View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by El Servicio de Difusién de la Creacién Intelectual

Smith-Waterman Protein Search with OpenCL on
FPGA

Enzo Rucci
and A. De Giusti
and M. Naiouf
Instituto de Investigacion en Informatica LIDI (III-LIDI)
Universidad Nacional de La Plata
La Plata (1900), Buenos Aires, Argentina
Email: {erucci,degiusti,mnaiouf} @lidi.info.unlp.edu.ar

Abstract—The well-known Smith-Waterman (SW) algorithm
is a high-sensitivity method for local alignments. Unfortunately,
SW is expensive in terms of both execution time and memory
usage, which makes it impractical in many scenarios. Previous
research have shown that massive parallel architectures such as
Graphic Processing Units (GPUs) and Field Programmable Gate
Arrays (FPGAs) are able to mitigate the computational problems
achieving impressive speedups. In this paper we have explored
SW acceleration on a FPGA device by means of OpenCL. We
efficiently exploit data and thread-level parallelism on an Altera
Stratix V FPGA card reaching upto 39 GCUPS with less than
25 watt power requirements.

Keywords—Bioinformatics, Smith-Waterman, FPGA, Altera,
OpenCL.

I. INTRODUCTION

High throughput structural genomic and genome sequenc-
ing have delivered to the scientific community a huge amount
of data to be processed from structures and sequences of many
thousand proteins. This “big data” can be interesting for the
researchers to extract useful and functional insights from it.

Currently we can classify the computational approaches in
two main techniques: full atom molecular dynamic simulation
and bioinformatics approach. On one hand, molecular simu-
lation uses principles from physics and physical chemistry to
understand the function and folding of proteins. On other hand,
bioinformatics science uses the statistical analysis of structures
and protein sequences to identify the genome, to recognize
their function, and additionally to anticipate structures when
the only sequence information is available.

Bioinformatics is one of the most powerful technologies in
life sciences nowadays, being used in researching of evolution
theories, protein design among other important applications.
Algorithms, methods and different findings used in these
studies deal with a plethora of applications, such as func-
tional classification of proteins, secondary structure prediction,

(©2015 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

The final authenticated version is available online at https://doi.org/10.1109/
Trustcom.2015.634

G. Botella
and C. Garcia
and M. Prieto-Matias
Depto. Arquitectura de Computadores y Automatica,
Universidad Complutense de Madrid, Madrid 28040, Spain
Email: {gbotella,garsanca,mpmatias } @ucm.es

threading and modeling of distantly-related homologous pro-
teins to represent its behavior through a cell’s life cycle and
sequence and structure alignments.

Respecting sequence alignment, we find both -pattern
searching among amino acid and nucleotide sequences- and
also for the search of phylogenetic relationships among or-
ganisms. There are many models and algorithms for achieving
the local alignment. Usually alignment algorithms are based
on constructing indexes both for reference and read sequence.
Depending on the property of the index, alignment methods
can be classified into three groups: method based merge
sorting [1], methods based on suffix trees [2] and algorithms
based on hash tables [3].

Dynamic programming presents three different strategies
to deal with this goal:

e Global strategies [4] achieve the alignment of every
symbol in each sequence.

e Semiglobal strategies [5] search the best alignment
between a short sequence and a long sequence, where
internal and terminal gaps are penalized with different
valures since terminal gaps are probably caused by
difference in sequence lengths.

e Local strategies comes up due to semiglobal alignment
is insufficient for searching best match subsequences,
since mismatching positions and gaps outside target
subsequences produce non-favorable score. Smith Wa-
terman (SW) strategy belongs to the so-called local
methods. This approach is more useful when sequence
to align holds significantly differences but remaining
similar regions.

Focusing on the performance aspect many heuristics, such
as BLAST [6] and FASTA [7] have been developed to reduce
the execution time but at the expense of not guaranteeing to
discover the optimal local alignments. Due to SW computa-
tional cost, the scientific community has achieved great efforts
to design more efficient implementations in recent years. Most
solutions proposed, find and exploit the inherent parallelism in
the alignment process as:

e Intra-task parallelism approach, where the parallelism
is present within a single pair of sequences. However,

https://core.ac.uk/display/301096192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

data dependencies involved in the alignment matrix,
limit its scalability.

e Inter-task parallelism, based on performing several
pairwise alignments concurrently. Its strength is joined
with null data-dependency between alignments, which
resembles the problem into an embarrassingly parallel
one.

With the recent emergence of accelerator technologies in
many-core architectures, such as Field-Programmable Gate
Arrays (FPGAs), Cell/Broadband Engines (Cell/BEs), Graphic
Processing Units (GPUs) among others, has rise up the op-
portunity of accelerating life science analysis problems on
commonly available hardware at an inexpensive economic
cost. For large parallel systems, we remark the proposal of
Qiu [8] with a hybrid implementation using cloud computing
based on the well-known MapReduce model and a common
cluster programmed with MPI using grid architectures based
solutions [9]. Moreover, some authors [10], [11] proposed the
exploitation of subword-level capabilities inside of CPU/core,
where the code SWIPE is able to achieve upto 106 billion cell
updates per second (GCUPS). In the field of heterogeneous
computing, Farrar [12] makes use of the outdated Cell/BE
processors. Also, in the hardware accelerators scenario, we
highlight the software CUDASW++ and newer versions devel-
oped by Liu [13], [14], [15] which offer a performance from 30
to 185.6 GCUPS for single and multi CUDA-enabled Graphics
Processor Units (GPUs) with CPU-enabled. More recently, Liu
and Schmidt have presented SWAPHI and SWAPHI-LS, highly
optimized hand-tuned SW implementations on Intel Xeon Phi
accelerators [16], [17] for protein and DNA sequence align-
ments, respectively. While SWAPHI-LS is able to achieve 30.1
GCUPS, SWAPHI reaches upto 58.8 GCUPS. Although these
two studies have centered mostly on the exploitation of the
accelerator, Rucci et al. [18] focus on a hybrid implementation
for protein alignment that exploits both CPU and coprocessors
simultaneously.

Respect to FPGAs scenario, there are several works that
present SW implementations for this kind of device [19], [20],
[21], [22], [23], [24]. However, most of these implementations
focus on DNA alignment (which is simpler than protein align-
ment from algorithmic perspective) and/or cover special cases
of SW alignment (for example, query and/or database sequence
with limited or fixed length, embedded sequences in the design,
among others). Our paper presents an approach of SW imple-
mentation by means of Open Computing Language'(OpenCL)
at present supported by Altera’s FPGA. Altera has recently
begun to support heterogeneous OpenCL programming and
therefore to promote its use. Despite Altera staff submitted a
SW implementation with OpenCL in [24], it focuses on no-
real RNA sequence alignment with fixed query length. Our
proposal covers protein sequence alignment and is tested with
real amino acid datasets, besides being fully functional for any
sequence length. We would like to remark that, the use of a
FPGA in order to accelerate SW is also motivated by low
energy demand in these devices. This work can be considered
the starting point for more exhaustive exploration of greener
power choices in heterogeneous computing scenario.

'Khronos Groups. OpenCL: https://www.khronos.org/opencl

The rest of the paper is organized as follows. Section II in-
troduces the basic concepts of the Smith-Waterman algorithm.
Section III describes Altera’s OpenCL programming extension
and Section IV details the methodology addressed to efficiently
program this application through different optimization tech-
niques. Section V analyzes the results achieved and finally
Section VI presents the conclusion and future lines for this
novel viability study.

II. SMITH-WATERMAN ALGORITHM

The Smith-Waterman algorithm is used to identify the
optimal local alignment between two sequences. It was pro-
posed by Smith and Waterman and improved by Gotoh [25].
This method employs a dynamic programming approach and
its high sensitivity comes from exploring all the possible
alignments between two sequences.

The recurrence relations for the SW algorithm with affine
gap penalties are defined below.

0
Hy,y = mag { Ti-ta=1 +SM (4 dy) (1)
Ei,j
Fi;
Hi:1—G
FE; ;i = max 7 o¢ 2
! {Ei,jl -G, @
F, ; = max {gi—ll,:j_—goe 3)
1— 1,7 e

The two sequences to be compared are defined as ¢ =
419293 - - - gm and d = didads . . . d,,. H; ; represents the score
for aligning the segments of ¢ and d ending at position ¢ and
J, respectively. F; ; and F; ; are the scores ending with a gap
involving the first i symbols of ¢ and the first j symbols of d,
respectively. SM is the substitution matrix which defines the
substitution scores for all residue pairs. In most cases, SM
rewards with a positive value when ¢; and d; are identical, and
punishes with a negative value otherwise. G is the sum of gap
open and gap extension penalties while G is the gap extension
penalty. The recurrences should be calculated with 1 <i <m
and 1 < j < n, and must start with H; ; = E; ; = F; ; = 0
when ¢ = 0 or j = 0. The optimal local alignment score S is
the maximal alignment score in the matrix H.

It is important to note that any cell of the matrix H can
be computed only after the values of the left and above cells
are known, as shown in Figure 1. These dependences restrict
the ways in that H can be computed.

III. OPENCL EXTENSION ON ALTERA’S FPGA

OpenCL is a framework for parallel implementation that
allow to execute a parallel programs across heterogeneous
platforms. It is actually supported by several hardware devices
such as CPUs, GPUs, DSPs, FPGAs and other processors.
The OpenCL is based on host-device model, where host is
in charge of device memory management, data transferring
from/to device and kernel code invocation.

Fig. 1. Data dependences in the alignment matrix H.

Kernel is a piece of code which expresses the parallelism
of a program. OpenCL programming model divides a program
workload into work-groups and work-items. Work-items are
grouped into a work-group, which are executed independently
respect to others work-groups. Data-level parallelism is reg-
ularly exploited in SIMD way, where several work-items are
group according to lane width capabilities of the target device.

OpenCL memory model distinguishes different memory
regions that are characterized by the access type, performance
and scope. Global memory is read-write accessible by all
work-items across all work-groups and it usually corresponds
to the DRAM memory device which carries a high latency
memory access. Local memory is a shared read-write memory
accessible from all work-items of a single work-group and it
habitually involves a low latency memory access. Constant
memory is a read-only memory visible by all work-items across
all work-groups and private memory as the name suggests it
is only accessible by a single work-item.

As OpenCL is a cross platform standard for parallel pro-
gramming on heterogeneous platforms, the developer can thus
focus on algorithmic specifications, avoiding implementation
details. The main advantage of implementing OpenCL on
FPGA platforms concerns the shorter time to market and faster
implementations. OpenCL Altera SDK for OpenCL supports
the 1.0 specification which is a subset of the full profile with
more flexible requirements and advanced features, which has
been completed thanks to versions 1.1 and 1.2. The OpenCL
specification defines a platform, memory and programming
model which permits many add-ons that are vendor specific,
cross-vendor and Khronos. There is considerable freedom
in terms of implementing the platform as long as the final
implementation satisfies the OpenCL specifications [26].

FPGAs present programmable networks containing logic
elements, memory blocks and specific DSP blocks, and this
allows the design of dynamic custom instruction pipelines in
contrast with the fixed data-path architectures of CPUs and
GPUs. Generally, digital design verification and creation have
involved the use of Hardware Description Languages (HDLs),
which are complex, error prone and affected by an extra
abstraction layer as they contain the additional concept of time.

Regarding Altera’s scope, FPGAs are dedicated copro-
cessors that obey a complex hierarchy model (see Table I
particularized for the FPGA used in this research). The host
processor is connected to accelerators through a peripheral
interface such as PCle.

TABLE 1. OPENCL MEMORY MODEL FOR FPGAS

OpenCL Memory | FPGA Memory | BittWare SSPHQ
global external 2x4GB DDR3
constant cache 16KB DDR3
local embedded 44Mbits
private registers 674Kbits

Each Altera FPGA can have multiple in-order command
queues associated with it that can execute independent com-
mands concurrently. Kernels are compiled previously using
the Altera OpenCL compiler and their content are passed at
runtime to create the OpenCL program object. Regarding the
execution model it is possible to use the work-item order-
ing within a pipeline, outperforming the obtained throughput
thanks to this topology. The OpenCL paradigm model defines
the execution of an instance of a kernel by a work-item using
NDRange. Kernels are executed across a global domain of
work-items where work-items are grouped into local work-
groups. The execution model does not specify in what order the
work-items are spread out and using the Altera implementation
in a one dimensional NDRange work-items produce serial
execution from 0O to the limit of global size.

Altera’s OpenCL extension also takes advantage of I/O
channels and kernels channels as in OpenCL 2.0 by means of
pipes [27]. Altera’s channel extension allows to transfer data
between work-item’s in the same kernel or between different
kernels. It uses a first-in, first-out (FIFO) buffer without host
interaction. This feature enables work-group communication
without additional synchronization and host intervention.

IV. SW IMPLEMENTATION

In this section we will address the programming aspects
and optimizations applied to our implementation on the FPGA
platform. The algorithm comprises of three stages:

1) Pre-processing stage: the reference database is pre-
processed to adapt sequence data for FPGA process-
ing.

2) SW stage: after preprocessing database, alignments
among query sequences and database sequences are
carried out.

3) Sorting stage: last, all alignment scores are sorted in
descending order.

It is important to remark that stages 1 and 3 are executed in
the host while stage 2 is offloaded to the FPGA.

Algorithm 1 shows the pseudo-code for the host implemen-
tation where () corresponds to query sequences and v D is the
sequence database sorted by length in order to perform vD as
c chunks of similar sequence lengths. Memory management
is performed in OpenCL by means clCreateBuffer (memory
allocation), clEnqueueWriteBuffer and clEnqueueReadBuffer
(memory transfer to device/host). Kernel computes the align-
ments among a single query and a chunk of sequence database.

A. Task parallel programming model

The kernel is implemented following the task parallel
programming model described in OpenCL 1.0 specification,

Algorithm 1 Pseudo-code for Smith-Waterman host imple-
mentation

: > @ are the query sequences

: > vD is the preprocessed sequence database

1

2

3:

4: clCreateBuffer’s(...) > Create buffers + transfer data

5: SetKernelArg’s(...) > Set kernel common arguments

6: for ¢ < get_num_chunks(vD) do

7 SP. < build_score_profiles(vD., SM)

8: clEnqueueWriteBuffer(S P.) > Score profiles to device

9: SetKernelArg’s(...) > Args. for processing chunk c

10: for ¢ < get_num_sequences(Q) do

11: SetKernelArg’s(...) > Args. for query ¢

12: clEnqueueNDRangeKernel(...) > Compute align-
ments among query ¢ and chunk ¢

13: end for

14: end for

15: clEnqueueReadBuffer(scores)

16: sort(scores) ©> Sort all scores in descending order

where the kernel consists of a single work-group that contains
a unique work-item. This scheme is suitable because a single
work-item does not require any synchronization stage.

Algorithm 2 shows the pseudo-code for our kernel im-
plementation. The alignment matrix is divided into vertical
blocks and computed in a row by row manner (see Figure 2).
This blocking technique not only improves data locality but
also reduces the memory requirements for computing a block,
which favours the use of the private low-latency memory.
The inner loop is fully unrolled to increase performance.
Due to data dependences between blocks (last column H
and E values are needed), we employed Altera OpenCL
channels to efficiently transfer values previously computed.
The combination of these techniques allows to Altera OpenCL
compiler generate successfully parallel pipeline execution.

u : P ;

] ¢ it i

= H e v

& H i i

2 = ¥ :

g : i i

i : e P T

o i o i 4

= I o I

[=} | }
Y i -
i i ’

L | — S i S ———————————

—
Block width

Fig. 2. Schematic representation of our OpenCL kernel implementation.

B. Farallelization approach inside the kernel

Our SW kernel employs the inter-task parallelization ap-
proach. Instead of aligning one database sequence against a
query sequence at a time, multiple database sequences are
aligned in parallel by means of the SIMD vector capabilities
available in the FPGA. For that reason, database sequences are

Algorithm 2 Pseudo-code for Smith-Waterman kernel

1: #pragma OPENCL EXTENSION cl_altera_channels : en-
able

2:

3: __attribute__((reqd_work_group_size(1,1,1)))

4: __ attribute__((task))

5. __kernel void SW_kernel (vD,,q,SP., scores.) {
6: for s < get_num_sequences(vD,.) do

7: d + get_sequence(vD,, s)

8: numBlocks + sizeof(d)/BLOCK_WIDTH
9: for k£ < numBlocks do

10: for ¢ < sizeof(q) do > each row

11: if £# 0 then

12: j=kx BLOCK_WIDTH

13: H;_1 j_1 < read_channel(H_channel)
14: E; ; < read_channel(E_channel)

15: end if

16: #pragma unroll

17: for jj < BLOCK_WIDTH do

18: j < k+« BLOCK_WIDTH + jj
19: > Calculate current cell value
20: H; j + SW _core(H,E,F,SP.,q)
21: score < mazx(score, H; ;)
22: end for
23: if k # numBlocks — 1 then
24: j« (k+1)«* BLOCK_WIDTH -1
25: write_channel(H_channel, H;_1 ;)
26: write_channel(E_channel, E; ;1)
27: end if
28: end for
29: end for
30: scores.[s] < score > Save alignment scores
31: end for
32: }

processed in groups. The size of the groups are determined
by the number of SIMD vector lanes. In order to maximize
processing efficiency, all the sequences of the same group
should be of similar length. Therefore database sequences are
sorted by their lengths in ascending order and then they are
padded with dummy symbols to make their lengths multiple
of BLOCK_WIDTH. Because complete unrolling requires
constant loop bounds, this last step is needed in order to fully
unroll kernel inner loop.

C. Substitution score selection

Our code also implements the Score Profile (S P) optimiza-
tion technique to obtain scores from substitution matrix. This
technique is based on constructing an auxiliary n x [x |3 |
two-dimensional score array, where n is the length of the
database sequence, ! is the number of vector lanes and >
is the alphabet. Since each row of the score profile forms a
l-lane score vector, its values can be loaded in parallel. To
reduce FPGA hardware resource usage, the score profiles are
built in the host using a set of SSE intrinsic functions as in [18]
and then transferred to FPGA. However, because the size of
the score profiles can become prohibitive, database sequences
are processed in chunks.

D. Data type selection

Optimise FPGA area usage is critical to obtain high per-
formance OpenCL applications. The alignment scores do not
need a wide range data representation. short data type turns
out to be sufficient to represent all alignment scores computed
in this work.

E. Host-side buffers and data transfers

Host-side buffers are allocated to be 64-bytes aligned. This
fact improves data transfer efficiency because Direct Memory
Access (DMA) takes part to and from the FPGA. Common
data to all alignments, like the queries, are transferred when
creating the device buffers. All scores are transferred to the
host after all alignments have been computed.

V. EXPERIMENTAL RESULTS
A. Experimental platform and tests carried out

All tests have been performed on a Xeon server running
CentOS (release 6.5) equipped with:

e Two Intel Xeon CPU E5-2670 8-core 2.60GHz CPUs.
e 32 GB main memory.

e An Altera Stratix V GSDS5 Half-Length PCIe Board
with Dual DDR3 (two banks of 4 GByte DDR3) which
power consumption is less that 25 watt.

We have used the Intel’s ICC compiler (version 15.0.2)
with the -O3 optimization level by default. The synthesis tool
used is Quartus II DKE V12.0 2 with OpenCL SDK v14.0.

To provide the most relevant study, tests are made with
the Swiss-Prot database (release 2013_11)?. Performance
evaluation is carried out with 20 protein sequences. This
database comprises 192480382 amino acids in 541561 se-
quences being the largest sequence length 35213. The 20
query protein sequences were selected from the aforemen-
tioned database (accession numbers: P02232, P05013, P14942,
P07327, PO1008, P03435, P42357, P21177, Q38941, P27895,
P07756, P04775, P19096, P28167, POC6BS, P20930, P08519,
Q7TMAS, P33450, and QOUKNI1), ranging in length from 144
to 5478. Moreover, BLOSUMG62 was used as scoring matrix
and gap open and extension penalties were set to 10 and
2, respectively. Each particular test was run ten times and
performance was calculated with the average of ten execution
times to avoid variability.

B. Performance Results

Cell updates per second (CUPS) is a commonly used
performance measure in Smith-Waterman scenario, because it
allows to remove the dependency on the query sequences and
the databases utilized for the different tests. A CUPS represents
the time for a complete computation of one cell in matrix
H, including all memory operations and the corresponding
computation of the values in the E and F arrays. Given a query

2Swiss-Prot database available in http://web.expasy.org/docs/swiss-prot_
guideline.html

sequence of size () and a database of size D, the GCUPS
(billion cell updates per second) value is calculated by:
Q| x |D|
4
t x 109 “)
where |Q| is the total number of symbols in the query
sequence, |D| is the total number of symbols in the database
and ¢ is the runtime in second [14]. In this article, runtime ¢
includes the device buffer creation, the transfer time of host
data to FPGA, the calculation time of the SW alignments, and
the transfer-back time of the scores.

In order to evaluate FPGA performance rates, we have con-
sidered different implementations according to data-parallelism
degree and memory hierarchy exploitation. We detail bellow
the main differences:

e scalar version is the baseline code where non opti-
mization are performed.

e SIMD versions exploit data level parallelism by en-
abling vectorization at expense of a moderate increase
in resource usage. Vectorial nomenclature indicate
SIMD width; i.e int4 means small vectors of 4-
elements, while int8 and intl16 uses 8 and 16 short
integer packaged respectively.

e Regarding to memory exploitation, constant version
is referred to the use of read-only constant memory
in which query sequences (constant x I) or both
query sequences and score profiles (constant x 2) are
allocated in it.

Table II shows FPGA resource utilization and performance
achieved for the different kernel versions considered. Without
using vectorization (denoted as scalar), our implementation
achieves poor performance. The exploitation of data level
parallelism by enabling vectorization allows significant perfor-
mance improvements. Highest GCUPS are obtained by int/6
version, which reports a speedup with respect to scalar of
11.5% at the cost of 0-2.8x increase in resource usage.

Because exploiting device memory hierarchy is critical
to achieve high performance, the impact of using constant
memory is evaluated. Copying query sequences to constant
memory (intl6 + constant x 1) slightly improves performance
with a minor reduction in resource usage. However, this
enhancement is not significant in int/16 + constant x 2 version,
where performance is strongly downgraded. intl/6 + constant
x 1 can take advantage of this feature since constant memory
is optimized for high cache hit performance. In opposite sense,
intl6 + constant x 2 does not benefit as score profiles exhibit
poor data locality principally due to their huge sizes. Because
of global memory accesses incorporated an extra hardware to
improve long memory latencies, better performance can be
obtained if score profile data is transferred directly to this
memory.

We also evaluate the impact of the query length, Figure 3
illustrates the performance of the different kernel implemen-
tations varying query length. As it can be seen, scalar kernel
hardly improves performance. Vectorized kernels benefit from
larger workloads, except for intl6 + constant x 2 where
constant memory usage for score profiles practically cancel
any performance gain from vectorization. However, intl16 +

TABLE II. PERFORMANCE AND RESOURCE USAGE COMPARISON FOR DIFFERENT OPENCL KERNEL IMPLEMENTATIONS.
. Resource Usage
Version Performance (GCUPS) ALMs | Regs | R Al\%,[DSPs

scalar 3.41 29% 17% | 29% 1%

int4 18 39% 19% | 34% 1%

int8 23.66 54% 25% | 43% 1%

intl6 38.9 81% 36% | 80% 1%

intl6 + constant x 1 39.2 80% 35% 80% 1%

intl6 + constant x 2 3.53 78% 25% | T7% 1%

40

35

30

25

Gwo—o—o—o—o—o—o—@—o—@-o—o—@#

GCUPS

10

g D o $ ~ N~ O Q © O n & W1 o = W0 M M~ 0
00 o~ M~ W N N QO QO Q@ QO 9O W W S s s
- = N ™M g N O~ 00 N o N O N O ~ = <
= NN N
Query length
——scalar ——int4 —i—int8
———int16 —f=int16 + constant x 1 —@—int16 + constant x 2

Fig. 3. Performance of the different OpenCL kernel implementations with
queries of varying length.

constant x 1 version outperforms all other kernels implemen-
tation reaching upto 37.1 GCUPS.

VI. CONCLUSIONS

The SW algorithm is one of the most popular algorithm
in sequence alignment because it performs an exact local
alignment. However, due to its computational complexity, in
practice, several parallel implementations are used to reduce
response time. In addition, with the emergence of heteroge-
neous computing and interest of the exploration not only in
computationally scalable solutions but also energy efficiency,
it is open the chance of considering new parallel programming
paradigms and evaluate the behavior of new devices that meet
these requirements. Taken into account these considerations,
this paper examines the benefits of a highly innovative technol-
ogy as the support of the parallel programming model OpenCL
in the field of FPGAs.

Among main contribution of this research we can summa-
rized:

e Data level parallelism is crucial to achieve successful
performance rates at expense of a moderate increase
in resource usage.

e OpenCL hierarchy memory exploitation such as pri-
vate memory reports considerably benefits although
constant memory usage hardly improves the perfor-
mance.

e From performance perspective, our most successful
implementation reaches upto 39 GCUPS, significantly
higher than [24].

In heterogeneous computing era not only performance
matters but also energy efficiency. We would like to emphasize
that our SW implementation in FPGA is not only competitive
in terms of performance but it also is much more power-
efficient (GCUPS/Watt) than other well-known implementa-
tions as SWIPE [11], CUDASW++ [14] or SWAPHI [16]
considering the Thermal Design Power of the target devices.

According to the results obtained, we plan to analyse the
scalability of SW algorithm using a hybrid system based on a
multicore + FPGA, multi-FPGAs and the exploitation of the
best power-efficient trade-off.

ACKNOWLEDGMENT

Enzo Rucci holds a PhD CONICET Fellowship under
Argentinian Government.

REFERENCES

[1] N. Malhis and S. J. M. Jones, “High quality snp calling using illumina
data at shallow coverage,” Bioinformatics, vol. 26, no. 8, pp. 1029—
1035, 2010.

[2] P. Ferragina and G. Manzini, “Opportunistic data structures with
applications,” in Proceedings of the 41st Annual Symposium on
Foundations of Computer Science, ser. FOCS *00. Washington, DC,
USA: IEEE Computer Society, 2000, pp. 390-. [Online]. Available:
http://dl.acm.org/citation.cfm?id=795666.796543

[3] S. F. Altschul, T. L. Madden, A. A. Schiffer, J. Zhang, Z. Zhang,
W. Miller, and D. J. Lipman, “Gapped blast and psi-blast: a new
generation of protein database search programs.” Nucleic Acids Res,
vol. 25, no. 17, pp. 3389-3402, September 1997.

[4] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of Molecular Biology, vol. 48, no. 3, pp. 443-453, Mar. 1970.

[5] M. Brudno, S. Malde, A. Poliakov, C. B. Do, O. Couronne, I. Dubchak,
and S. Batzoglou, “Glocal alignment: finding rearrangements during
alignment.” in ISMB (Supplement of Bioinformatics), 2003, pp. 54—
62. [Online]. Available: http://dblp.uni-trier.de/db/conf/ismb/ismb2003.
html#BrudnoMPDCDBO03

[6] S. F Altschul, T. L. Madden, A. A. Schffer, J. Zhang, Z. Zhang,
W. Miller, and D. J. Lipman, “Gapped blast and psiblast: a new
generation of protein database search programs,” NUCLEIC ACIDS
RESEARCH, vol. 25, no. 17, pp. 3389-3402, 1997.

[71 W. R. Pearson and D. J. Lipman, “Improved tools for biological se-
quence comparison.” Proceedings of the National Academy of Sciences
of the United States of America, vol. 85, no. 8, pp. 2444-2448, Apr.
1988.

[8] J. Qiu, J. Ekanayake, T. Gunarathne, J. Y. Choi, S. H. Bae, H. Li,
B. Zhang, T. Wu, Y. Ruan, S. Ekanayake, A. Hughes, and G. Fox,
“Hybrid cloud and cluster computing paradigms for life science appli-
cations.” BMC Bioinformatics, vol. 11 (Suppl12), 2010.

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

F. Chichizola, M. Naiouf, L. D. Giusti, I. Rodriguez, and A. D. Giusti,
“Overhead Analysis in Parallel Processing DNA Sequences on Grid
Architectures,” in Proceedings of the LAGrid08 (2nd International Latin
American Grid Workshop 2008), 2008.

M. Farrar, “Striped Smith-Waterman speeds database searches six time
over other SIMD implementations,” Bioinformatics, vol. 23 (2), pp.
156-161, 2007.

T. Rognes, “Faster Smith-Waterman database searches with inter-
sequence SIMD parallelization,” BMC Bioinformatics, vol. 12:221,
2011.

M. Farrar. Optimizing Smith-Waterman for the Cell Broad-band Engine.
[Online]. Available: http:/farrar.michael.googlepages.com/SW-CellBE.
pdf

Y. Liu, W. Huang, J. Johnson, and S. Vaidya, “GPU Accelerated Smith-

Waterman,” Lecture Notes in Computer Science, vol. 3994, pp. 188-195,
2006.

Y. Liu, D. L. Maskell, and B. Schmidt, “CUDASW++: optimizing
Smith-Waterman sequence database searches for CUDA-enabled graph-
ics processing units,” BMC Research Notes, vol. 2:73, 2009.

Y. Liu, A. Wirawan, and B. Schmidt, “CUDASW++ 3.0: accelerating
Smith-Waterman protein database search by coupling CPU and GPU
SIMD instructions,” vol. 14:117, 2013.

Y. Liu and B. Schmidt, “Swaphi: Smith-waterman protein database
search on xeon phi coprocessors,” in 25th IEEE International Con-
ference on Application-specific Systems, Architectures and Processors
(ASAP 2014), 2014.

Y. Liu, T.-T. Tran, L. Felix, and B. Schmidt, “SWAPHI-LS: Smith-
waterman Algorithm on Xeon Phi Coprocessors for Long DNA Se-
quences,” in Proceedings of IEEE International Conference on Cluster
Computing (CLUSTER 2014), September 2014.

E. Rucci, A. D. Giusti, Marcelo, G. Botella, C. Garcia, and M. Prieto-
Matias, “Smith-Waterman Algorithm on Heterogeneous Systems: A
Case Study,” in Proceedings of the IEEE Cluster 2014, 2014.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

T. I. Li, W. Shum, and K. Truong, “160-fold acceleration of the Smith-
Waterman algorithm using a field programmable gate array (FPGA),”
BM(C Bioinformatics, vol. 8:185, 2007.

S. Dydel and P. Bala, “Large scale protein sequence alignment
using fpga reprogrammable logic devices,” in Field Programmable
Logic and Application, ser. Lecture Notes in Computer Science,
J. Becker, M. Platzner, and S. Vernalde, Eds. Springer Berlin
Heidelberg, 2004, vol. 3203, pp. 23-32. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-30117-2_5

N. Weaver, Y. Markovskiy, Y. Patel, and J. Wawrzynek, “Post-
placement c-slow retiming for the xilinx virtex fpga,” in Proceedings
of the 2003 ACM/SIGDA Eleventh International Symposium on
Field Programmable Gate Arrays, ser. FPGA ’03. New York,
NY, USA: ACM, 2003, pp. 185-194. [Online]. Available: http:
//doi.acm.org/10.1145/611817.611845

Y. Yamaguchi, H. Tsoi, and W. Luk, “Fpga-based smith-waterman
algorithm: Analysis and novel design,” in Reconfigurable Computing:
Architectures, Tools and Applications, ser. Lecture Notes in Computer
Science, A. Koch, R. Krishnamurthy, J. McAllister, R. Woods,
and T. El-Ghazawi, Eds. Springer Berlin Heidelberg, 2011, vol.
6578, pp. 181-192. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-19475-7_20

M. Isa, K. Benkrid, T. Clayton, C. Ling, and A. Erdogan, “An fpga-
based parameterised and scalable optimal solutions for pairwise bio-
logical sequence analysis,” in Adaptive Hardware and Systems (AHS),
2011 NASA/ESA Conference on, June 2011, pp. 344-351.

S. O. Settle, “High-performance dynamic programming on fpgas with
opencl,” 2014.

0. Gotoh, “An improved algorithm for matching biological sequences,”
in Journal of Molecular Biology, vol. 162, 1981, pp. 705-708.

A. Coorporation, “Altera SDK for OpenCL Programming Guide, Ver-
sion 13.0spl,” 2012.

K. Group, “The OpenCL Specification. version 2.0,” 2014. [Online].
Available: https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf

