so-called local methods because it focuses on small similar
regions only. Besides, this method has been used as the basis for many subsequent
algorithms and is often used as basic pattern to compare different alignment
techniques. However, one of the main drawbacks is the cost of this approach in
computing time and memory requirements which makes it unsuitable in some
cases.

The final authenticated version is available online at https://doi.org/10.1007/

978-3-319-56154-7_45

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301096194?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Regarding on the performance aspect, many approaches, such as BLAST [1]
and FASTA [14] considerably reduce execution time at the expense of not guar-
anteeing the optimal result. Nevertheless, accelerating the SW algorithm is still a
great challenge for the scientific community. SW is usually used to align two DNA
sequences or a protein sequence to a genomic database. A single matrix must
be built for each alignment and the matrix size depends on sequence lengths.
In DNA alignment, the matrix can be huge since these sequences can have upto
hundreds of million nucleotides. As protein sequences are shorter, multiple small
matrices are usually computed simultaneously since they are independent among
them [15].

In the last years, we have witnessed parallel proposal for both cases. These
works reduce SW execution time through the exploitation of High-Performance
Computing (HPC) architectures. However, most implementations focus on short
sequences, particularly protein sequences [17]. For very long sequences, as the
DNA case, few implementations are available. In the hardware accelerators sce-
nario, we highlight SW# [9] and CUDAlign [18] (and its newer versions [4,
5]) that focus on the alignment of huge DNA sequences with multi CUDA-
enabled Graphics Processor Units (GPUs). Meanwhile, Liu et al. have presented
SWAPHI-LS [12] a highly optimized hand-tuned implementation for Intel Xeon
Phi accelerators. In addition, several proposals based on FPGA speedup sequence
alignments [22, 2] in the context of DNA comparison. Moreover, Wienbrandt
presents a study of multi-FPGAs version in [21].

Nowadays, HPC capabilities are changing in data-centers scenario. FPGAs
are being integrated with CPUs due to accelerators consolidation in HPC com-
munity as a way of improving performance while keeping power efficiency. Re-
cently, Microsoft announced that their data-centers equipped with FPGAs in-
crease dramatically Bing’s engine capacities, and they have also incorporated
them to Azure ecosystem [6]. In the same way, Amazon has included FPGAs in
its Amazon Web Services [10]. With the acquisition of Altera in 2015, Intel plans
to incorporate FPGA capabilities in the next Xeon’s server processors because
they expect to be used by at least 30% percent of data-center in next years [11].

Our paper proposes and evaluates a SW implementation, capable of aligning
DNA sequences of unrestricted size, for Altera’s FPGA. Unlike previous works
on literature, we employed the novel OpenCL paradigm on FPGAs. Although
Altera’s developers promote a similar implementation in [19], no-real sequence
data of fixed, limited size (n=256 residues) are used. As this issue can radically
differ from real bioinformatic contexts, the observed behavior becomes unpre-
dictable for these scenarios, especially in alignment of long DNA sequences. We
would like to point out that, unlike GPU or Xeon Phi accelerators which need to
be purchased separately, the hardware used in this study will be available soon
in the next processor generation at null cost. In that sense, this study can be
taken as starting point for future hybrid CPU-FPGA solutions.

The rest of the paper is organized as follows. Section 2 describes SW al-
gorithm. Section 3 introduces Altera’s OpenCL programming extension while
Section 4 addresses our parallelization of the SW algorithm using OpenCL on

FPGAs. Section 5 presents experimental results and finally Section 6 outlines
conclusions and future lines of work for this novel viability study.

2 Smith-Waterman Algorithm

The SW algorithm is used to obtain the optimal local alignment between two
sequences and was proposed by Smith and Waterman [20]. This method employs
a dynamic programming approach and its high sensitivity comes from exploring
all the possible alignments between two sequences.

Given two sequences S1 and S2, with sizes |S1| = m and |S2| = n, the
recurrence relations for the SW algorithm with affine gap penalties [7] are defined
below.

Hi,j = max{0, Hi−1,j−1 + SM(S1[i], S2[j]), Ei,j , Fi,j} (1)

Ei,j = max{Hi,j−1 −Goe, Ei,j−1 −Ge} (2)

Fi,j = max{Hi−1,j −Goe, Fi−1,j −Ge} (3)

Hi,j contains the score for aligning the prefixes S1[1..i] and S2[1..j]. Ei,j and
Fi,j are the scores of prefix S1[1..i] aligned to a gap and prefix S2[1..j] aligned to a
gap, respectively. SM is the scoring matrix which defines match/mismatch scores
between nucleotides. Goe is the sum of gap open and gap extension penalties
while Ge is the gap extension penalty. The recurrences should be calculated
with 1 ≤ i ≤ m and 1 ≤ j ≤ n, after initialising H , E and F with 0 when i = 0
or j = 0. The maximum value in the alignment matrix H is the optimal local
alignment score.

It is important to note that any cell of the matrix H can be computed only
after the values of the upper, left and upper-left cells are known, as shown in
Figure 1. These dependences restrict the ways in that H can be computed.

3 OpenCL Extension on Altera’s FPGA

OpenCL is a framework for developing parallel programs across heterogeneous
platforms. It is currently supported by several hardware devices such as CPUs,
GPUs, DSPs and FPGAs. The OpenCL is based on host-device model, where
host is in charge of managing device memory, transferring data from/to device
and launching the kernel code.

Kernel corresponds to a piece of code which expresses the parallelism of a
program. OpenCL programming model divides a program workload into work-

groups and work-items. Usually, in the denoted data parallel programming model,
work-items are grouped into work-groups, which are executed independently on
a procesing element. Data-level parallelism is ordinarily exploited in SIMD way,
where each work-item is mapped to a lane width of the target device.

Fig. 1. Data dependences in the alignment matrix H.

OpenCL memory model uses a particular memory herarchy which is also
characterized by the access type, performance and scope. Global memory is
read-write accessible by all work-items which implies a high latency memory
access. Local memory is a shared read-write memory that can be accessed from
all work-items of a single work-group. Besides, it usually involves a low latency
memory access. Constant memory is a read-only memory visible by all work-
items across all work-groups, and private memory as the name suggests it is
only accessible by a single work-item.

OpenCL allows a programmer to express parallelism abstracting the target
platform details. We can highlight portability and reduction in development
time as the main advantages. FPGAs permit programming networks composed
of logic elements, memory blocks and specific DSP blocks. In order to verify and
create digital designs, Hardware Description Languages (HDLs) are generally
used, which are complex, error prone and affected by an extra abstraction layer
as they contain the additional concept of time.

Regarding the execution model, Altera’s OpenCL SDK [3] recommends the
use of task parallel programming model, where the kernel consists of a single
work-group with a unique work-item. The Altera OpenCL Compiler (AOC) is
capable of extracting parallelism from each loop iteration in a loop-pipelined
way allowing to process the loop in a high-throughput fashion.

Altera’s OpenCL extension also take advantage of I/O channels and kernel
channels as in OpenCL 2.0 by means of pipes [8]. Altera’s channel extension al-
lows to transfer data between work-item’s in the same kernel or between different
kernels without host interaction.

4 SW Implementation

In this section we will address the programming aspects and optimizations
applied to our implementations on FPGA accelerated platforms. Algorithm 1
shows the pseudo-code for the host implementation. Memory management is

Algorithm 1 Host pseudo-code

1: clCreateBuffer’s(...) ⊲ Create buffers + transfer sequences
2: NB = n/BW ⊲ NB is the number of vertical blocks
3: for b ≤ NB do

4: clEnqueueTask(...) ⊲ Compute b-th block
5: swap(prevLastColH ,curLastColH)
6: swap(prevLastColE,curLastColE)
7: end for

8: clEnqueueReadBuffer(maxScore)

Algorithm 2 Pseudo-code for Smith-Waterman kernel

1: kernel void SW kernel (S1, S2, m, b, match, mismatch, Goe, Ge,
prevLastColH , curLastColH , prevLastColE, curLastColE, maxScore)
{

2: Load the BW residues of S2 corresponding to b-th block from global memory
to private memory

3: for i ≤ m do ⊲ each row
4: Load the i-th residue of S1 from global memory to private memory
5: Read previous block data from global memory (prevLastColH and

prevLastColE)
6: #pragma unroll
7: for j ≤ BW do

8: Calculate Hi,j in private memory
9: end for

10: Write data for next block to global memory (curLastColH and
curLastColE)

11: end for

12: Update maxScore in global memory (if appropiate)
13: }

performed in OpenCL by means of clCreateBuffer (memory allocation and ini-
tialization) and clEnqueueReadBuffer (memory transfer to host). Kernels are
invoked through the clEnqueueTask function.

The kernel is implemented following the task parallel programming model
mentioned in Section 3. Algorithm 2 shows the pseudo-code for our kernel. The
alignment matrix is divided into vertical blocks (BW means B lock W idth) and
each block is computed in row-by-row manner: from top to bottom, left to right
direction (see Figure 2). Besides improving the data locality, this blocking tech-
nique reduces the memory requirements for block execution, which favors the
exploitation of the private low-latency memory. In that sense, we employed two
buffers to store one row for matrices H and F . Additionally, both sequences are
partially copied to private memory.

Fig. 2. Schematic representation of our OpenCL kernel implementation.

Fully unrolling of the inner loop represents an essential aspect of this kernel
from performance point of view. This technique allows the AOC to exploit loop
instruction pipelining and, in consequence, more operations per clock cycle are
performed. As the compiler needs to know the number of iterations at compile
phase, S2 sequence must be extended with dummy symbols to make its length
a multiple of fixed BW value.

Due to the data dependences mentioned in Section 2, each block needs the
last column H and E values of the previous block. Global memory buffers are
employed to communicate these data. To avoid read-write dependences in global
memory, separate buffers are used: one for reading the values from the previous
block and one for writing the values for the next block, so after each kernel
invocation buffers are swapped in the host. It is important to mention that,
although in OSWALD implementation [16] Altera OpenCL channels are used to
exchange these information, the use of this technique is not affordable in DNA
context with million of nucleotide bases involved.

Moreover, host-side buffers are allocated to be 64-byte aligned. This fact im-
proves data transfer efficiency by means of Direct Memory Access. Both sequence
are transferred when creating the device buffers and optimal score is retrieved
after all kernels finished.

5 Experimental Results

5.1 Experimental Platforms and Tests Carried Out

Tests have been performed on different platforms running CentOS (release 6.6):

– A server with two Intel Xeon CPU E5-2670 8-core 2.60GHz, 32 GB main
memory and an Altera Stratix V GSD5 Half-Length PCIe Board with Dual
DDR3 (two banks of 4 GByte DDR3).

– A server with two Intel Xeon CPU E5-2695 v3 16-core 2.30GHz, 64 GB main
memory and two NVIDIA GPU cards: one Tesla K20c (Kepler architecture,
2496 CUDA cores, 5GB dedicated memory and Compute Capability 3.5)

Table 1. Information of the sequences used in the tests.

Sequence 1 Sequence 2
Matrix size Score

Accesion Size Accesion Size

AF133821.1 10K AY352275.1 10K 10K × 10K 5027
NC 001715.1 57K AF494279.1 57K 57K × 57K 51
NC 000898 162K NC 007605 172K 162K × 172K 18
NC 003064.2 543K NC 000914.1 536K 543K × 536K 48
CP000051.1 1M AE002160.2 1M 1M × 1M 82091
BA000035.2 3M BX927147.1 3M 3M × 3M 3888
AE016879.1 5M AE017225.1 5M 5M × 5M 5220775
NC 005027.1 7M NC 003997.3 5M 7M × 5M 157
NC 017186.1 10M NC 014318.1 10M 10M × 10M 10235056
NT 033779.4 23M NT 037436.3 25M 23M × 25M 9059

and one GTX 980 (Maxwell architecture, 2048 CUDA cores, 4GB dedicated
memory and Compute Capability 5.0).

– A server with two Intel Xeon CPU E5-2695 v3 16-core 2.30GHz, 128 GB
main memory and a single Xeon Phi 3120P coprocessor card (57 cores with
4 hw thread per core, 6GB dedicated memory).

We have used the Intel’s ICC compiler (version 16.0.3) with the -O3 opti-
mization level by default. The synthesis tool used is Quartus II DKE V12.0 2
with OpenCL SDK v14.0 and the CUDA SDK version is 7.5.

To provide the most relevant study, tests were made with the real DNA
sequences retrieved from the National Center for Biotechnology Information
(NCBI) 4, ranging from thousands to millions of nucleotide bases. The acces-
sion numbers and sizes of the sequences are presented in Table 1. Also, for the
sake of validation, optimal alignment scores are included in Table 1. The scor-
ing scheme used was: +1 for match; -3 for mismatch; -5 for gap open; and -2
for gap extension. Each particular test was run ten times and performance was
calculated with the average of ten execution times to avoid variability.

5.2 Performance and Resource Usage Evaluation

The metric GCUPS is used to performance assessment in the Smith-Waterman
scenario [18]. In order to evaluate FPGA performance rates, we have considered
different kernel implementations according to integer data type and BW value.
We detail below the main differences:

– The name prefix denotes the integer data type used; i.e. int, short and char

represent 32, 16 and 8 bit integer data types, respectively.
– The name suffix denotes the BW value used; e.g. bw32 means that BW

value was set to 32.

4 Sequences are available in http://www.ncbi.nlm.nih.gov

Table 2. Performance and resource usage comparison for different OpenCL kernel
implementations.

Kernel int bw32 int bw64 int bw128 int bw256 short bw256 short bw512 char bw512 char bw768

Integer type int (32 bits) short (16 bits) char (8 bits)
Maximum value 2147483647 32767 127

BW 32 64 128 256 256 512 512 768

R
es
o
u
rc
e
u
sa
g
e ALMs 30% 36% 48% 69% 50% 76% 49% 68%

Regs 11% 12% 12% 12% 10% 13% 10% 15%
RAM 22% 22% 22% 25% 21% 24% 20% 33%
DSPs 0% 0% 0% 0% 0% 0% 0% 0%

10K × 10K 2.22 4.60 7.45 14.47 18.43 23.23 - -
57K × 57K 4.27 8.42 16.32 30.35 38.01 58.21 73.07 91.89
162K × 172K 4.75 9.33 18.04 33.45 41.85 66.34 84.67 109.29
543K × 536K 4.97 9.66 18.86 35.51 43.36 70.21 86.01 113.78
1M × 1M 5.12 9.93 19.44 36.52 - - - -
3M × 3M 5.24 10.14 19.87 37.32 45.58 73.39 - -
5M × 5M 5.27 10.18 19.93 37.49 - - - -
7M × 5M 5.28 10.20 20 37.56 45.86 73.73 - -
10M × 10M 5.28 10.21 20.03 37.61 - - - -
23M × 25M 5.29 10.23 20.07 37.68 46.01 74 - -
Matrix size GCUPS

Table 2 presents FPGA resource utilization and the performance achieved
for our OpenCL kernels implementations. Larger BW means better performance
but also higher resource consumption. Adaptive logic modules (ALMs) are the
most influenced resources; registers (Regs) and RAM blocks (RAMs) are slightly
increased while DSP blocks (DSPs) stay intact. In spite of the fact there are still
available resources to allow increasing BW parameter, larger values could not be
used because AOC reports the appearence of read-write dependences in private
memory associated to matricesH and F . In fact, these dependences considerably
reduce the number of operations per clock cycle decreasing performance rates.

Regarding integer data type, as can be observed, smaller data type not only
improves performance but also decreases resource consumption. This behavior
is clearly exposed when comparing int bw256 and short bw256 kernels: using
the same BW configuration, short bw256 reports an increase from up to 1.22×
in performance with a reduction from up to 0−0.28× in resource usage against
to int bw256 counterpart. A similar behavior is observed with short bw512 and
char bw512 kernels: char bw512 presents an increase from up to 1.28× in per-
formance with a reduction from up to 0−0.36× in resource usage respect to
short bw512. However, it is also important to take into account that the use of
narrower integer data types also involves an important reduction in representa-
tion range. Due to this fact, there are three alignment scores out of ten that can
not be represented when using 16 bit integer data. It is also observed for the
experiments with 8-bits data type where only three experiments can be carried
out 5.

5 The symbol ’-’ indicates an alignment that can not be computed because the optimal
score exceeds the corresponding maximum value.

From sequence length point of view, all kernels benefit from larger workloads
regardless of sequences similarity. The best performances achieved are 37.68, 74
and 113.78 GCUPS for int, short and char kernels, respectively.

5.3 Performance and Power Efficiency Comparison with other SW

Implementations

In this subsection the behavior of our implementation is compared with other
SW implementations: the Xeon Phi-based SWAPHI-LS program (v1.0.12) [12]
and the GPU-based SW# [9] and CUDAlign (v3.9.1.1024) [4] programs. Both
GPU implementations were configured to perform only their score version.

Table 3 presents performances for the SWAPHI-LS, SW# and CUDAlign im-
plementations. SWAPHI-LS yields an average performance of 25.89 GCUPS and
a peak of 34.38 GCUPS being outperformed by int bw256 version in all cases. In
particular, the most impressive performance difference occurs for smaller matrix
sizes where int bw256 runs on average 21.8× faster. For the rest of the tests, the
performance gain decreases but still improves on average 1.45×.

Unlike our FPGA kernels, both GPU implementations are sensitive to se-
quences similarity; better results are obtained on alignments with higher scores.
On Tesla K20c, SW# achieves an average performance of 44.38 GCUPS and a
maximum performance of 90.15 GCUPS, outperforming CUDAlign by a factor
of 1.78× on average. int bw256 improves SW# on the three shortest alignments
while the latter runs 1.62× faster on average than the former on the largest ones.
In contrast, SW# only beats CUDAlign on the four shortest alignments on GTX
980. CUDAlign reports 71.23 GCUPS on average and a peak of 163.77 GCUPS,
achieving an average speedup of 1.24× on the six largest matrix sizes. Just as
the previous case, int bw256 improves both GPU implementations on the three
shortest alignments while is outperformed in the rest. In that sense, CUDAlign
runs 2.76× faster on average than int bw256.

In FPGA context, a theoretical comparison with other OpenCL implementa-
tions is the only possibility since the absence of available source codes. We would
like to note that the Altera staff implementation [19] uses 32-bit integer data
type and imposes a fixed, limited size (n=256 residues) to S2 sequence, which
substantially differs from the common ones used in DNA analysis. In spite of this
fact, Altera’s staff implementation reported a peak of 24.7 GCUPS on Stratix V
meanwhile our approach achieves an average of 33.8 GCUPs.

We have also analyzed the power efficiency of each implementation. Table 4
presents power efficiency ratios considering the GCPUS peak performance and
Thermal Design Power (TDP) in each accelerator. It can be seen that the worst
ratio observed is in SWAPHI-LS due to low performance rates and high TDP
value of the Xeon Phi. GPU implementations place at an intermediate posi-
tion because they obtain the highest performance peak but at the expense of
higher power requirements. As expected, both GPU implementations obtain bet-
ter GCUPS/Watts ratios on GTX 980 in comparison with Tesla K20c since its
better performance and power capacities. We would like to remark that FPGA
implementation reaches the best GCUPS/Watts ratios. Despite not having the

Table 3. Performance of other SW implementations.

Implementation SWAPHI-LS SW# CUDAlign SW# CUDAlign

Device Intel Xeon Phi 3120P NVIDIA Tesla K20c NVIDIA GTX 980

10K × 10K 0.42 0.16 0.06 0.3 0.03
57K × 57K 7.69 5.86 1.57 7.62 1.08
162K × 172K 21.24 32.78 10.23 33.33 8.18
543K × 536K 30.67 42.36 29.71 64.53 45.89
1M × 1M 32.84 51.01 39.64 75.24 79.21
3M × 3M 33.9 43.48 39.73 69.54 84.05
5M × 5M 34.16 90.15 79.53 120.92 160.79
7M × 5M 34.38 43.64 39.55 68.84 84.43
10M × 10M 33.19 90.22 79.96 118.81 163.77
23M × 25M 30.36 44.19 40.69 67.55 84.84
Matrix size GCUPS

Table 4. Power efficiency comparison.

Implementation Device GCUPS Watts GCUPS/Watts

int bw256

Altera Stratix V
37.68

25
1.51

short bw512 74 2.96
char bw768 113.78 4.55
SWAPHI-LS Intel Xeon Phi 3120P 34.38 270 0.13

SW#
NVIDIA Tesla K20c

90.22
225

0.4
CUDAlign 79.96 0.36

SW#
NVIDIA GTX 980

120.92
165

0.73
CUDAlign 160.79 0.97

highest performance peak, its low power consumption leads to the best choice
in this aspect. Further, the lowest performance FPGA kernel considering integer
data type (int bw256) outperforms SWAPHI-LS by a factor of 11.62× and the
GPU implementations by a range of 1.56-3.78×. It is important to mention that
if this analysis is carried out considering average GCUPS instead of GCUPS
peak, larger differences in favor of FPGA implementations will be found.

6 Conclusions

In this paper, we addressed the benefits of a parallel SW implementation using
OpenCL on Intel/Altera’s FPGA, not only from performance perspective but
also from power efficiency point of view. To the best of the author’s knowledge,
this is the first time that a paper examines an implementation of this kind
with real, long DNA sequences. In addition, as Intel will incorporate FPGA
capabilities in its next Xeon processors in a free manner, this study can be
useful as an starting point for future hybrid CPU-FPGA implementations.

Among main contributions of this research we can summarize:

– Data type exploitation is crucial to achieve successful performance rates.
Narrower data-types reports better performance rates and lesser resource
usage, but at expense of decreasing representation width. In fact, a peak of
114 GCUPS is reached when using 8 bit integers.

– From performance perspective, our most successful 32-bit implementation
reaches 37.7 GCUPS peak, running 1.53× faster than other OpenCL imple-
mentation on FPGA [19]. Despite being competitive in performance terms
respect to other solutions on accelerators (such as GPUs or Xeon Phi), our
implementation significantly improves all of them from power efficiency per-
spective. In particular, the fastest 32-bit FPGA kernel outperforms SWAPHI-

LS by a factor of 11.62× and the GPU implementations by a range of 1.56-
3.78×.

Taking into account these encouraging results, as future lines we will consider
three aspects:

– As all kernels developed still have free available resources, we will try to
exploit them to improve performance rates. On one hand, we expect to solve
performance limitations imposed by AOC with larger BW values. On the
other hand, we plan to combine distinct integer data width kernels to explore
different configurations in order to find the best performance-representation
width trade-off.

– As OpenCL allows multiple devices exploitation, we would like to extend this
work to a multi-FPGA implementation and explore most successful workload
distribution.

– As real power consumption on accelerators can differ from TDP values due
to a variety of reasons, we plan to measure the instant power consumption
in all devices in order to make a more fairly performance vs power analysis.

Acknowledgments This work has been partially supported by Spanish gov-
ernment through research contract TIN2015-65277-R and CAPAP-H5 network
(TIN2014-53522).

References

1. Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schffer, Jinghui Zhang,
Zheng Zhang, Webb Miller, and David J. Lipman. Gapped blast and psiblast: a new
generation of protein database search programs. NUCLEIC ACIDS RESEARCH,
25(17):3389–3402, 1997.

2. Gabriel Caffarena, Carlos E. Pedreira, Carlos Carreras, Slobodan Bojanic, and
Octavio Nieto-Taladriz. FPGA Acceleration for DNA Sequence Alignment. Journal
of Circuits, Systems, and Computers, 16(2):245–266, 2007.

3. Altera Corporation. Altera SDK for OpenCL Programming Guide, v14.0, 2014.

4. Edans F. de O. Sandes, Guillermo Miranda, Alba Cristina Magalhaes Alves
de Melo, Xavier Martorell, and Eduard Ayguad. CUDAlign 3.0: Parallel Bio-
logical Sequence Comparison in Large GPU Clusters. In CCGRID, pages 160–169.
IEEE Computer Society, 2014.

5. Edans Flavius de Oliveira Sandes, Guillermo Miranda, Xavier Martorell, Eduard
Ayguad, George Teodoro, and Alba Cristina Magalhaes Alves de Melo. CUDAlign
4.0: Incremental Speculative Traceback for Exact Chromosome-Wide Alignment
in GPU Clusters. IEEE Trans. Parallel Distrib. Syst., 27(10):2838–2850, 2016.

6. Michael Feldman. Microsoft Goes All in for FPGAs to
Build Out AI Cloud, 2016. https://www.top500.org/news/

microsoft-goes-all-in-for-fpgas-to-build-out-cloud-based-ai/.

7. O. Gotoh. An improved algorithm for matching biological sequences. In Journal
of Molecular Biology, volume 162, pages 705–708, 1981.

8. Khronos Group. The OpenCL Specification. version 2.0, 2014.

9. Matija Korpar and Mile Sikic. SW# - GPU-enabled exact alignments on genome
scale. Bioinformatics, 29(19):2494–2495, 2013.

10. George Leopold. AWS Embraces FPGAs, Elastic GPUs, 2016. https://www.

hpcwire.com/2016/12/02/aws-embraces-fpgas-elastic-gpus/.

11. George Leopold. Intels FPGAs Target Datacenters, Net-
working, 2016. https://www.hpcwire.com/2016/10/06/

intels-fpgas-target-datacenters-networking/.

12. Y. Liu, T. T. Tran, F. Lauenroth, and B. Schmidt. SWAPHI-LS: Smith-Waterman
Algorithm on Xeon Phi coprocessors for Long DNA Sequences. In 2014 IEEE In-
ternational Conference on Cluster Computing (CLUSTER), pages 257–265, 2014.

13. David W. Mount. Bioinformatics: Sequence and Genome Analysis. Mount, Bioin-
formatics. Cold Spring Harbor Laboratory Press, 2004.

14. W. R. Pearson and D. J. Lipman. Improved tools for biological sequence com-
parison. Proceedings of the National Academy of Sciences of the United States of
America, 85(8):2444–2448, April 1988.

15. Enzo Rucci, Carlos Garca, Guillermo Botella, Armando De Giusti, Marcelo Naiouf,
and Manuel Prieto-Matas. An energy-aware performance analysis of SWIMM:
SmithWaterman implementation on Intel’s Multicore and Manycore architectures.
Concurrency and Computation: Practice and Experience, 27(18):5517–5537, 2015.

16. Enzo Rucci, Carlos Garca, Guillermo Botella, Armando De Giusti, Marcelo Naiouf,
and Manuel Prieto-Matas. OSWALD: OpenCL Smith-Waterman Algorithm on
Altera FPGA for Large Protein Databases. International Journal of High Perfor-
mance Computing Applications, page 1094342016654215, 06 2016.

17. Enzo Rucci, Carlos Garćıa, Guillermo Botella, Armando De Giusti, Marcelo
Naiouf, and Manuel Prieto-Mat́ıas. State-of-the-Art in Smith–Waterman Protein
Database Search on HPC Platforms, pages 197–223. Springer, 2016.

18. Edans Flavius O. Sandes and Alba Cristina M.A. de Melo. CUDAlign: using GPU
to accelerate the comparison of megabase genomic sequences. In Proceedings of the
15th ACM SIGPLAN symposium on Principles and practice of parallel computing,
PPoPP ’10, pages 137–146, New York, NY, USA, 2010. ACM.

19. Sean O Settle. High-performance Dynamic Programming on FPGAs with OpenCL.
In 2013 IEEE High Performance Extreme Computing Conference(HPEC ’13),
pages 1–6, 2013.

20. Temple F. Smith and Michael S. Waterman. Identification of common molecular
subsequences. Journal of Molecular Biology, 147(1):195–197, March 1981.

21. Lars Wienbrandt. Bioinformatics Applications on the FPGA-Based High-
Performance Computer RIVYERA, pages 81–103. Springer New York, New York,
NY, 2013.

22. Y. Yamaguchi, H. K. Tsoi, W. Luk, A. Koch, R. Krishnamurthy, J. McAllister,
R. Woods, and T. El-Ghazawi. FPGA-Based Smith-Waterman Algorithm: Analysis
and Novel Design, pages 181–192. Springer Berlin Heidelberg, 2011.

