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1. Introduction

The general results on spectral approximations for compact operators were first obtained in [5.16]. These results 
have been extended in [11,12] to consider the case of conforming discretizations of noncompact operators.

Nonconforming methods were also studied. The first approach was proposed in [15] and it is restricted to compact 
operators.

Later, in order to prove double order for the convergence of eigenfrequencies in fluid-structure vibration problems, 
Rodríguez and Solomin [17] extended classical results about finite element spectral approximation to nonconforming 
methods for noncompact operators. However, their theory does not cover many other practical situations since it 
assumes that the continuous and discrete bilinear forms appearing in the variational formulation of the considered 
problem coincide.

Very recently, discontinuous Galerkin approximations of the spectrum of the Laplace operator have been analysed 
in [2], To do that, the authors adapted the theory presented in [11] to deal with nonconforming approximations 
of elliptical second order operators with compact inverse. Moreover, Buffa and Perugia [7] presented a theoretical 
framework for the analysis of discontinuous Galerkin approximations of the Maxwell eigenproblem.
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Abstract

This paper deals with the nonconforming spectral approximation of variationally posed eigenvalue problems. It is an extension 
to more general situations of known previous results about nonconforming methods. As an application of the present theory, 
convergence and optimal order error estimates are proved for the lowest order Crouzeix-Raviart approximation of the eigenpairs 
of two representative second-order elliptical operators.
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The goal of this paper is to obtain some abstract results of spectral approximation that can be applied to a wide class 
of nonconforming methods for either compact or noncompact operators. These results are obtained by introducing 
suitable modifications in the theory developed in [11,12]. According to the fact that the approximations considered 
are nonconforming, consistency terms appear in our estimates which could be seen as a generalization of previous 
results obtained in [17].

The motivations for considering nonconforming finite element methods are several. For example, to avoid the 
necessity of smooth elements in fourth order problems or to deal with constrained minimization problems. Also, there 
is a closed relationship between mixed methods and nonconforming finite element methods for second order elliptical 
problems (see [1]). This relationship can be further exploited for deriving efficient solvers for the mixed formulations 
(see [9,3]).

We mention also that the present theory allows the analysis of a large class of discontinuous finite element methods 
when they are used for the approximation of spectral problems. This justifies the generality of our abstract approach.

The outline of the paper is as follows. In Section 2 we introduce the class of variationally posed eigenvalue problems 
we will consider and we define the approximation methods for these problems. The abstract results are presented and 
proved in Section 3. Finally, in Section 4 we illustrate the application of our theory by considering the nonconforming 
approximation of the eigenvalues and eigenfunctions of two representative second order elliptical problems. The 
analysis is carried out for the lowest order Crouzeix-Raviart finite element space. As in the conforming case, the 
order of convergence obtained for the eigenvalues doubles that for the eigenfunctions. To the best of the authors’ 
knowledge, these estimates have not been proved before.

2. Statement of the eigenvalue problem

Let X be a complex Hilbert function space with norm | ■ |. Let V be a subspace of X, with norm || ■ ||, such that the 
inclusion V ► X is continuous.

Consider the eigenvalue problem:
Find ft e C, u 0, u e V, such that

a(u, u) = ¡ibtu, u), Vt> e V (2.1)

where a : V x V —> C is a continuous and coercive sesquilinear form and b : X ■< X -> Cis a continuous sesquilinear 
form.

Let T be the linear operator defined by

T : X -> V ■ * X
X h*  W,

where u e V is the solution of

a(M, y) = b(x, y), Vy e V. (2.2)

Since a is elliptic, b is continuous and V *—>■ X, Lax-Milgram’s Leimna allows us to conclude that T is a bounded 
linear operator. It is simple to show that p is an eigenvalue of (2.1) if and only if X = l//z is an eigenvalue of the 
operator T and the corresponding associated eigenfunctions u coincide.

Now, let [V/J be a family of finite dimensional function subspaces of X not contained in V and consider the spaces 
V + Vh. We equip each space V + V/, with the nonns || ■ ||/, and we assume that

t>|| = || i> ||/¡, Vt> e V
V + V/,, II ■ Ha) (S, | ■ |), unifonnly on h.

Then, we consider the following discrete eigenvalue problem: 
Find ¡Jh e C, 0, e Vh, such that

aiduh, v) = fihbhVih, v), Vu e V/,.

(2.3)
(2.4)

(2.5)

Let us remark that since V/, £ V, (2.5) represents a nonconfonning approximation to (2.1).
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From now and on, we shall consider that the domain of definition of the approximate sesquilinear forms ah and bh 
is V + Vh. We also assume that both discrete forms are continuous on V + V/, uniformly on h and that a/, is coercive 
on V + Vh uniformly on h. Finally, we assume that

ajfv, uf = a(v, w), Vv, w e V (2.6)
bh(v, w) = b(v, in), Vv, w e V. (2.7)

Then, we define the discrete analogue of the operator T as follows:

T/, : X -> Vh
X I—> Uh,

where ui, e Vh is the solution of

ah(Uh,y) = bh(x,y), Vy&Vh- (2.8)

Once again, because of Lax-Milgram’s Lemma, the operator T/, is bounded uniformly on h. As in the continuous 
case, it is simple to show that /¿h is an eigenvalue of problem (2.5) if and only if X/, = 1/ph is an eigenvalue of the 
operator TZj, and the corresponding associated eigenfunctions Uh coincide.

3. Spectral approximation

First, we introduce some notation that will be used in the sequel. For further information on eigenvalue problems 
we refer the reader to [4], From now on, C denotes a generic constant not necessarily the same at each occurrence but 
always independent of h.

We denote by p(T) the resolvent set of T and by cr(T) the spectrum of T. Now, lor any- e p(T), A-(T) = (<-T)_1 
defines the resolvent operator.

Let us consider the restrictions T|y and T|y+yh ■ It can be proved that the knowledge of the spectrum of T|y+yh 
gives complete information about the spectrum of T| y. The proof closely follows the arguments used in the proof of 
Leimna 4.1 in [6].

Lemma 3.1. The spectra ofr\y and T|y+yA satisfy

cr(T|y) U {0} = <t(T|v+va).

Further, for any z e pTIy+y,) there is a constant C, independent of h, such that

ll^z(T|v+n)ll/i < c.

Proof. Let z & cr(T|y),<: 0. We are going to prove that U - T|y+yA) : V + Vh -> V + Vh is one to
one and onto. Suppose that (z - T|y+yA).x = 0. Since T|y+yA(V + V/,) C V, x = iTIy+y^v e V and then 
(z - Tly+v^ )x = (z - T|y )x = 0. Since z o(T|y), we can conclude that % = 0. Hence, )z — Tly+y,,) is one to 
one. Now, given y e V + V/, we can take % = 4(y + (z - T|y)_1T|y+yAy) and we have (z - T|y+yA )x = y. So, 
(z - T|y+yA) is onto. Therefore, because of the open mapping theorem, z cr(T|y+yA).

Conversely, let z cr(T|y+yA). First, we have that z 0 since T|y+yA(V + Vh) C V and so T|y+yA is not 
onto. Next, given y e V c V + V/,, there exist a unique % e V + Vh such that y = (z - T|y+yA)x. Furthermore, 
% = l(y + T|y+yhx) e V. Hence, % is the unique element in V such that (z - T|y)x = (z - T|y+yA)x = y. 
Therefore, U - T|y) : V -> V is invertible and ~ cr (T|y).

On the other hand, given y e V + Vh, it is easy to show that % = |(y + (z - T|y)_1T|y+yAy) is the unique 
element in V + Vh such that y = (z - riy+v^fv. Now, since riy+y^v e V, (z - Tly^Tly+y^v e V and so, in 
view of our assumption (2.3), we can write ||U - T| y)“ XT| y+yh y ||/, = ||U - T|y)—1T|y_)_y/! y ||. Then, we obtain

llxlift < A (llyll/, + ||(Z - T|y)-1T|y+yAy||) < -1 (||y||A + ||(z - T|y)_11| ||T|y+yAy ||) .

Now, the continuous inclusion (2.4) implies that
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IITIv+v.yll <C|y| <C||y||Z!.

Finally, combining the last two inequalities above, we can conclude the proof. □

Let X be a nonzero isolated eigenvalue of T| y+yh with algebraic multiplicities m. Let T be a circle in the complex 
plane centred at X which lies in p (T | y+yh) and which encloses no other points of cr (T | y+yh) • The continuous spectral 
projector, E : V + V/, -*  V + V/,, relative to X, is defined by

E = I ^z(T|v+vA)dz.

We assume the following properties to be satisfied:
Pl:

lim IKT-T/JIvJI/, =0.
fl—>0

P2. For each function % of E( V + V/,),

lim I inf ||% - x/, |b, 'j = 0.
\xheVh )

P3:

lim ||(T - T/1)|e(v+va)||/1 = 0.h—0

We are going to give an extension of the theory developed in [11] to deal with nonconforming methods. Most of 
the proofs of the results stated below are slight modifications of those in [11], taking care of the fact that, here, || ■ ||/, 
denotes the discrete norm associated with the nonconforming spaces.

Lemma 3.2. Let Q be a closed subset of p(T|y+yA). Under assumption Pl, there exist positive constants C and ho, 
independent of h, such that

HU-T/,|v/i)-1||/! < C, V2eC/, VA<A0.

Proof. The proof is identical to that of Leimna 1 in [11], □

Theorem 3.3. Let SI cC be a compact set not intersecting a(T\y+yh). There exist ho > 0 such that, if h < Ao, then 
SI does not intersect a (T/, | yh).

Proof. The proof is a direct consequence of assumption Pl, as it is shown in Theorem 1 in [11], □

So, in virtue of the previous theorem, if A is small enough, T c piT/,^) and the discrete spectral projector, 
E/, : V/t - Vh, can be defined by

Eft = — f R-(Th\vh)dz.
Jr

Let us recall the definition of the gap 8 between two closed subspaces, Y and Z, of V + V/,. We define

T(F, Z) := max{3(F, Z), 3(Z, F)},

where

3(F, Z):= sup ( inf ||y - ;||/,) .
\zeZ /

MIA=i

The following theorem implies uniform convergence of E/, \yh to E| V/,; as A goes to 0:

Theorem 3.4. Under assumption Pl,

lim || (E - Eft)|yh ||ft = 0.
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Proof. It follows combining Lemma 3.2 with assumption Pl and is essentially identical to that of Leimna 2 
in [11], □

Theorem 3.5. Under the assumption Pl, for all x e E/, (V/,) there holds

lim 3(%, E(V + V/,)) = 0.

Proof. It is a direct consequence of Theorem 3.4. □

Theorem 3.6. Under the assumptions Pl and P2, for all x e E( V + V/f there holds

lim 3(r, E/dV/J) = 0.

Proof. The proof is identical to that of Theorem 3 in [11], □

Theorem 3.7. Under the assumptions Pl and P2,

lim?(E(V + Vftl.E/dVft)) = 0.

Proof. It is direct consequence of Theorems 3.5 and 3.6. □

As a consequence of the previous theorems, isolated parts of the spectrum of T are approximated by isolated parts 
of the spectrum of T/, (see [14,11]). More precisely, for any eigenvalue X of T of finite multiplicity m, there exist 
exactly m eigenvalues Xy,, ■ ■ ■, X»,/, of T/,, repeated according to their respective multiplicities, converging to /. as h 
goes to zero.

Now we are going to give estimates which show how the eigenvalues of T are approximated by those of T/(. To 
attain this goal, the theory in [17] about nonconforming approximation for noncompact operators should be adapted 
to cover more general cases where the continuous and discrete sesquilinear forms do not coincide. By proceeding 
as in that reference, we extend the theory developed in [12], so that it can be applied to non conforming methods. 
By so doing, consistency terms arise in the error estimates. We shall give general expressions for these additional 
consistency terms.

We begin considering the bounded operator T*  defined by

T,-.X^V
X f—» M,

where u is the solution of

a(y, u) = b(y, x), Vy e V. (3.1)

It is known that k is an eigenvalue of T*  with the same multiplicity m as that of /. (see, for instance, [12]). We also 
consider the bounded operator Ty, defined by

Ty, :X^Vh
X I—► Uh,

where ui, is the solution of

aiAy, Uh) = bjfy, x), VyeVh- (3.2)

Here, ky,, • • •, k,,,/, are the eigenvalues of Ty, which converge to k as h goes to zero.
Let E*  be the spectral projector of T*|  v+vh relative to k.
We also assume the following properties for T*  and Ty,:

P4:

lim || (T*  - Ty,)|vh Ha = 0.
h-^Q
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P5: For each function % of E*  (V + V/,),

lim ( inf 11% - x/, 1/3=0.
h->-0 \xheVf, )

P6:

liin || (T*  - Ti/!)|Et(v+V/,)||/! =0.

We now need to introduce other operators.
Let Ilh : V + Vh —*■  V + V/, be the projector with range V/, defined by

ah(x - nhx, y) = 0, VyeVj. (3.3)

Analogously, we define 77*/,  : V + Vh ■ V + V/, by the relation

cih(y, % - n* hx) = 0, V y e V/,. (3.4)

Moreover, since ai, is continuous and coercive on V + V/,, both uniformly on h, Ilh and 77*/,  are bounded uniformly 
on h. Let us remark that for conforming methods T/, = 77/, T. This is assumed in the spectral approximation theory 
in [12] and used in the proofs therein. Obviously, for nonconforming methods, T/, and 77/,T do not coincide.

Let B/, := Thllh : V + Vh -*■  V + V/,. Notice that cr (T/,) = cr(B/,) and that, for any non null eigenvalue, the 
corresponding invariant subspaces coincide. Let F/, : V + Vh —» V + V/, be the spectral projector of B/, relative to 
its eigenvalues A.//,, ■ ■ ■, X„,/,. It can be proved that ||7L(B/,)||/, is bounded uniformly on h for z e T (see Leimna 1 
in [12]). Consequently, the spectral projectors F/, are bounded uniformly on h.

Finally, let B*/,  := T*/,  77*/,  : V + V/, —> V + Vh and let F*/,  be the spectral projector of B*/,  relative to A i/,, ■ ■ ■, /.,„/,.
It is easy to show that B*/,  is the actual adjoint of B/, with respect to a/,. In fact, for all % and y e V + V/,, we have

iZ/,(B/,%, y) = a/, (T/,77/,%, y) = a/,(T/,77/,%, 77*/, y) = bhOIhX, n* hy)-

Similarly, we get

a/,(j, B*/,y)  = bhtllhX, nthy).

Therefore, the spectral projector F*/,  is also the adjoint of F/, with respect to ah.
Let

Vh :=3(E(V + Vh),Vh).

Property P2 implies that y/, —► 0 as A -> 0. Analogously, let

y*/,  :=3(E*(V + ¥/,),¥/,).

Here, because of P4, y*/,  — 0 as h • 0.

Lemma 3.8.

II (I - 77/,)|e(v+V/,)||/, < Cy/,,
||(I - 77*/,)|E t(V+y,)||/, < Cy*/,.

Proof. Let % e E( V + Vh). Since ah is coercive on V + V/, uniformly on h, we have

||(I - nh)x\\h < Cah((I - nh)x, (I - 77/,)%) = Ca/,((I - 77/,)%,% - y/,), Vy/, e V/,,

where the last equality yields from the definition of 77/,. Now, taking into account that ah is continuous on V + V/, 
uniformly on A, we obtain

|| (I - 77/,)% ||/, < C inf ||% - y/, ||/„
yh&Vh

which allows us to conclude the proof of the first estimation. Analogous proof is valid for the second one. □
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Lemma 3.9.

II (E - F/1)|e(v+va)||/i < C ||(T - B/1)|e(v+va)||/i,
ll(E*  - F*/ !)|Et(v+v/,)||/! < C||(T*  - B*/ !)|Et(v+v/,)||/!.

Proof. The proof is identical to that of Lemina 3 in [12], □

Now, let

3/i := Yh + II (T - T/1)|e(v+va)||/i-

From properties P2 and P3, it is easily seen that 3/, • 0 as h • 0. Analogously, let

3*/i  := m + || (T*  - T*h ) Ie/v+v* > IIa •

Because P5 and P6, 3*/,  —> 0 as A —»■ 0.

Lemma 3.10.

II (T - B/1)|e(v+va)||/i < C3/j,
II (T*  - B*/ !)|Et(v+v/,)||/i < C8*h-

Proof. Let % e E(V + V/,) with ||x|| = 1. We have

||(T - B/jWII/i < ||(T - T/0%11/, + ||T/,(I - TT/jM/i

< II (T - T/1)|e(v+va)||/i + HT/jH/jIKI - 77/1)|e(v+va)II/i

< C(||(T - T/1)Ie(v+va)II/i + Yh),

where the last inequality follows from Leimna 3.8 and the fact that ||T/, ||/, is uniformly bounded with respect to h.
Analogous proof is valid for the second estimate of the leimna. □

Let

dft := F/jEtV+n) : E(V + Vh) ■ F/,(V + V/,).

Lemma 3.11. For h small enough, Ai, is a bijection and ||dZ! 11|/, is bounded uniformly on h.

Proof. See the proof of Theorem 1 in [12], □

Theorem 3.12.

T(FZi(V + V/1),E(V + Vh)) < C8h.

Proof. The proof is identical to that of Theorem 1 in [12], □

Let us now define the operator T := T|e(v+v*>  : E(V + V/,) -> E(V + V/,) and B/( := ApBhA/, : E(V + V/,) —► 
E( V + Vh). From these definitions, it follows that T has a unique eigenvalue /. of algebraic multiplicity m and that B/( 
has the eigenvalues Xy,, ■ ■ ■,

Let us consider the following consistency terms:

Mh = sup sup |a/,(Tx, n* hy) - bh(x, 77*/ !y)|,
AiEiV+y,) viEyV+y,)

MIa=i Ma=i

M* h = sup sup \ah(nhx,Tty) - bh(nhx,y)\.
agE(V+Va) viEyV+y,)

IM|a = 1 l|v||/,=l
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Theorem 3.13.

IIT - BZ( II < C + Mh + M*h ).

Proof. We have

||T-BZ,|| = sup II (T — BZl)x||Zl
AiEfV+V/,)

IMIa=i

< c sup sup | a((T - BZi)x, y)|
nE(.V+Vh) yeV

|a||a=1 bll/z=i

= c sup sup | a(E(T - BZi)x, y)|
nE(.V+Vh) yeV

I-*II a=i bll/z=i

= c sup sup | a((T — B^jx, E*y)|
AiEfV+V/,) vgV

I-*II a=i MIa=i

< c sup sup |a((T - Bz,)x, y)|
AiEfV+V/,) yiEt(V+VA)

|a||a=1 y IIa= 1

= c sup sup |az,((T -Bz,)x, y)|
AiEfV+V/,) yiEt(V+VA)

l|A||/,=l hll*  =1

(3.5)

Now, using that (Ah - I)T|e(v+v*>  = 0 and that BZ( commutes with its spectral projector FZi, it follows that

T -Bz, = (T -BZ!)|e(v+va> + (Ah - I)(T - BZ!)|e(v+va). (3.6)

Let % e E(V + VZj) and y e E*( V + V/,), with ||%||Z! = ||y||Z! = 1. Since FftfX^F/, - I) = 0 and F* Zj is the adjoint 
of FZi with respect to aZi, we have

\ah((Afrh -IXT-Bft)*,?)!

= \ah ((yl^1FZi - I)(T — Bz,)x, y) - aZ!(FZ!(X/;1FZ! - I)(T - BZi)x, y)|

= \ah ((yl^1FZz - I)(T — BZi)x, y) - aMAprh - I)(T - BZi)x, F* Zzy)|

= \ah{{Afrh - I)(T - BsX, (I - Frf)y)|

< - Ills ||(T - BZ1)|e(v+va)||/1||(I - F* Z1)|Et(v+vA)||/!
< C&h&.,h. (3.7)

The last inequality in (3.7) follows from Lemmas 3.9-3.11 and the fact that ah is continuous on V/( independently of 
h and that FZj is bounded uniformly on h.

On the other hand,

izZi((T - BZi)x, y) = aZi((T - Bz,)x, + a/,((T - BZi)x, (I - 77*z,)y). (3.8)

To bound the second term in the right-hand side of (3.8), we use Leimnas 3.8 and 3.10. We thus obtain

X/i((T - Rh)x, (I - 77* Zi)y)| < C||(T - BZi)|e(v+va) IIZiII(I - #*/ i)Ie„(v+va)II/i

< C8i,y*h- (3.9)

For the first term, we write

izZj((T -BZi)x, II* hy) = azd(T-TZ!)j,77* Z!y) + aZ!((TZ! - BZi)x, II* hy). (3.10)

Now,

|izZi((T - TZi)x, IZ* Z!y)| = |aZ!(Tx, 77* z,y) - bh(x, n*hy)\  < Mh, (3.11)
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and

aMrh - Bft)x, n.thy') = ahdh(i - nh)x, n* hy) = bh(d - nh)x, n* hy)
= bh((I - nh)x, y) - bh((I - nh)x, (I - 77* z,)y). (3.12)

The first term in the right-hand side of (3.12) can be written as

bh((I - nh)x, y) = b(x, y) - bTJIhX, y) = a(x, T*y)  - bh(nhx, y)
= [ah(nhx, T*v)  - bTJIhX, y)] - ah((nh - I)x, T*v)
= [ah(nhx, T*v)  - bh(nhx, y)] - ah((nh - I)x, (I - 77* z,)T*y),  (3.13)

where in the last equality we have used that ahCJIh — I)x, II*hT*y}  = 0, which follows easily from (3.3) and the fact 
that 77* z,T*y  e Vh.

The last term of the right-hand side above can be easily bounded by

\ah((IIh - I)x, (I - n*h)T*y)\  < C||T*||||(I  - fT* Z1)|E*(v+L !)ll/ill(XfZ1 - I)Ie(v+va)lift- (3.14)

Then, Leimna 3.8, (3.13) and (3.14) immediately yield

|b/,((I - nh)x, y)| < C(M* Z, + yhY*hb  (3.15)

Finally, the theorem is a consequence of formulae (3.5)—(3.15). □

By using the previous theorem, we deduce the following result about the approximation of the eigenvalue X:

Theorem 3.14. (i) |x - | c (sh&*h  + Mh + M* h)

(ii) max,|X — X,/, | < C (3Z,3* Z, + Mh + M*hC a where a is the ascent of the eigenvalue of T.

Proof. Taking into account that cr(T) = /. and that Xy,, ■ ■ ■, X„,z, are the eigenvalues of BZj, we have tr(T) = mX and 
tr(Bz,) = Th- Then, from the continuity of the traces

1 m 1X - - ¥>,/, = -|tr(T)-tr(Bz,)|<C||T-Bz,||.
m , m1=1

On the other hand, it is known that

|X-X,Z,|Q' < C||T —Bz,||,

for any 1 < i < m. Therefore, we can conclude (i) and (ii) directly from Theorem 3.13. □

Remark 3.15. In many applications, the operator T is selfadjoint. In this case, if // is a nonzero eigenvalue of T, the 
ascent a of (/z - T) is one. So, the space of generalized eigenvectors E( V + Vz,) coincides with the space of the actual 
eigenvectors corresponding to (see [4]).

4. Examples

In this section we apply the abstract theory results obtained above to two representative problems.
Let i? c R2 be a simply connected and bounded domain with polygonal boundary di? = T.
Let (•, ■) be the scalar product in L2(f?) and let || ■ ||o denote the corresponding L2 norm. Further, let Hs (I?) denote 

the standard Sobolev spaces with the usual nonns || ■ |b and seminonns | ■ b. We also denote Hp(Q) the subspace of 
functions in Hl(Q) with a vanishing trace on T. We use a circumflex above a function space to denote the subspace 
of elements with mean value zero.

Let {Th} be a family of triangulations of f? such that any two triangles share at most a vertex or an edge. We also 
assume that the family {Th} is regular in the sense of the minimum angle condition (see [8], for instance). Finally, let 
£h denote the set of all the edges of triangles T e Th.

With the triangulation Th, we consider the lowest-order Crouzeix-Raviart finite element spaces:

CRh := {i’Z, e L2(f?) : Vh\r e Pi(T), VT e Th, t>z, continuous at midpoints of all*  e £h}.
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4.1. A Steklov eigenvalue problem

Eigenvalue problems of the Steklov type, in which the eigenvalue parameter appears in the boundary conditions, 
arise in a number of applications. Let us mention, for instance, the problem of determining the vibrations modes of 
liquids in moving containers, the so-called sloshing problem.

We consider the following spectral problem:
Find /. e R and u 0 such that

-div(cyVM) + fin = 0 in 12, 
dll

a— = ku on / .
3n

(4.1)

where the coefficients a = a(x) and ft = /L.v) are bounded by above and below by positive constants. We assume 
that a e C1)/?).

Let W := H1 (12). Let a*  and b*  be the symmetrical bilinear forms defined by

a*(M,  t>) := / c/Vm ■ Vt> + I fiuv, Vm, t> e W,
Jn Jn

b*(u,  v) := y uv, Vm, t> e W.

Since a and fl are bounded in 12, we have that a*  is continuous and coercive on W.
Then, the variational formulation of the spectral problem (4.1) is given by:
Find X e R and u e W, u 0, such that

a*(u,  v) = kb*(u,  v), Vv e W. (4.2)

From the classical theory of abstract elliptical eigenvalue problems, we can infer that problem (4.2) attains a 
sequence of finite multiplicity eigenvalues X„ > 0, n e N, diverging to +oo, with corresponding L2(D-orthonormal 
eigenfunctions u„ belonging to W.

We introduce the following spaces:

X := L2(f2) x L2(L)
V := {(«, f) e H1(12) x Wl/2(/') : f = u|r},

endowed with the nonns defined by 

|(M,e)|:=(||n||2+||i||2r)1/2, 

||(n,O| :=(|Mi + ||^r)1/2.

Let a be the bilinear and continuous fonn defined on V x V by
f r r

a((u, f), (t>, »;)) := / aXu ■ Xv + / fiuv - I f//. 
Jn Jn Jr

Note that a is V-elliptical. Let b be the bilinear and continuous fonn defined on X x X by

b((u, f), (v, r])) := J ¿th-

Now, we consider the following spectral problem:
Find /. e R and (u,^) e V, u 0, such that

a((u,l-). (t>, »;)) = (X + l)Z?((z<, £). (t>, »;)), V(t>, i]} e V. (4.3)

For A 0, variational problems (4.2) and (4.3) are equivalent to problem (4.1). In fact, the solution of (4.1) satisfy
Eqs. (4.2) and (4.3). Conversely, by testing these two equations with adequate smooth functions, it is easy to show 
that any solution of each of them, conesponding to a nonzero eigenvalue, also satisfy (4.1).
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As in Section 2, we consider the bounded linear operator T : X -> X defined by T(/, r) = (m, f) e V and 

a((n,f), (y,/)) = (/((/, r),(y,/)), V(y, /) e V. (4.4)

By virtue of Lax-Milgram Lemma, we have

||(m,|)|| < C|(f, r)|.

Since a and b are symmetrical, T is self-adjoint with respect to a. Clearly, (/.. (m, f)) is a solution of problem (4.3) 
if and only if (, (m, f)) is an eigenpair of T.

The following proposition states a priori estimates for the solution of problem (4.4) depending on the regularity of 
the data.

Proposition 4.1. Let (u,f) be the solution of problem (4.4). There exist constants r e (1/2, 1] and C > 0 such that
• if t e L2(D, u e H1+r/2(f?) and

l|w||l+r/2 < C||T||o,r, (4.5)
• if r e He(D, with e e (0, r — 1/2), u e H~/2+fS7) and

I|m||3/2+c < C||r||6,r, (4.6)
• if r e Hl'2(D, u e Hl+r(ff and

hlll+r < C||r||iAr- (4.7)

Proof. It follows directly from classical regularity results (see [10]). □

In the previous proposition, r = 1 if f? is a convex region and ref, with 0 being the largest interior angle of f?, 
otherwise (see [13]). Notice that, as a consequence, the eigenfunctions (u„, ¿¡„) of T belong to H1+'(f?) x H1/2+'(L) 
and satisfy

Kllt+r < cII(«„,<„)II• (4.8)

Now we introduce the nonconforming finite element spaces

Ch := {& e L2(L) : %h\c e Ptf), W c If.

and

Vh := {(vh, ///,) e CRh < Ch : = t'/dts Vf C If.

Let au and bh be the symmetrical bilinear forms defined by

«/,((«, f), (t>,//)) := [ aXu-Xv+ / fiuv + / V(m, f), (t>, //) e V + Vh,
TeTh Jt Jn Jr

bh((u,f),(v,^) :=b((u,f),(v,ri)), V(u,f),(v,^) eX.

Then, the discretization of the spectral problem (4.3) is given by
Find kh e R and (iih, ^h) e Vh, (Uh, ^h ) f=- (0, 0), such that

aiMuh, &f), V’h, %)) = O-h + l)b((Uh, fz,), (vtl, rihf, ///,) e Vh. (4.9)

By choosing

( , \1/2II (l’h, 1]h) II/! : I ' Il’h | i j + || Vh ||q + || tpi ||q p ) 
\r&Th ’ ’ /

as a norm over the space V + Vh, the continuity of the imbedding (2.4) follows immediately and the condition (2.3) is 
obviously satisfied. Also, it follows from the definition of the discrete nonns || ■ ||/, that the approximate bilinear fonns 
ah are coercive unifonnly on V + Vh .
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Now, we consider the bounded linear operator T/, : X —* V + V/, defined by T/, (/, r) e Vh and

ah(Th(f, r), (vtl, ilh)) = b((f, r), (vtl, ///,)), V((>/,,///,) e V/,. (4.10)

The spectral convergence results rely on properties Pl, P2 and P3. The proofs of these properties for this 
nonconforming finite element approximation are standard but we include them for the sake of completeness.

Theorem 4.2. (P2) For each eigenfunction (m, f) o/ T associated to X, there exists a strictly positive constant C such 
that

inf ||(m,|) - (vh, VhiWh < C/2''||m||i+,-.(vh,iih'ieVh

Proof. Since u e H1+' (f2), u e C°(f2). So, the piecewise linear Lagrange interpolant of u, u1, is well defined 
(see [8], for instance). Moreover, u1 e Vh A /V1 ( <2). Then, we can choose Vh = u1. By using a suitable trace theorem 
and standard interpolation results, we obtain

Ilf - i?/illo,r = IMr - vh\e\\o,c < C p2_1/2||M - u/jUo.t + A1/2|m - w/dpr]

< C/2''+1/2||M||i+,-r, VfcT (4.11)

and

\\u — vh || t,r < Ch1 \\u || i+r,r. (4.12)

Now, combining (4.11) and (4.12) with the definition of || ■ ||/,, we can write

|| (M, f) - (Vh, 1]h)\\h < C/2''||M||l+r.

So, taking the infimum with respect to (vi,, i]h) e Vh, we can conclude the proof. □

Theorem 4.3. (Pl) There exists a positive constant C such that

II (T - Th)(f, rf\h < Chr/2\\(f, r)\\h, V(f, T) e vh.

Proof. Let (u, »;) := T(/, r) and (uj,, ///,) := Th(f, V), for any (/, r) e V/,. From the second Strang’s Leimna 
(see [8]) we have

||(m, f) - (ma, f/!)||/! < C | inf \\(u,^) - (Vh^uCWh

ah((u,%}, (wh, Xhll ~ b((f, r), (wh, x/!))\ Z/1
+ sup ------------------- --------------------------------- i. (4.13)

(wh,Xh)eVh IKwa, X/JIIa /

To bound the first term in the right-hand side of inequality (4.13), we repeat the arguments used in the proof of 
Theorem 4.2. By using estimate (4.5), we obtain

inf ||(22,e)-(t;Z1,/?Z1)||Z1 <C/2r/2||(f,T)||Z1.
(vhcih'i eV/,

Now we are going to bound the second term. By testing (4.4) with adequate smooth function, it is simple to show 
that u satisfy the following strong problem:

—div(cxVzi) +/?« = 0 inf?,
du (4.14)

a— + f = r on / .
3n

where f = u\r-
Multiplying Eq. (4.14) by w/, e Clf, and integrating by parts, it is straightforward to see that

r—< f dll
ah((u,^), (wh, x/i)) - b((f, r), (wh, xz«)) = ) I a — wh,

dn 
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where xa = w/, |p. Notice that, since f e CRh, r e He(D. So, from estimate (4.6), we have u e 77',/2+< (O) which 
gives a meaning to the integrals /' a^Wh on each edge i.

Let us denote by El the jump across an inner edge i e £h- Then, we can write

«■—\ f dll 
ah((u^)Awh,Xh))-b((f,T),(wh,Xh))= > / a — Ew/J. (4.15)

9n

Let Pc denote the L2(O-projection of EC (£) onto the constants. For £ e £/,, let Ti,T2 e Th be such that 7) n 7'2 = t. 
Since Ew/J is a linear function vanishing at the midpoint of I, we have

Now, if Pt denotes the L2(T)-projection of 77< + l'/2(7') onto the constants, by using a trace theorem and standard 
error estimates for the /.^-projection, we obtain

< ^2 11°^« ■ n - Pt^Vu ■ n)||0(||(wZ!|r;) - PT(u’h\Ti')\\o.t
< = 1,2

< C (C^^W^uWr^A (t1/2 II wh || 1,7-9 . (4.16)
< = 1,2

Summing up on all the edges I e £h and using estimate (4.5), we can write

|a/,((M,f), (wA, x/,)) - ¿((f, r), (wA, Xh))\ < Chr/2\\(f, r)||(wft, Xh)\\h,

which allows us to conclude the proof. □

By virtue of the previous theorems, the spectrum of T/, furnishes the approximations of the spectrum of T as we 
stated in Section 3.

Theorem 4.4. (P3) There exists a positive constant C such that

||(T-TZ1)|e(v+va)||/1 < Chr.

Proof. For (x, 0 e E(V + Vh), (m, f) = T(x, 0 e Hl+r(Sl) x H1/2+' (D. Then, we proceed as in the proof of 
Theorem 4.3 with (/, r) substituted by (x, 0. □

Observe that, since T and T/, are self-adjoint, properties P4, P5 and P6 are equally valid.
Now, we are going to estimate the consistency terms appearing in Theorem 3.14. Notice that Mh and M*h  also 

coincide because of the symmetry of ai, and b.

Lemma 4.5. Let

Mh= sup sup |a/dT(x,0, 7T/0v, 0)-b((x,0, TT/d.v, <0)|,
Cv.f)iE(V+VA) (y.^GEfV+V/,) 

ll(A,f)||A=l ||(y,?>)llA=l

with Ilh being the projection onto Vh with respect to ah, defined by Eq. (3.3). There exists a positive constant C such 
that

Mh < Ch2r.
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Proof. Let (x, 0 e E(V + V/,) with ||(x, 0||/, = 1 and let (w, x) = T(x, 0. From (4.7), we have (w, x) e 
H1+'Kl2) x H^2+'\D and

IM|i+r < C||(%, 0|K < c.

Proceeding as in Theorem 4.3, it can be shown that (w, x) satisfy the following strong problem:

—div(cyVw) + fw = 0 
dw

+ X

in 12,

onT,
(4.17)

where x = w\r-
Now, consider any function (y, <p) e E(V + V/,) with ||(v, <p)Ha = 1. We denote by (y/,,^/,) = IIh(y,(p).

Multiplying Eq. (4.17) by y/, and integrating by parts, it is straightforward to see that

x), nh(y,<p)) - bh((x,^), nh(y,<p)) = V" / aVw-nyj. 
TSTh JsT

Since yh e CRh, we proceed in this case as in the proof of the previous theorem, with Ew/J substituted by Ey/,11, and 
we obtain

\ah((w, x), nh(y, <pYi -bh((x,£fnC'.\ <0)|

We can write

11» - FT(»)||o,i’ < IK» - y) - Pr(yh - v) ||o,t + h - PryWo.t- (4.19)
Since (y, <p) e E(V + Vh), y e H1+/'(i2). Then, the terms in the right-hand side of inequality (4.19) can be bounded 
directly. In fact, using standard error estimates for the Pt -projection, we have

IK» - y) - Pr(» - y)llox < Chl/2\\yh - y||i,r (4.20)

and

Wy-PryWox < cO’/2+r\\y\\w. (4.21)

On the other hand, w e H1+'(l2)forr > 1 /2. So, once again, by using standard error estimates for the Pt -projection, 
we have

||<yVw ■ n — PT(aVw ■ n)||o,t < Ch'-1^2||w||i+,;7’. (4.22)

Thus, combining inequalities (4.18)—(4.22), summing up on all the edges f e £/,, using Theorem 4.2 and estimate 
(4.8) we conclude the proof. □

Theorem 4.6. There exists a positive constant C such that 

max \X - Xnt\ < Ch2r.

Proof. It is an iimnediate consequence of properties P2 and P3 and the previous lemma. □

4.2. Eigenvalue problem for a system of partial differential equations

Now we consider the following spectral problem:
Find e R and (m i, 112) (0, 0) such that

—Ami — div U2 = Xmi in 12, 
Vmi + U2 = ÀU2 in 12,
mi = 0 on r.

(4.23)
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The same problem is considered in [11,12] where a conforming finite element method was proposed and analysed 
and optimal order error estimates were proven. Here, we introduce a low order nonconforming space for dealing with 
problem (4.23). By applying the abstract theory developed in Section 3, we prove that this method yields the same 
order of accuracy.

We begin by giving a thorough spectral characterization of this problem.
The second equation in (4.23) implies

—Ami — div U2 = —X div U2.

Hence, if X 0, u i is a solution of the following problem:

(4.24)

Let (<y„, <p„) denote the eigenpairs of the Laplace equation with Dirichlet boundary condition. Then, = 1 + is 
an eigenvalue of problem (4.23) with (</>„, A.“1 V</>„) being the associated eigenfunction.

Now, if A = 1, the unique solution of problem (4.24) is mi = 0 and, by using the first equation in (4.23), it follows 
that our problem has eigenfunctions of the form (0, curl ) for any i/z e

Finally, from the second equation in (4.23), it is immediate to see that the eigenfunctions associated to the 
eigenvalue A = 0 have the form (f, -Vf), with f e H' (12).

Let X := (L2(12))3 and | (m i, U2)| be the standard L2-nonn. Let V be the subspace of X defined by V := 
HpO) x (L2(12))2, endowed with the usual product norm ||(i’i,V2)|| := (||i’t|||+ ||v2||5)1/2.

Let a be the symmetrical bilinear form defined on V x Vby
r r r r p

a(u, v):= / Vmi ■ Vt>i + / Vmi-V2 + / U2 ■ Vt>i + / Mit’i + 2 / U2 ■ V2.
Jn Jq Jq Jq Jq

Is simple to show that the form a is continuous on V. Moreover, using the inequality

2y Vmi ■ v2 > - (e2||VMi||2 + ^||U2||2^ , 

with e > 0, the coercivity of a on this space follows directly. Let b be the bilinear and continuous form defined on 
X x Xby

b(u, v):= / Mll’l + i U2 ■ V2-
Jn J a

The variational formulation of the spectral problem (4.23) is given by:
Find /. e R and u e V,u 0, such that

(4.25)

In order to analyse the spectral problem (4.25), let us introduce the following bounded linear operator:

T : X—> X
(f, g) F- (M1,U2),

with (mi, U2) being the solution of the elliptical problem

a((M!,u2), (i’i, v2)) = b((f, g), (i>i, v2)), V(t>i,v2)eV. (4.26)

Then, T is self-adjoint and positive definite with respect to a and b. It is clear that (/.. u) is a solution of problem
(4.25) if and only if (^-¡-, u) is an eigenpair of T. Since the eigenvalues of problem (4.25) are positive, then those of 
T satisfy 0 < < 1.

The operator T is not compact. In fact, the eigenspace corresponding to eigenvalue A = 1 is Ki = {(0, curlf), f e 
and the corresponding one to /. = 0 is Ko = {(</>, e both having infinite algebraic

multiplicity, proving the noncompactness of T.
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On the other hand, by virtue of Lax-Milgram Lemma, we have

||(«1,U2)|| <C|(f,g)|. (4.27)

As a consequence of the classical a priori estimates for the Laplace problem, the eigenvectors of problem (4.25), not 
corresponding to A = 0 or A = 1, satisfy some further regularity. In fact, («i, 112) e H1+' (i?) x (7F(f?))2 for some 
r > 1 /2, depending on the geometry of 1?, and there holds

hllll+r + l|U2llr < C|(M1, U2 ) I - (4.28)

Denoting by Pi(F) the set of functions on T which are the restrictions of linear polynomials, we introduce the 
following finite element spaces:

Sh := {Di e //'(F) : t7i|:r e Pi(T), VT e 7/,},

Rh := {17, e Sh : vh = 0 on F},
U1A := {Vt7, : Vh e Rh},
U2/, := {curl vh : vh eSh}.

Next, we consider the discontinuous finite element space

W\h '■= {i’h e CRh : Vh = 0 at the midpoints of all I c F}

and we define the spaces

W2A := U1A ® Ü2A
V/, := IV, a x W».

Let ah and bh be the symmetrical bilinear forms defined by

Now, we are in order to define a discrete analogue of problem (4.25).
Find kh e R and ua e Va, ua 0, stich that

ah(Uh,vh') = (d-h + 1)£(ua, va), Vva e Va. (4.29)

By choosing 

IIvaIIa =

as a norm over the space V + Va, the continuity of the imbedding (2.4) follows immediately and the condition (2.3) is 
obviously satisfied. Also, it follows from the definition of the discrete nonns || ■ || a that the approximate bilinear fonns 
ah are coercive unifonnly on V + Va.

Let Ta be the linear bounded operator given by

Ta : X -> Va

(/, g) (»1A, U2A),

with (mia, U2a) being the solution of the discretized source problem

iZA((MlA’U2A), (i’1A’V2a)) = £((/, g), (i’1A,V2a)), V(t>iA, V2A) 6 V;,.
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As is shown below, the spectra of these discrete operators provide good approximations of the spectrum of T. 
Moreover, the operators T/, have eigenspaces providing good approximations of the infinite dimensional eigenspaces 
K| and K2 of T with exactly the same eigenvalues.

Theorem 4.7. For kj, = 1, ///, = 1 is an eigenvalue of T/,. Furthermore, if Ky, denotes the corresponding
eigenspace, then

Ki n V/( = {(0, curlf/J, f/, e S/,} c Ky,,

and

Ki n V/, = Ku, n (Rh x W2A).

Proof. We note that every («u, U2Z,) e Kp, is clearly an eigenvector of T/( associated to >./, = 1. In fact, from (4.29) 

5 / U2A ■ Von, = 53 / curl_7, ■ Vt>i/, = 53 / curlf/, ■ ni>i/,
tStJt TeThJT TeTflJi)T

r _  r
= 52 / curlfh ■ nHuuJ + V / curlfh ■ vih-

JC ccrJe
ipr

Now, since f/Jr e Pi(T), curl 77, ■ n takes constant values on each edge of the triangulation. On the other hand, 
for any t>i/, e Wy,, Ei’i/Jlr is a linear function vanishing at the midpoint of I. So, we get

V I curlfZ! ■ Von, =0. (4.31)
TeTh

Now, let (mi/,, U2) e V/, such that T/,(mi/,, U2/O = ^(«i/,, U2). From Eq. (4.29), it satisfies

y f V«iZ1 . v2/, = 0, V(0, v2/,) e V/,. (4.32)
TFTh Jt

Since we are assuming that u\h e Rh, 'Suih g W2/,. Then, from (4.32) it follows that uy, is piecewise constant. 
But, uih g Wift, so u\h = 0 in O. Now, testing (4.29) with ( 0) we have

U2ft ' = 0, Vd-i/,,0) eV/,.

Since U2ft g W2A, we have U2A = V</>/,+curlf/,, with </>/, e R/, and 77, e Sh. Taking into account the orthogonality 
(4.31), we conclude that

5 , f Wa ■ Vi’u, = 0, V(0) e V/,.
TsT„ “r

Then, Vyy = 0 and hence u/( = (0. curl 77,). □

Theorem 4.8. For /./, = 0, ///, = = 1 is an eigenvalue of T/, with corresponding eigenspace

Kih = K2 n V/, = {(«ih, U2ft), tiih e R/,,U2/i = -Vmi/J.

Proof. We note that if X/, = 0 and («u, U2/,) g V/( satisfies T/,(mi/,, U2/,) = (iq/,, U2/,), from (4.29) we get

5 / +U2/J ■ V2A = 0, V(0, V2/,) e V/,. (4.33)

Since U2ft g W2A, it can be written as U2/, = V</>/, + curl f/,, with <ph e R/, and f /, e Sh. Then, by taking V2/, = curl fh 
and using the orthogonality (4.31), we can obtain

/•
53 / curlf/, ■ curlV'7, = 0, Yfh e Sh-

TeTh JT
(4.34)
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So, from (4.34) it follows that curl//, = 0.
Now, by considering V2Zi = V0Zi, we further obtain

^2 / (Vmu, + V^/,) ■ V0Zj = 0, V0Z, e Rh-
Tel

On the other hand, by testing (4.29) with (t>i/,, 0), we have

(4.35)

J2 / (Vmi/, + ■ Von, = 0,
TeTh

Vi’i/! e Wih. (4.36)

By using <f>i, = <pi, in (4.35) and t>iZi = un, in (4.36), we may write

^2 / (VmÌZì + V<pZi) • (VmiZî + V<pZi) = 0. 
TeTh

(4.37)

So, (mu, + <pi,) is piecewise constant and since (uu, + <pi,) e Wi/t, we deduce directly that («u + ^Z!)|r = 0, VT e 
Th. □

Now, we are going to prove that the eigenvalues of T in (0, 1/2) and their eigenfunctions are well approximated 
by the nonconforming discretization considered here. To do that, we need to prove properties Pl, P2 and P3.

Theorem 4.9. (P2) For each eigenfunction u of T associated to /. e (0, 1/2), there exists a strictly positive constant 
C such that

Proof. Since ui e H1+r(O), m e C°(f2). So, m{, the piecewise linear Lagrange interpolant of «i, is well defined

inf ||u - v/,11/, < CA''|u|.
v*eV/,

(see [8], for instance). Moreover, u{ e Wyt n Then, we can choose t>iZ! = u[. By using standard error
estimates, we get

lint - t’l/illi.r < Ch1 ||mi||i+,;7’.

Since U2 = A.-1 Vm 1, we can take V2Zi = 1 Vo 1 z, and we get

(4.38)

l|U2 — V2Z, ||o, < C/i''l|U2||,-,i2- (4.39)

Now, combining (4.38) and (4.39) with the definition of ■ ||z, and estimation (4.28), we can write 

l|u-VZ!||Z! < C/2r|u|.

So, taking the infimum with respect to vZ( e VZj, we can conclude the proof. □

Theorem 4.10. (Pl) There exists a positive constant C such that 

ll(T-TZ!)(f,g)||Z! <C/2'-||(f,g)||Z!, V(/,g)eVZ1.

Proof. Let u := T(/, g) and uz, := TZj(/, g), for any (/, g) e VZi. Since Vz, V, we apply the second Strang’s 
Leimna (see [8]), which in this case reads:

/ . f , aZî(u, wZî )-/?((/, g),wZî)\
I inf ||u- vz, ||z, + sup ------------ ----- ---------------|.

w/jGV/j IIWAh yII wZi ||Z;
(4.40)

We begin the proof by bounding the first term in the right-hand side of inequality (4.40). To do that, we may test
Eq. (4.26) separately with (0, V2) and (tq, 0), for any V2 e L2(f?) and tq e Hp(Q). Then, we obtain that (wi, 112) 
satisfies

Vmi + 2U2 = g (4.41)
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and that

/ Vmi ■ Vt>i + / U2 ■ V(>1 + / mii>i = / /t>i, Vt’i e HpSl).
Ja Jq Jq Ju

Now, since g e W^, we can write the orthogonal decomposition

(4.42)

(4.43)

with iph e Rh and f/, e Sh. So, by using Eqs. (4.41)—(4.43), we have 

f (^<Ph - Vmi) ■ Vt>i + [
■ il

I Vmi -Vi>i + - 
Jil -J J

= I f 1>1, Vt>i e HpQY 
Jil

Let w e Hp(Q) be defined by w = m + <ph- Then, w satisfies

(4.44)

~ i Vw Vt>i+ i wvi= i (f+ </%)(’i, Vt>i e 
¿Jil Jil jq

and is shown to be the solution of the following problem

(4.45)

(4.46)

/ MH>1

From the a priori estimates for this problem, it turns out that w e H1+' (i?) with

IMI1+,- < C\\f + w ||o < C(||f||o+ ||VW!||o) < C|(f,g)|. (4.47)

Arguing again as in Theorem 4.9, w1, the piecewise linear Lagrange interpolant of w, is proved to be well defined. 
Choosing, 

we can obtain
1/2

<CA'-|(f,g)|,

and, finally,

inf ||u — v/; II/, < C/2r|(f, g)|.
v*eV/,

It remains to bound the second term in Eq. (4.40). We multiply Eq. (4.46) by t>i/, e Wyt and integrate to obtain

1 12 ( i Vw ■ V t’lz‘ “ /
2 reT/, 7 173

Now, taking into account that

f wvlh = I (f + <ph)vih. 
a J a

(4.48)

and replacing g by the orthogonal decomposition (4.43), we deduce



196 A. Alonso, A. Dello Russo / Journal of Computational and Applied Mathematics 223 (2009) 177-197

= \^ \ [ Vw ■ niq/, + - [ curl/, ■ Vup, I. (4.49)
T^rh 'J3T 2 J

Now, as shown in the proof of Theorem 4.7, for every e Si,,

V / curl ■ V (>!/,= 0.
TeTf,

Multiplying Eq. (4.41) by V2h e W2ft and adding to Eq. (4.49), we have

iz/,(u, V/,) - Z?((f, g), V/,) = 32 / Vw nt>iZ!.
TeTh JdT

Now, because w e H1+r (i?), we can proceed as in the proof of Theorem 4.3 to obtain

|aZ1(u,vZ1)-Zi((/,g),vZ1)| <CAr|(/,g)|||vZ1||Z1, (4.50)

which allows us to conclude the theorem. □

Theorem 4.11. (P3) Let E(V + V/,) be the direct sum of the eigenspaces of T associated to its eigenvalues 
/. e (0, 1/2). There exists a positive constant C such that

||(T -T^lEiv+v.) \\h <Chr.

Proof. For (/, g) e E(V + V/,), u = T(f, g) e H1+r(i?) x (H'/i?))2. From second Strang’s Lemma (see [8]) we 
have

„ f , flft(U, Wft )-/?((/, g),Wft)\
u-Uft||ft<C| inf ||u — v/; ||/z + sup ------------ ----- ---------------|.

yv/jGV/j w/jGV/j IIWAh y
(4.51)

IIW/, || A

Because of Theorem 4.9, it only remains to bound the second term in the right-hand side above.
By testing (4.26) with adequate smooth function v, it is simple to show that u satisfy the following strong problem:

-Ami - divu2 + Mi = f ini?, 
Vmi + 2u2 = g in i?,
mi = 0 on r.

(4.52)

Multiplying the first equation by tq/, e W\h, the second one by V2h e W2ft and integrating by parts we obtain

So, proceeding identically as in the proof of Theorem 4.3, we are able to prove an inequality similar to (4.50). Then, 
we conclude the proof. □

Lemma 4.12. There exists a positive constant C such that

Mh= sup sup \aifTx, nhy) - b(x, nhy)\ < Ch2l\ 
xgE(V+Va) yiE(V+VA)

Wa=i llyllA=i

with ITh being the projection onto V/, with respect to ah, defined by Eq. (3.3).

Proof. The proof runs ahnost identically to that of Theorem 4.11. □

Theorem 4.13. There exists a positive constant C such that 
max \L — Lih\ < Ch2r.
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Proof. It is an immediate consequence of properties P2 and P3 and the previous lemma. □
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