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Endurance Training in the Spontaneously Hypertensive Rat
Conversion of Pathological into Physiological Cardiac Hypertrophy

Carolina D. Garciarena, Oscar A. Pinilla, Mariela B. Nolly, Ruben P. Laguens, Eduardo M. Escudero, 
Horacio E. Cingolani, Irene L. Ennis

Abstract—The effect of endurance training (swimming 90 min/d for 5 days a week for 60 days) on cardiac hypertrophy was 
investigated in the spontaneously hypertensive rat (SHR). Sedentary SHRs (SHR-Cs) and nonnotensive Wistar rats were used 
as controls. Exercise training enhanced myocardial hypertrophy assessed by left ventricular weight/tibial length (228 ±7 
versus 251 ±5 mg/cm in SHR-Cs and exercised SHRs [SHR-Es], respectively). Myocyte cross-sectional area increased 
=«40%, collagen volume fraction decreased =«50%, and capillary density increased =«45% in SHR-Es compared with 
SHR-Cs. The mRNA abundance of atrial natriuretic factor and myosin light chain 2 was decreased by the swimming routine 
(100± 19% versus 41 ± 10% and 100± 8% versus 61 ±9% for atrial natriuretic factor and myosin light chain 2 in SHR-Cs and 
SHR-Es, respectively). The expression of sarcoplasmic reticulum Ca2+ pump was significantly augmented, whereas that of 
Na+/Ca2+ exchanger was unchanged (93±7% versus 167±8% and 158± 13% versus 157±7%, sarcoplasmic reticulum 
Ca2 + pump and Na+/Ca2 + exchanger in SHR-Cs and SHR-Es, respectively; P<0.05). Endurance training inhibited apoptosis, 
as reflected by a decrease in caspase 3 activation and poly(ADP-ribose) polymerase-1 cleavage, and normalized calcineurin 
activity without inducing significant changes in the phosphatidylinositol 3-kinase/Akt pathway. The swimming routine 
improved midventricular shortening determined by echocardiography (32.4±0.9% versus 36.9± 1.1% in SHR-Cs and 
SHR-Es, respectively; P<0.05) and decreased the left ventricular free wall thickness/left ventricular cavity radius toward an 
eccentric model of cardiac hypertrophy (0.59±0.02 versus 0.53±0.01 in SHR-Cs and SHR-Es, respectively; P<0.05). In 
conclusion, we present data demonstrating the effectiveness of endurance training to convert pathological into physiological 
hypertrophy improving cardiac performance. The reduction of myocardial fibrosis and calcineurin activity plus the increase 
in capillary density represent factors to be considered in determining this beneficial effect. (Hypertension. 2009;53:708-714.)
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Before the late 1980s, patients with heart failure were 
advised to avoid physical exercise. However, it is well 

known that regular physical activity protects against car­
diovascular disease. It is widely recognized that chronic 
exercise training attenuates several of the main risk factors 
for cardiovascular diseases, such as high blood pressure 
and insulin resistance.1-2 Interestingly, it has been reported 
that low-intensity exercise training markedly delayed the 
onset of decompensate heart failure and improved survival 
in the spontaneously hypertensive heart failure rat model.3 
This effect was attained independent of any significant 
effect on blood pressure.3 Exercise training in selected 
heart failure patients has been demonstrated not only to be 
safe but also beneficial.4-5

Diverse stimuli, such us hypertension and myocardial 
infarction, induce the development of cardiac hypertrophy 
(CH) that constitutes one of the main cardiovascular risk 
factors and a poor prognostic sign associated with nearly

all forms of heart failure.6 This type of CH is known as 
pathological. However, cardiac enlargement may represent 
a favorable adaptation restricted to match the increase in 
functional demand in response to exercise training, with 
preserved or enhanced cardiac function, that does not 
cause or contribute to disease.7-8 This type of CH is known 
as physiological hypertrophy (ie, athlete’s heart).

The purpose of this study was to assess the effects of 
chronic physical training (swimming routine) on pathological 
CH induced by pressure overload in the animal model of the 
spontaneously hypertensive rat (SHR). The results presented 
here support that exercise training converts the pattern of 
pathological into physiological hypertrophy, improving myo­
cardial performance.

Materials and Methods
Male SHRs at 4 months of age were randomly assigned to sedentary 
(SHR-C; n=13) and swimming-trained (SHR-E; n=9) groups. Age-
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Table. General Characteristics of the Experimental Groups

Variable SHR-C (n=13) SHR-E (n=9) Wistar (n=5)

Body weight, g 289±8 304 ±7| 403 ±16*

LVW, mg 856±26 931 ±24*t 790±28

RVW, mg 166±7 177±10 192±4

LVW/TL, 228 ±7 251 ±5*t 193±5*
mg/cm

LVMI, mg/g 2.76±0.07 3.02±0.07*t 1.99±0.13*

SBP, mm Hg 180±2 183±3t 118±3*

HR, bpm 430±11 412±17 450±13

LVWT, mm 1.88±0.03 1.86±0.01f 1.6±0.02*

LVDD, mm 6.41 ±0.10 6.91 ±0.14* 7.29±0.35*

H/R 0.59±0.02 0.53±0.01*t 0.44±0.02*

LVW indicates LV weight; RVW, right ventricular weight; TL, tibial length; 
LVMI, LV mass index; SBP, systolic blood pressure; HR, heart rate; LVWT, LV 
wall thickness; LVDD, LV diastolic diameter; H/R:LVWT, LV cavity radius.

*P<0.05 vs SHR-C, by ANOVA.
fP<0.05 vs Wistar, by ANOVA.
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and sex-matched normotensive Wistar rats (n=5) were used as 
nonhypertrophied controls. The study was conducted in accordance 
with the National Institutes of Health Guide for the Care and Use of 
Laboratory Animals, and the 60-day experimental protocol was 
approved by the La Plata School of Medicine Animal Welfare 
Committee.

For detailed Materials and Methods, please see the online data 
supplement, available at http://hyper.ahajournals.org.

Results
Left ventricular (LV) structural, molecular, and functional 
remodeling was studied at 60 days of exercise training in 
SHRs in the compensated stage of CH. Age- and sex-matched 
sedentary SHRs, as well as normotensive rats (Wistar), were 
use as hypertrophic and normotrophic controls, respectively.

(13) (9) (5) (13) (9) (5)

(13) (9) (5) (4) (4) (4)

Cardiac Gross Morphology, Histology, and 
Gene Expression
Morphological data from each experimental group are 
summarized in the Table. Exercise training exacerbated 
CH in SHRs, as revealed by the increase in the left 
ventricular mass/tibial length ratio and the LV mass index. 
No significant changes were detected in systolic blood 
pressure or body weight compared with the sedentary 
SHR. A significant increase in LV diastolic diameter was 
detected in the SHR-E at the end of the 60-day swimming 
protocol. The geometry of the LV chamber was modified 
by the exercise routine from a concentric toward an 
eccentric type of CH, as revealed by the decrease in the 
relation between the thickness of the LV free wall and the 
radius of the cavity.

Exercise training induced an average increase of 40% in 
mean cardiac myocyte cross-sectional area, whereas collagen 
volume fraction was decreased by «=>50%, making its abun­
dance not different to that of normotensive rats (Figure 1A 
and IB). Interestingly, these histological changes in the 
myocardium of the exercised rats were accompanied by a 
significant increase in capillary density (Figure 1C). Myocar­
dial capillary density showed a tendency toward a smaller 
value in the SHR-Cs compared with the nonhypertrophied 
myocardium of the Wistar rats, although it did not reach 
statistical significance.

Because it is well known that pathological CH is character­
ized by the induction of genes normally expressed during fetal 
development, such as atrial natriuretic factor (ANF) and 
myosin light chain 2, the mRNA abundance of these 2 
genes was assessed in the myocardium of sedentary and 
exercised SHRs by real-time RT-PCR. Swimming training 
significantly lowered the myocardial expression of both 
ANF and myosin light chain 2 (Figure ID). The SERCA2a 
and the Na /Ca2 exchanger are 2 proteins involved in

Figure 1. Exercise training induced in the SHR a 
significant increase in cardiomyocyte cross- 
sectional area (CSA; = 40% vs sedentary SHR; A) 
and a significant decrease ( 50%) in collagen 
abundance (CVF), making it not different from that 
detected in the normotrophic normotensive rats 
(B). Collagen was quantified as the percentage of 
red area in the histological slides. C shows that 
physical training succeeds in increasing myocardial 
capillary density. D, The relative expression of 2 
molecular markers of pathological CH was evalu­
ated by real-time RT-PCR in the myocardium of 
SHR-C, SHR-E, and Wistar rats. A significant 
reduction in the mRNA abundance of ANF and 
MLC-2 was detected in the hypertrophied myocar­
dium of the SHR subjected to the swimming rou­
tine. Corresponding data of normotensive (Wistar) 
rats were included for the sake of facilitating the 
comparison. *P<0.05 vs SHR-C; tP<0.05 vs 
Wistar, by ANOVA. MLC-2 indicates myosin light 
chain 2.
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Figure 2. Exercise training induced a significant 
increase (= 80%) in the myocardial expression of 
the sarcoplasmic reticulum Ca2 pump (SERCA2a; 
A) without altering that of the Na /Ca2 exchanger 
(NCX), as revealed by Western blot analysis. Aver­
age data are depicted in the bar graphs, and rep­
resentative blots are shown on top of the bars for 
both panel figures. *P<0.05 vs SHR-C; fP<0.05 
vs Wistar, by ANOVA.
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calcium cycling in which expression has been reported to 
be altered (downregulation of SERCA and upregulation of 
Na /Ca2 exchanger) in several models of experimental 
and human pathological CH and cardiac failure.9 Physical 
training induced a significant increase in the expression of 
SERCA2a, whereas no changes were detected in the 
expression of Na /Ca2 exchanger (Figure 2A and 2B).

Exercise Training Downregulates
Calcineurin Activity
Periodic swimming significantly decreased calcineurin A 
(CnA) j8 expression, a good indicator of calcineurin activi­
ty,1011 in the hypertrophied myocardium of the SHR-E to 
levels not different from those detected in the myocardium of 
normotensive rats (Figure 3A). On the other hand, no effect of 
endurance training was evident on the phosphatidylinositol 
3-kinase (PI3-K)/Akt pathway (Figure 3B and 3C).

Apoptosis Is Inhibited by Exercise Training
Because apoptosis is increased in hypertensive CH and it 
has been demonstrated to play a role in the transition from 
hypertrophy to heart failure,12-15 we aimed to determine 
whether exercise training was able to induce an inhibitory 
effect on the apoptosis cascade. To this purpose, we 
assessed by protein immunoblotting the activation of 
procaspase-3, as well as the cleavage extent of poly(ADP- 
ribose) polymerase by caspase-3 in the myocardium of 

Figure 3. A, Myocardial CnA/3 expression quantified by Western blot analysis was upregulated in the hypertrophied myocardium of the 
sedentary SHR, whereas a significant decrease in its expression was detected after the completion of the training period. Because the 
expression of CnA/3 reflects well the level of activation of the phosphatase and the myocardial CnA/3 expression of the SHR-E was not 
significantly different from that of the normotensive normotrophic rats, it is possible to conclude that endurance training normalized the 
activity of this intracellular signaling pathway. The expression of the prohypertrophic kinases PI3-K p110a (B) and phospho-Akt (P-Akt; 
C) was significantly higher in the hypertrophied myocardium of the SHR-C compared with the normotensive rats and remained 
unchanged at the end of the swimming protocol. Average data are depicted in the bar graphs, and representative blots are shown on 
top of the bars for each panel figure. *P<0.05 vs SHR-C, by ANOVA; n=5 for each group.

SHR-C SHR-E Wistar kDa
- - 60 P-Akt

- 40 actin

exercised and sedentary SHRs and in that of normotensive 
rats. Endurance training significantly decreased the extent 
of procaspase-3 cleaved into fragments of 17 kDa (Figure 
4A), as well as the amount of fragments of 85 kDa from the 
precursor poly(ADP-ribose) polymerase-1 (Figure 4B), 
although not to the levels detected in normotensive rats, 
indicating a decreased activation of both effectors of the 
apoptotic pathway.

Endurance Training Improves Cardiac Function
At the beginning of the experimental protocol, no difference 
was observed between the experimental groups with respect 
to EV systolic function evaluated echocardiographically. 
However, a slight but significant increase in midventricular 
shortening was detected in the trained SHR at the completion 
of the 60-day swimming routine (Figure 5).

Discussion
In this study, we analyzed the myocardial effects of 
endurance training (periodic swimming) in an experimen­
tal model of pathological CH induced by pressure over­
load. Our results demonstrate that periodic exercise train­
ing is capable of transforming hypertension-induced 
pathological CH into physiological CH at the structural, 
molecular, and functional levels, at least when initiated in 
the compensated phase of CH. These data are in agreement 
with recent studies supporting the idea that low-intensity

c
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Figure 4. Endurance training exerted an 
inhibitory effect on proapoptotic signaling. It 
significantly decreased the extent of 
procaspase-3 cleaved into fragments of 17 
kDa (A), as well as the amount of fragments 
of 85 kDa from the precursor poly(ADP- 
ribose) polymerase-1 (B), although not to 
the levels detected in normotensive rats, indi­
cating a decreased activation of both effectors 
of the apoptotic pathway. Average data are 
depicted in the bar graphs, and representative 
blots are shown on top of the bars for each 
panel figure. *P<0.05 vs SHR-C; fP<0.05 vs 
Wistar, by ANOVA; n=5 for each group.

*
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exercise training may result in beneficial adaptations, even 
in the presence of heart failure.316 However, excessive 
exercise can have deleterious effects on cardiac remodel­
ing and function, as reported by Schultz et al.17

It is widely recognized that exercise training protects 
individuals from a variety of cardiovascular diseases.3-16-18-19 
However, the mechanisms underlying this beneficial effect 
are not completely understood. It is interesting to note that, in 
our experimental protocol, endurance training exerted its 
beneficial effect without modifying systolic blood pressure, a 
result that is in agreement with previous reports.20-1

The cardiac response elicited by pressure overload 
differs greatly at the structural and functional levels from 
that induced by endurance training. Pathological CH is 
characterized by cardiac fibrosis; decrease vascularization; 
enhanced apoptosis; re-expression of fetal genes; down­
regulation of metabolic genes, especially those involved in 
fatty acid metabolism; LV dysfunction; and increase mor­
tality (for review, see References 22-24. Both physiolog­
ical and pathological CHs are associated with alterations in 
cardiac geometry; pressure overload usually determines 
concentric hypertrophy (increased wall thickness with 
relatively small cavities), whereas volume-overloaded 
hearts present eccentric hypertrophy (proportional increase 
in wall thickness and chamber dimensions). The latter is 
the pattern seen with endurance exercise training, such as 
long distance running or swimming.8 Despite the fact that 
these differences between physiological and pathological 

■ day 1

Figure 5. At the beginning of the experimental protocol, no 
significant differences in LV systolic function, assessed echo- 
graphically by the midwall (MS) shortening, were present 
between the experimental groups. However, an improvement 
in cardiac performance was detected in the trained SHR after 
completion of the swimming routine. MS at day 60 was 
slightly but significantly higher in SHR-E vs SHR-C. *P<0.05 
vs SHR-C, by ANOVA.

CHs were well known, until relatively recently, it was 
unclear whether these 2 forms of hypertrophy were in­
duced by different intracellular signaling cascades. Be­
cause usually the stimuli for pathological CH are chronic, 
whereas those for physiological CH are intermittent, the 
duration of the stimulus was thought to be critical in 
determining the phenotypic response. However, Perrino et 
al25 demonstrated in an interesting murine model of 
intermittent pressure overload that it was the nature of the 
triggering stimulus and the intracellular signaling pathway 
activated, as opposed to the duration, that established the 
type of CH. At present, >2 cascades playing distinct roles 
in physiological and pathological CHs have been charac­
terized, the PI3-K/Akt and the calcineurin pathways, 
respectively (reviewed in References 23-4). We demon­
strated that endurance training was able to normalize 
calcineurin activity without interfering with the PI3-K/Akt 
pathway. This result is of great importance, because 
calcineurin appears to largely mediate pathological but not 
physiological CH.10-11-26-31 Calcineurin is a calcium/cal- 
modulin-dependent serine/threonine phosphatase that de­
phosphorylates members of the nuclear factor of activated 
T cells transcription factor family permitting their nuclear 
translocation and activation of transcription. Transgenic 
mice overexpressing an activated form of calcineurin or 
NFAT3 in the myocardium developed CH that rapidly 
progressed to heart failure.28 On the contrary, CnA/3- 
deficient mice displayed an impaired hypertrophic re­
sponse to pathological stimuli, such us pressure overload 
and angiotensin II or isoproterenol infusion.26 Further­
more, in NFAT-luciferase reporter transgenic mice sub­
jected either to physiological (exercise training or growth 
hormone-IGFl infusion) or to pathological (pressure over­
load or myocardial infarction) stimuli, calcineurin/NFAT 
activity was upregulated only in the pathological models.29

The PI3-K/Akt signaling pathway is one of the main 
signaling cascades involved in normal postnatal cardiac 
growth.32 Its upregulation has been demonstrated to induce 
both physiological and pathological CHs.32-34 The pheno­
type determined may be related, at least in part, to the 
degree of Akt upregulation; overstimulation of this path­
way would lead to pathological CH.35 On the other hand, 
it is relevant that the PI3-K/Akt pathway promotes cell 
survival by inhibiting apoptosis at multiple points.36 This 
makes the strategy of endurance training even more 
interesting as a therapeutic tool to induce pathological CH
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Figure 6. This figure schematically summa­
rizes the results discussed in the present 
work. Endurance training was effective to 
positively transform pathological into physi­
ological hypertrophy in an animal model of 
hypertension-induced CH. These beneficial 
myocardial changes included the decrease 
in fibrosis, the increase in capillary density, 
the upregulation of SERCA2a expression, 
the downregulation of calcineurin activity, 
and the downregulation of the proapoptotic 
caspase 3, all of them probably converging 
in the improvement of cardiac performance. 
The swimming routine modified cardiac 
geometry, as revealed by the decreased of 
left ventricular free wall thickness/left ven­
tricular cavity radius toward a more physio­
logical remodeling pattern. Bottom, Repre­
sentative micrographs of hematoxylin-eosin 
and Picrosirius Red-stained LV myocardium 
sections used to determined myocyte cross- 
sectional area (CSA) and collagen volume 
fraction (CVF) from SHR-C and SHR-E.
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regression, because it does not interfere with the PI3-K/ 
Akt pathway, whereas it downregulates the pathological 
cascade of calcineurin/NFAT.

Increased circulating levels of ANF have been positively 
correlated with the severity of heart failure.37-38 Impor­
tantly, our swimming protocol reduced the expression of 
ANF, at least at the mRNA level, as indicated by the 
real-time RT-PCR experiments, supporting the idea that 
endurance training impacts beneficially on cardiac perfor­
mance, even in the presence of pathological CH.

Relatively few studies in experimental models of heart 
failure have addressed the effect of exercise training on the 
myocardial expression of calcium-handling proteins with 
considerable variability with respect to their find­
ings.3-39“42 However, we are not aware of this kind of study 
in any model of pathological CH. In our experimental 
setting we detected an upregulation of the expression of 
SERCA2a induced by the swimming routine. Although we 
do not have direct evidence supporting a cause-effect 
relationship between SERCA2a upregulation and cardiac 
function, we think that it is likely involved in the enhance­
ment in cardiac function detected by echocardiography. 
Moreover, our data are in agreement with previous reports 
demonstrating that the improvement in intracellular Ca2 
regulation underlies the benefits of exercise training on 
ventricular function in heart failure.41-42 We chose to 
measure fractional shortening at the LV midwall level 
because it has been shown to be an accurate and conve­
nient index of LV systolic function superior to endocardial 
fractional shortening in hypertensive humans and ani­
mals.43-44-45 Another factor that is probably contributing to 
the better contractility detected in the trained SHR is the 
downregulation of calcineurin activity induced by exercise 
training, because it has been reported that this phosphatase 
exerts negative inotropic effect.31-46-47 The normalization 
of interstitial fibrosis, the increase in capillary density, and 
the decreased activity of the apoptosis cascade in the 
SHR-E may be also involved in the improvement in 
cardiac function evidenced in the echocardiographic study. 
Interestingly, in a transgenic mice model of CH due to 

cardiac-specific inducible Aktl expression, it was demon­
strated that the imbalance between myocyte growth and 
coronary angiogenesis plays a critical role in the contrac­
tile dysfunction.48 This finding led the authors to propose 
that it may be advantageous to stimulate angiogenesis as 
part of a general strategy to prevent or reverse heart 
failure. In our experimental conditions, exercise training 
did increase myocardial capillary density in the SHR.

Perspectives
In the present work we provide new insights into the 
molecular mechanisms underlying the beneficial effects of 
endurance training in pathological CH. We demonstrate in 
an animal model of hypertension-induced pathological CH 
that exercise training decreases myocardial interstitial 
collagen abundance, increases myocardial capillary den­
sity, and upregulates SERCA2a expression improving LV 
systolic function. We speculate that these beneficial 
changes were, at least in part, related to the downregula­
tion of calcineurin activity, because this signaling pathway 
has been demonstrated to underlie the development of 
pathological and not physiological CH, although with 
some controversial results.23-29 Figure 6 schematically 
summarizes the results described above.

In this scenario, our results lend support to the idea that 
endurance training can positively transform pathological into 
physiological CH. This finding could have clinical relevance 
in the design of therapeutic strategies for the prevention of 
heart failure as the consequence of hypertension-induced CH 
progression.
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