
Physics Letters B 673 (2009) 72-76

ELSEVIER

Contents lists available at ScienceDirectPhysics Letters B
www.elsevier. com/locate/physletb

BPS equations and the stress tensorE.F. Moreno3 *, F.A. Schaposnikb l
a Department of Physics, West Virginia University, Morgantown, VW 26506-6315, USA
b Departamento de Física, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata, Argentina

ARTICLE INFO ABSTRACT
Article history:Received 14 November 2008Accepted 26 January 2009Available online 30 January 2009Editor: M. Cvetic

We exploit the relationship between the space components Tij of the energy-momentum tensor and the supercurrent to discuss the connection between the BPS equations and the vanishing of the components of the stress tensor in various supersymmetric theories with solitons. Using the fact that certain combination of supercharges annihilate BPS states, we show that Tij = 0 for kinks, vortices and dyons, displaying the connection between supersymmetry and non-interacting BPS solitons.© 2009 Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

First order BPS equations were originally obtained either by looking for a bound of the soliton mass [1] or by imposing the stress tensor to vanish [2], Already in this last work the rela­tion between supersymmetry and the possibility of reducing the second order equations of motion to BPS equations at certain crit­ical values of the coupling constants was stressed and afterwards exploited in the search of classical solutions to two-dimensional supersymmetric models [3],The origin of such a connection was finally clarified by Wit­ten and Olive [4] by considering the supersymmetric extension of bosonic models exhibiting topological soliton solutions. Study­ing the supersymmetry algebra, it was shown in this work that the soliton topological charge can be identified with the central charge of the supercharge algebra and gives a lower bound for the soliton mass. This was done for the supersymmetric version of a scalar field theory in 1 + 1 dimensions with kink solutions and a .V = 2 Yang-Mills theory in 3 + 1 dimensions with dyon solutions. Afterwards, the case of vortices in JV = 2 supersym­metric gauge theories in 2 + 1 dimensions and instantons in 4- dimensional Euclidean space was discussed along the same lines [5-7] and the extension to the case of supergravity models was also studied [8], The question on how supersymmetry protects the Bogomol’nyi bound at the quantum level also deserved a lot of at­tention [9,10],We show in the present Letter how the alternative derivation of BPS equations from the vanishing of the soliton stress-tensor 
Tij (i, j = 1,2,3) can be also understood supersymmetry point
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of view studying the supercurrent-supercharge algebra. As it is well known, the algebra of supersymmetry itself already imposes a very intimate relationship between the supercurrent and the stress tensor. This relationship stems from the connection between the energy-momentum tensor and the supercharge [11], In fact, both the supercurrent and Tgp must belong to the same supermultiplet and then it is not difficult to understand how an identity between the stress tensor and an appropriate trace containing the super- symmetric transform of the supercurrent connects BPS states and the condition
(BPS | T,j | BPS) =0. (1)
In order to construct the supercurrent and show how its connec­tion with the energy-momentum tensor leads to Eq. (1) we will work with specific models having BPS (1 + 1 )-dimensional kinks and 2 + 1 vortices and also explain how the results can be easily extended to the case to BPS dyons in 3 +1 dimensions. In fact, our derivation indicates that the same result should be also valid for any other model with BPS soliton solutions.It should be mentioned that our work was prompted by a re­cent work of Manton [12] where new scaling identities for solitons are derived in terms of the stress tensor, showing the relevance of Tij in connection with the study of soliton solutions. As men­tioned above, already in the case of vortices it was recognized [2] that the critical point at which the topological bound for the energy of the Abelian Higgs vortices is saturated corresponds to the limiting value between type-I and type-II superconductivity, precisely where forces between vortices (and hence the surface in­tegral of Tij) vanish [13], We shall see below that supersymmetry provides a way to construct models where general noninteracting solitons equations can be studied by analyzing the Noether super­current.
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2. Scalar Held theory in two dimensionsThe action for the simplest two-dimensional supersymmetric model admitting solitons in its bosonic sector reads, in component fields [14],
S = /with <j> a real scalar field, 0 a 2-component Majorana spinor, F an auxiliary field and V[0] an arbitrary function. We take the metric 
gf/v with signature (+, — ) and the Dirac matrices aso I 0/ = a2 = (.With this conventions the charge conjugation matrix satisfying C • 
yP . c1 = — yP is given by C = —y°. Given a spinor

SF = and the associated conserved supercurrent is (8)where the auxiliary field has been eliminated using its equation of motion. More explicitly,¿(3_0)0+ + V0 \V(3 0)0- - Vó ) '( -(3_0)0+ + V<jr_\ (3+0)0_ + V0+The chiral components Q± of the supersymmetry charge take then the form

the charge conjugate 0C is then0C =C0r =0* 
tp = ipTy0

so that 0+ and 0_ are real and0 = 1(0—, — 0+)-The energy-momentum tensor associated with action (2) takes the form

Q+ = j dx{(3_0)0+ + V^},Q_ = y’dx{(3+0)0_-V0+}, (10)
with 3± = 3o ± 3i. Concerning Q, one has Q = Qly° = (ÏQ . -1Q+).The equal-time commutations/anticommutation relations are 
[tpW, 3o0(x')] =i3(x-x'),{0+(x), 0+(x/)} = <S(x — x7 8),{0_(x),0_(0)}=3(x-x'). (11)From this, one finds for the supercharge algebra (in the rest frame) {Q±, Q±} = 2(M ± Z), where 
M = y dx Too-

Concerning Z, it is given by
(12)
(13)
(14)where W'[0] = V[0] and coincides with the topological charge which is non-trivial for soliton states.In order to find the Bogomol’nyi bound, Witten and Olive con­sidered [4] the combinations

~ |fr»(9a03“0 - V' +iïry0ldatlf - V 00)
and its symmetric on-shell components (3) Then, writing

(15)
(16)

Too = ^((3o0)2 + O10)2) + |v2 + ^V'00 -Tn = |((3o0)2 + (310)2) - - ^V'<H + ^0Z°3o0,Toi = 3o0910 + |0y°3i0,Tio = 9o03i0 - ^tlry1dotl'-

The (off-shell) supersymmetric transformations leaving (2) invariant are

2M = Z + (Q++ Q-)2,2M = -Z + (Q+-Q_)2, (17)(4)(5)(6)action

one finds that the soliton mass M is bounded by the topological charge,|Z| (18)and that the bound is attained for those states |BPS)± such that(Q+ + Q_)|BPS)+ = O (19)or
8<j> = e

Sip = —iftipe + Fe, (7)
= (firp + iVjy^,

Jo = W =
Ji = ~^<t> + ¡V)yltp = ) (9)

(Q+ - Q_)|BPS)_ = 0. (20)In view of the explicit form of charges these states correspond to kink solutions satisfying the first order BPS equations3o0 = O, 3i0 = V, + kink, (21)3o0 = O, 3i0 = — V, -anti-kink, (22)which can be written in the form3+0 - V = 0, 3-0+ V = 0, + kink, (23)3+0 + V = 0, 3_0 — V = 0, -anti-kink. (24)Each of the BPS kink solutions break half of the supersymmetry of the theory according to the choice among Eqs. (19) or (20).Let us now study the supercurrent-supercharge anticommuta­tors. In particular, from the canonical commutation relations (11) one has
{^,Qp}=2iyafi/jT/‘+2iy5a^F (25)
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with J1' the supercurrent and the topological current,1'' = v<^vdv<p, (26)related to the central charge through the identity
1 dxE° = Z. (27)Writing
¿MW (28)one easily finds
[y\M}=2\y\yv}Tl + 2i{y\y5] 1 (29)= -4111. (30)Explicitly, the l.h.s. takes the form
and then (32) (33)From these two equations, one can stress-tensor write two identities for the
i'll = -4U1+ + Ji-, Q+ - Q-LTn = - Ji-, Q+ + Q-}-Then, in view of (49)—(50) and being the currents Ji± given by

(34)(35)
(36) (37)we conclude that either + (BPS|r11|BPS)+=O (38)

Concerning boson fields, Alt is an Abelian gauge field, F^v its cur­vature, <j> a complex scalar and N a real scalar field. The covariant derivative is defined as
D+ ieAfj. (42)Note that the coupling constant in the gauge symmetry breaking scalar potential is taken as A = e2/8, the condition required in or­der to have N = 2 supersymmetry. Fermion fields i// and S are Dirac fermions and00 = (ijf-e/)0. (43)The energy-momentum tensor components of the bosonic sector are

+ l(Di0)*Dj0+l(Dj-0)*Di0,
Too = ¿B2 + ||Di0|2 + (|0|2 - 0o2)2, (44)
where B = Fi2-Action (41) is invariant under the following JV = 2 supersym­metry transformations 3A/( =-i//cygÀ, 8tp = r)ct¡r,

8i¡r = - {8k)1/2N<J>i]c, 8N = ficX,

8X =-ile^Ffivyy + (2Ä)1-(|0|2 - 0O2) + i^N^, (45) 
with i]c a complex (Dirac spinor) parameter.The Noether supercurrent associated with invariance of action (41) under transformations (45) isJ'' = Be (-¿e*V>-F^n + ¡W - f (I0I2 - 0O2 ) j y/' x 

+ Tlc (¡(00)* - |n0*)}^0 + ty>‘ ( -¡00 - |w 
+ Sy^f-^e^F^-i^N - |(|0|2 -0o2))/?c, (46)

or so that the conserved charge Q can be defined as_ <BPS|Tn |BPS)_ =0. (39)That is, BPS saturated states preserving half of the supersymmetry correspond to states with vanishing stress tensor.
Q = -J— f d2xj°.

V 2e0oJWriting
3. Scalar QED in three dimensions

Q = »)cQ +
(47)
(48)

Our conventions for /-matrices, )a& are
y° -Ci)
with the metric with signature (-1-------).The JV = 2 supersymmetric action associated with the Abelian Higgs model is

one finds

One can now compute the supersymmetry algebra among super­charges Q and Q. Since this will be connected with the Bogo- mol’nyi bound for the Abelian Higgs model, we shall put N = 0 and, after using fermion anticommutator relations we shall also(41)
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put all fermions to zero. As one is interested in static configura­tions with finite energy one should also impose Ao- The answer is{Q«,Qi} = (}'o)(/PO+3(/Z, (51)whereP° = —/’d2xTOo = M, (52)e20o Jand the central charge Z is given byZ = ^4/d24eB(l^l2-^2)+ieiJ(D^)(D^)*]- i53)
Here i, j = 1,2.One can see that the central charge (53) coincides with the topological charge (the quantized magnetic flux) of the vortex con­figuration. Indeed, Z can be rewritten in the formZ = y a.Vd2*, (54)
where V is given by

= + 1551so that, after using Stokes’ theorem (and taking into account that D|0 • 0 at infinity)1 / , 7THZ=-lA,dx' =—. (56)e J ewith n e Z an integer characterizing the homotopy class to which A, belongs.Let us now introduce the projectorP± = ^(l=FZo) (57)and defineQ± = P±Q- (58)Then, we project Eq. (51) with V and take the trace getting 
[Q±a,Qla}=M±Z. (59)Taking the expectation value of (59) in an arbitrary state and since the anticommutator of an operator with its adjoint is a positive definite operator we conclude that|Z|or

e
(60)
(61)which is the Bogomol’nyi bound for the vortex mass. For positive (negative) values of n the bound is attained only if the state is annihilated by Q+ (Q_),Q±|BPS)± = 0. (62)In terms of components this is equivalent to the condition(Q+ ± ¡Q_)|BPS)± = 0. (63)In view of Eqs. (49)-(50), (57)-(58), Eq. (62) imply

B = =f|(0o2 - I0I2),Di0 = =piD20, (64) which are the BPS equations for the Abelian Higgs model. Due to (61), their solution also solves the static Euler-Lagrange equations 

of motion. As in the kink case, according to the choice of sign in the BPS equations, the corresponding solution will break half of the supersymmetries. Let us finally insist that the condition Ze2 = Z/8 necessary for this last fact, arises in the present approach from the requirement of N = 2 supersymmetry.In order to connect supersymmetry with conditions on the stress tensor, we will analyze the supercurrent-supercharge alge­bra in the bosonic sector of the model. The relevant terms in the supercharge Q and the spatial components ¿7 of the supercurrent leading to (static) bosonic contributions are
(65)

(66)where we have written the supercurrent ¿7' in the form
J'= f]cJ'+ ~J't]c, (67)and ellipsis • • • indicate irrelevant terms which will be ignored from here on.From Eqs. (65) and (66) we find that
{4. = ^{| + T^l2 -^o2)2 + 4^l2)r4

+ 1((00)*D,0 - (68)
and henceTr(/{4 Q}) = ||| (b2 - |2(|0|2 -0o2)2 - |O^I2pJ'

+ (D'0)*DJ0+ (DJ0)*D'0l. (69)
Now, the r.h.s. is nothing but the symmetric stress tensor as de­fined in (44), so that
In particular we have{4 + 4- Q+ + ¡Q } = ^(Tn + fT2i),

e0o{4 _ Î jl. Q+ _ f Q_ ) = _ ^ ( rn _ ¡T21 ), e0o{+ fjl. Q++ ÏQ-) = —y-(T12 — fT22),e0o{4 - ijl - Q+ - i Q- ) = - ( T12 + i T22 ).e0oBut
4 ±¡4 = -(b =f |(i4 -4)^+ =f!'£~)+ (f(D10)*±(D20)*)(^+±iV-),
4 ± !'4 = ±!'(ß =f |(i4 - 4)^+ =f+ f(f(D10)*±(D20)*)(^+±iV-).

(70)
(71)
(72)
(73)
(74)
(75)
(76)
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Then, analogously to the kink case, either one has (Q+ + iQ-)|BPS)± = 0, or (j’X + 0-)|BPS)± = 0 and (j2+ + ijl )|BPS)± = 0 (a similar statement is valid for (Q+ — iQ ), (j^ — ijL), and 
Gl-ijl)).

So we can write for BPS vortex states±(BPS|r,j|BPS)±=O. (77)At this point, it should be stressed that Eq. (70) from which the vanishing of the stress tensor components was inferred is in general valid for other supersymmetric models in which one can writerij=A<iTr()/i{Jj,Q} + )/j{Ji,Q}), (78)where Tq is the symmetric stress-tensor and jVd a constant de­pending on the parameters of the specific model. This is valid for the kink (Eq. (25)), for the vortex (Eq. 70) but also for the dyon, the instanton taken as a soliton in (4+ 1 )-dimensions, etc. (see also [9-15]). In particular, consider the 3 + 1 case, where the su­percharge algebra for the N = 2 Yang-Mills theory takes the form {Q“, Q/i) = -(y/i)^P„ +(y5)^ + i^V, (79)where a, fl = 1,..., 4 and the central charges U and V are surface integrals. If one takes as gauge group 0(3) and breaks this symme­try to U( 1) by giving a non-zero vacuum expectation value to the scalar field taken in the adjoint, U corresponds to the U(l) mag­netic charge and V to the electric charge. A Bogomol’nyi bound can be then derived from (79),M2 > U2 + V2 (80)and is saturated when the Bogomol’nyi-Prassad-Sommerfield equations are satisfied. Now, one can see that Eq. (78) holds in this case with the spatial components of the supercurrent taking the form
Jia = Tr(a'“'F/n,y,<Pa + £ab0^>yi^b). (81)This formula corresponds to a bosonic sector containing a gauge field Ati in the Lie algebra of 0(3) coupled to a Higgs scalar 0 in the adjoint (there is an additional pseudoscalar field that should be put to zero to make contact with the Georgi-Glashow model). Concerning the fermion sector, (a = 1,2) are two Ma­jorana fermions. Then, using Eq. (78) and proceeding as for the kink and the vortex, one can see that Eq. (77) also holds for the Prasad-Sommerfield dyon. That is, the stress-tensor vanishes for BPS dyons, a fact that can be trivially confirmed by explicit com­putation of Tjj.We have discussed in this note the relation between super- symmetry and the vanishing of the stress tensor for topological solitons in a variety of field theories in different space-time di­mensions. Each one of the elements in this relation was already understood but our point was to show how they could be put together, by exploiting the relation that exists in supersymmet­ric theories between the supercurrent and the energy-momentum tensor. In fact, this relation was already underlying the analysis in Ref. [4] where BPS equations were derived from the relation be­tween the supercharge algebra and the energy-momentum vector P(, = j~d3xTOfl which in the rest frame reduces to Po = M.Here, we have instead used the fact that, since the supercurrent and the energy-momentum tensor belong to the same multiplet, we can extend the analysis of the relation between BPS states and 

supersymmetry to the spatial components of and T^,. If we consider for example the d = 3 + 1 case in the superfield frame­work, the linear 0 component of the multiplet is the supercurrent and the QQ component corresponds the energy-momentum tensor and they should then necessarily transform under supersymmetry one into the other,+---. (82) Similar identities hold in other (d + 1 )-dimensional models. As sig­naled above, Eq. (78) leading to the connection between supersym­metric BPS states with the condition Tjj = 0 can be inferred from this formula. Now, as it is well known, Tjj gives the force f, act­ing in a unit volume of the system. This, together with our result means that, in general, supersymmetry can guide the construction of non-interacting solitons bosonic models of interest just by con­sidering the supersymmetric extension as a tool for identifying BPS states.There are also possible applications of our observation in super­gravity models, in connection with stability of cosmic strings [16, 17] and with the cosmological constant problem [18,19], In par­ticular, the so-called dominant energy condition, Tno' |T|jl, valid for static spacetime, plays a central role to establish a connection between stability and the sign of the deficit angle [17], In this con­text it is natural to study supergravity models with string-like BPS solutions in their bosonic sector. An analysis based on the super­charge algebra has been already presented [8] and it should be worthwhile to study the problem from the point of view of super­currents presented here. We hope to report on these issues in a future work.
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