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1 Introduction

Supersymmetry (SUSY) solves the hierarchy problem of the Standard Model making the 
Higgs mass sensitive to the scale of soft masses msoft instead of the Planck scale. Cur­
rent naturalness criteria impose a bound for this scale of new physics msoft < 1 TeV and 
this makes SUSY one of the most appealing candidates to be found at the LHC. There 
are different ways to generate soft terms, being Gauge Mediated Supersymmetry Breaking 
(GMSB) [1]—[10] one of the most studied (see [11]—[13] for pedagogical reviews). Among the 
many advantages of considering this mechanism we can mention the automatic suppression 
of the SUSY flavor problem, the possibility to solve the /i and SUSY CP problems and the 
fact that it allows the unification of coupling constants. After meta-stable dynamical su­
persymmetry breaking was found to be a generic phenomenon in Af = 1 SUSY theories [14], 
gauge mediation received renewed interest. The reason for this is that metastability largely 
increases the possibilities for model-building in the hidden sector.

As explained in [15], general GMSB is not as predictive as expected. Indeed, predic­
tions of GMSB strongly rely on specific hidden-sectors, and are then very model dependent. 
However, some characteristic features of GMSB are guaranteed, sufficient to distinguish at 
the LHC gauge mediation from other popular mediation schemes, like flavor blindness, 
gravitino LSP and some sum rules for sfermions. Other characteristic features that were 
supposed to belong to GMSB only arise in the limit of small SUSY breaking F A"1 2, 
where X is the typical mass scale of the hidden sector and F is the strength of the SUSY



breaking [16]. The general framework of [15] was also considered in [17]—[23] where many 
different aspects of general GMSB were analyzed.

Specific models capable of covering the complete spectrum of soft masses, thus leading 
to general phenomenologies [23], are still lacking. There has been important progress in 
this direction [21]—[22] but a lot remains to be done. A proof of the existence of models that 
cover the whole parameter space of the Supersymmetric Standard Model (SSM) GMSB was 
given in [22]. The main goal of our paper is to provide the mass formulas for gauginos and 
sfermions that arise in models of that kind.

Let us briefly describe the setup and the results that we obtain in this paper. We 
consider a messenger sector defined by a generic renormalizable and gauge invariant mass 
term for N messengers <pi, <pi, that may belong to different representations of different 
gauge groups

W = /:>,<!>! = (m + XX)^ (1.1)

Here m and A are generic matrices, and X is a spurion field1 that acquires a SUSY breaking 
vacuum expectation value (VEV)

1There is no loss of generality when considering a single spurion field [29]. If there were more, a unitary
transformation can always be performed such that only one of them acquires an F-component VEV. The 
lowest component of the remaining fields can be absorbed in the matrix m in (1.1).

X = X + 02F (1.2)

through some unspecified dynamics in the hidden sector that is irrelevant to our purposes. 
This tree level coupling to the messengers provide them with a non-supersymmetric mass; 
then integrating out these heavy modes leads to the soft terms. Since there is no renormal­
izable tree level coupling with the particles of the SSM, soft terms arise through loops of 
messenger and vector fields. This approach is strongly motivated from the fact, that F-term 
breaking models (i.e. generalized O’Raifeartaigh models [24]) arise as low scale limits of 
dynamical SLTSY breaking theories [14, 25]—[27].

Applying the formalism of general GMSB [15] we derive the sparticle soft spectrum 
arising after integration of our generalized messengers. The formulas we obtain generalize 
the results in [28]—[34], since they include all mixing effects due to multiple messenger scales, 
and hold for arbitrary amount of SLTSY breaking. We then constraint the messenger sector 
with a global (R or non-R) symmetry and show how Extraordinary Gauge Mediation [29] 
behaves beyond the limit of small SLTSY breaking. We find bounds on the deviations from 
this limit, analogous to those in [31]. The possibility of “diagonal type” splitting between 
fermion and boson messenger masses resulting from D-terms is also considered. We show 
that in this case some non positive definite contributions arise in the soft spectrum, that 
highly modify the relations among sparticles and are crucial for constructing models that 
span the full parameter space of general GMSB.

The outline of the paper is as follows. In section 2 we present the general expressions 
for the sparticle masses, and show some limits previously considered in the literature. 
In section 3 we constraint the messenger sector with a non-trivial global symmetry and 
analyze Extraordinary Gauge Mediation beyond the small SLTSY breaking limit. Section 4 
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is devoted to analyze D-term contributions and to show how the soft spectrum gets affected. 
Finally, section 5 concludes, and in the appendix we present a detailed computation of the 
sparticle masses.

2 Generalized sparticle mass spectrum

Following the general GMSB formalism [15], soft masses for gauginos and sfermions are 
derived in the appendix. These formulas are exact, at one loop for gauginos and at two loops 
for sfermions. Since the messenger sector is the most general of its kind, our expressions 
generalize many of those found in the literature. In this section we show that the obtained 
masses recover known formulas in various different limits (sparticle spectroscopy beyond 
the minimal framework was also studied in [35]—[36]). In section 4 we will extend these 
results so as to include effects from D-term SUSY breaking.

Without loss of generality, after a redefinition of the messenger superfields we choose 
a basis in which M in (1.1) is diagonal with real eigenvalues In this basis, FA is 
still a generic matrix in flavor space. As we explain in the appendix, dangerous negative 
contributions to sfermion masses can arise from D-terms at one-loop, unless we impose a 
symmetry that constraints the messenger sector in such a way that there exists a basis in 
which M is diagonal and FA hermit.ic. In this paper we assume the messenger sector to 
be constrained in such a way, and stand in a basis that diagonalize M.

We define the unitary matrices U± as those that diagonalize Al2 ± FA, the hermit.ic 
mass-squared matrix for bosonic messengers, namely

2The indices k and n run over messengers. The Dynkin index dkn is nonzero only when k and n label
fields that are in the same representation.

Ml = U±(M2 ± FA)U± (2.1)

Then, M± are diagonal matrices with real eigenvalues (m±)2. We also define the following 
mixing matrices

■ = (Ui)kn(U±)nk, Bkn = (^G_)fcra(uiu+)rafc (2.2)

JHEP03(2009)038

2.1 Gaugino masses

In the appendix a. detailed computation for the gaugino masses .1/,. at the messenger scale 
is presented, with the result.

N

= 2 5Z ± dkn Akn
k,n=l i

(2-3)

Here d is the Dynkin coefficient, for the messengers, ddab = Tr[TQT6], in a. normalization 
where d, = 1/2 for Nc + Nc bi-fundamentals of SIJ( W)-2 For short., we omit, the label r of 
the gauge group in the gaugino and sfermion scales, Kar and Ksr respectively.
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In the Minimal Gauge Mediation (MGM) limit [31] which we obtain by setting m = 0 
in equation (1.1), this reduces to

(2-4)

(2.5)

where we have defined Xk = A X^ being the eigenvalues of A. To lowest order in F/X2 
this MGM expression was obtained through the Wave-function Renormalization Technique 
(WRT) [34],

The lowest order in the F/X2 expansion of (2.3) coincides with the result of [32] for 
the case of SU(7VC) bi-fundament.als

Ag = 5^ —= F d\ log det M 
mL.k=l

(2-6)

In the last equality of equation (2.6) we have used the fact, that in the basis in which 
M is diagonal the identity = Xkk always holds, and wrote Ac as in [29] were this
expression was derived using a. generalization of the WRT.

The generalized expression (2.3) can be approximated by

TV

Ac =
fc=l

FXk \
H)2/ (2-7)

but. this gets corrected by multi-messenger mixing effects arising at order O(F/X2) in the 
expansion of g(x), that vanish in the limit. M. —> m°ljVxTV. In this limit, the fermionic 
messengers become degenerate but. the bosons are still arbitrarily split., so SUSY can still 
be largely broken in which case the messenger scales will lie in a. large range.

Let. us finally mention that the equation (2.3) is given at the messenger scale and 
must, be renormalized down to the scale of SSM particles. At. the electroweak scale we 
find that the correction at the leading order O(ct) only comes from the running of the 
coupling constant.

Mr(Q) = (2.8)
4-7T

JHEP03(2009)038

2.2 Sfermion masses

The sfermion masses at the messenger scale can be written as usual 
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where C'~ are the quadratic Casimir of f in the gauge group r. The sfermion scales A^ for 
the model (1.1) have been computed in the appendix, and read

N
As =2 52

k,n=l i
(2-10)

Liz being the dilogarithm function. Again, by setting m = 0 in equation (1.1), the MGM 
limit is recovered [28, 31]

In the limit of small multi-messenger mixing effects (which arise in this case at order 0(1) 
in the F/X2 power expansion of /(x)) we obtain from (2.11) the result

N

As= 5
k=l

(2-13)

As we will show in section 3, when there is a global symmetry in the messenger 
sector under which X transforms non-trivially, the identity Xk = holds. In the
approximation of small multi-messenger mixing effects, to lowest order in the F/X2 ex­
pansion, for the case of SU(IVC) bi-fundamentals, the results of [29] are recovered from 
equation (2.13), namely

1 -12 N

= (2.14)
fc=l

Setting M = m°lNxN in (2.11) 
reproduce the result of [30, 32]

to lowest order in F/X2 for SU(5) bi-fundamentals, we

JV
£ |FAJ

(m0)2 (2-15)

JHEP03(2009)038

As in the case of gaugino masses, sfermion masses are given here at the messenger scale 
and must be RG evolved down to the soft scale. General expressions for this evolution can 
be found in [29, 37], being the leading contribution to order O(a2) 

dm2-

dlogQ

1:1 2
o ar 

(4^)2 r — 1 v
Cj ^vk(d'kkM/k) (2-16)

where Af is the complete messenger mass matrix including bosons and fermions. Notice 
that due to the Supertrace Theorem, these corrections have no effects above the ultimate 
messenger threshold.
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3 Constraining the messenger sector

When the messenger superpotential (1.1) is constrained with a global symmetry under 
which the spurion field X is charged, these models become those of ExtraOrdinary Gauge 
Mediation (EOGM) recently analyzed in [29]. The addition of this single symmetry leads 
to different type of models, each of which have characteristic features that make them 
highly predictive despite their complexity. Some of the interesting features that these 
models present are modified relations between squark and slepton masses, the possibility 
for small //, and Higgsino NLPS, effective messenger number less than one, and gauge 
coupling unification. In addition to briefly reviewing EOGM, in this section we address 
the following two issues. First we prove that a global symmetry under which the spurion 
field is charged, leads from equation (2.13) to equation (2.14) in the small SUSY breaking 
limit. That equation was derived in [29] using the WRT, which requires such a constraint 
on the spurion. Then we analyze these models in the large SUSY breaking limit and show 
how they deviate from the small F/X2 behavior, which is the regime in which they were 
studied in [29].

We consider the most general messenger mass superpotential consistent with gauge 
invariance, renormalizability and a global U(l) symmetry which can be R or non-R. The 
messenger content consists of N messengers in the 5 + 5 representation of SU(5)gut- The 
superpotential has the form

W = M.(X)ij o.o, = (m + XX)ij (3.1)

and is invariant under a global symmetry G under which X carries a non-vanishing charge, 
which we take to be positive G(X) > 0 without loss of generality. If G(W) 0 we are 
in the case of an R-symmetry, and otherwise if G(W) = 0, the symmetry is non-R. This 
symmetry implies the following selection rules for m and A

my ^0 G(</y) + G(^) = G(W)
Ay 0 G(^) + G(^j) = G(W) - G(X) (3.2)

The model always has in addition an accidental trivial global G' symmetry under which 
G'(X) = 0, G'(^) + G%) = G'(W).

After spontaneous breaking of GUT symmetry, the messenger sector can split in dou­
blet and triplet sectors, each containing its own mass matrix M2 and M3 respectively

IE = M2ij + M3ij 0^0^ (3-3)

<pr. (f)r being in the r+r representation of SU(r), r = 2, 3, the doublet and triplet components 
of the 5-plet messengers (f), Each sector then interacts separately with weakly and colored 
coupled matter.

Following a route completely analogous to that in [29] one can prove that due to the 
G-symmetry the following identity for the determinant of the messenger mass matrices 
holds

1 N
det Mr = Xnr f(mr, Xr), ^(G(W)-G«)-G(<)), 0 < < Y (3.4) 

JHEP03(2009)038
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This identity is related to gauge couplings unification. In fact, every scale of the hid­
den sector alters the running of the couplings, producing the following final shift at the 
GUT scale

K-^-^log^I, M2^ = (detAi2;3)1/JV, ,M| = (M12)3/5(A43)2/5 (3.5)
Z7T

Couplings unify when the condition M2 = M3 is satisfied, which in turn implies ??i = 
u2 = u3 in (3.4). This relation M2 = M3 (and then unification) can be maintained even 
in the presence of large doublet/triplet splitting, since the function f in (3.4) is generally 
independent of some subset of the parameters.

In [29], these models have been classified in three distinct classes depending on the 
specific details of the matrices m and A. Here we define them and mention their charac­
teristic features (in the following items we omit the gauge group index r, and will stand in 
a basis different from the one that diagonalizes M)

• Type I. Models with det m 0.

In these models there always exists a basis in which m is diagonal, and fields must 
come in pairs with G-charges G(^) + G(^) = G(IU). In such basis we order the 
fields (f>i in increasing G-charge, which allows us to rewrite the selection rules (3.2) as

Ay 0 G(^) - G(^) =-G(X) j>i) (3.6)
m diagonal (3.7)

These rules imply that A is strictly upper diagonal, so in these models the eigenvalues 
of M are those of m and then det M = detm and n = 0. The messengers are stable 
in a neighborhood of X = 0, but can become tachyonic for large X. Examples 
of Type I models are [3]—[7], and the more recent ISS model [14] and many of its 
variations [38]—[53].

• Type II. Models with det A 0.

In these models there always exists a basis in which A is diagonal, and fields must 
come in pairs with G-charges G(^) + G(^) = G(IU) — G(A"). In such basis we 
order the fields <& in decreasing G-charge, which allows us to rewrite the selection 
rules (3.2) as

my £ 0 G(^) - G(^) = G(A) (=> j > i) (3.8)
A diagonal (3.9)

These rules imply that m is strictly upper diagonal, so in these models the eigenvalues 
of M are those of XX and then det M = XN det A and n = N. The messengers are 
tachyonic in a neighborhood of X = 0, but can become stable for large X.

• Type III. Models with det m = det A = 0.

Since from (3.4) det Ml ~ X" is a monomial, the eigenvalues of M are either propor­
tional to X or independent of X. Then, analyzing the limits | JV| —> 0, 00, one reaches 
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the conclusion that the eigenvalues of Xi are the n non-vanishing eigenvalues of XX 
and the N — n non-vanishing eigenvalues of m. We can then choose a basis in which 
the eigenvalues of XX appear in the first, n entries of the diagonal, and the eigenval­
ues of m in the last N — n entries. From (3.2) we see that fields come in pairs with 
G-charges G(^) +G(^) = G(W) - G(A) for 3 < i < n, and G(<^) + G(<^) = G(W) 
for n < i < N. Ordering the first n fields </>i in decreasing order of G-charge, and 
the last N — n in increasing order, the selection rules (3.2) can be written for the 
following four blocks of Xi

1 <i,j <n : mij 0 = G(X) (=> j > i) (3.10)
A diagonal

n<i,j <N : Xij H G^i) - G(<f>j) =-G(X) (^ j > i) (3.11) 
m diagonal

i<n<j : niij / 0 G(^) = G(<^) (3.12)
Av yf 0 G(^) - G(^) = -G(A)

j < n < i : mij X 0 ==> G(^) — G(^) = G(A") (3.13)
Xj + o G(^) = G(^)

Since det A = det m = 0 these models have 0 < n < N. The messengers are tachyonic 
in the limits |A^| —> 0, oo, but can become stable in some intermediate region.

Notice that we have been able to write the selection rules (3.6)-(3.13) in a way com­
pletely independent of G(VF), so at the level of the messenger mass matrix an R-symmetry 
is undistinguishable from a non-R symmetry. In other words, a reassignment of G-charges 
leads from one type of symmetry to the other. Where the nature of the symmetry becomes 
manifest is in the completion of the messenger sector. When trying to complete this su­
perpotential to a SUSY breaking hidden sector, an R-symmetry leads to simple models of 
direct gauge mediation [29], while a non-R symmetry forbids X to acquire a non-vanishing 
F-component. (1.2) [54].

We also learn from the above results that the global symmetry constraining the super­
potential implies that the eigenvalues of Xi are those of m and AW,3 and then Aa = 
Replacing this identity in equation (2.13) we recover the results of [29], where the derivation 
was based on the WRT [34] that requires a global symmetry under which X transforms 
non-trivially. The expressions for gauginos and sfermions are

3There are other non-generic constraints that enforce the eigenvalues of M to be those of m and A'A [55].

JHEP03(2009)038

Mr = -^Aar, Aar = Fdx^ogdetMr = nr— (3-14)
4% X

m7 = 2EC7 (5)^’ (3.15)
r=l
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where C'~ are the quadratic Casimir of f in the gauge group r, and we have defined the 
effective messenger number

^Vr(X) =
N

J21og2(m°.)2
fc=l

(3.16)

As pointed out in [29], the gaugino masses are proportional to the index nr defined 
in (3.4), which depends on the G-charges of the doublet and triplet messengers. When the 
SU(2) and SU(3) multiplets are given the same G-charges, we have = «2 = n-3 and then 
unifications of coupling constants and an MGM spectrum for gauginos (including gaugino 
mass unification) is achieved. Let us suppose that this is the case so as to simplify the
analysis of the sfermion spectrum.

The effective messenger number N defined in (3.16) does not necessarily coincide with 
the number of messengers N (as it is the case in MGM), but is a more general function 
of X. In fact, its asymptotic behavior in the limits |A^| —* 0, oo is independent of all the 
parameters, and is bounded by

2n;
n2 - (IV - rmr - l)(2nr - N + rw)

2n;
rxr + (rAr - nr)2

< W(A'-»0) < N-rm.r
2

— ‘1/
< Nr(X oo) < ---------------- --

I v Ar ”
ZAr 7V-rÀr

(3-17)

where rm, = rank mr and rAr = rank Xr. Since we have assumed that the nr's are equal, 
the splitting among sfermions is controlled (in addition to the couplings ar) by this effective 
messenger number Nr, as can be seen from equations (3.14)-(3.15). The mass relations 
amongst sfermions can then be arbitrarily modified with respect to MGM.

When going beyond the small SLTSY breaking limit, FXk/(m°)2 need not be much 
smaller that 1 and should not be sufficiently close to 1, since otherwise some bosonic 
messengers would be too light. In this case (2.7) and (2.13) read

JHEP03(2009)038

Acr = >)x log(mfe)r (3.18)

(3.19)

where the functions g(x) and /(x) were defined in (2.5), (2.12). Had we chosen different 
gauge group and representations, these expressions would also contain a factor 2drkk in the 
sums. These are the generalizations of the expressions (2.4), (2.11) for MGM [31]. The 
expansion of functions g(x) and /(x) give very good accuracy to order O(x6)

/v»4 zy>6
cj(x') = 1 T — T — T — T ... ,' 6 15 28

», , X2 11 4 319 6 . ,
f W = 1 + 36 ~ 4M* ~ ïïrëT + ' ' ' (3'20)

except, when x is very close to 1, which is a possibility that we have discarded. Interestingly, 
as can be seen in figure 1, neither function deviates sufficiently from 1 so as to alter
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Figure 1. g(x), f(x) and \//(x) are functions of FAfc/(m°.)2 (a parameter related to the amount 
of SUSY breaking) that weigh the contribution of each messenger to the spectrum.

drastically the spectrum. In fact, we automatically obtain the bounds

F F TL F n F
— nr < KGr < 1.386 — nr , 0.838 — < ASr < —v (3-21)
-A Ji / ct A. ct JiJ Nr J Nr

which combined yield
A2

Nr < < 2.735 Nr (3.22)

where N is defined in (3.16), as the quotient between the gaugino and scalar fermion scales 
in the FXk (mJ2 limit. We can define an effective non-integer 7/r = XKGr/F which due 
to equation (3.21) will be bounded as nr < nr < 1.386 nr. Since the integers nr depend on 
the G-charge assignments uniquely (3.4), it is possible to achieve arbitrary doublet/triplet. 
splitting together with gaugino mass unification in the limit of small SUSY breaking. The 
numbers nr are on the contrary a function of all the parameters. Due to this, gaugino mass 
unification is lost in the large SUSY breaking limit

Mi : M2 : M3 = aihi : «2^2 : «3«3 (3.23)

The bounds (3.21)-(3.22) can be further tightened lowering the value of FXk/(m°)2, 
and also considering that there are generally some A/ds in EOGM that identically vanish.

We conclude that the spectrum of Extraordinary Gauge Mediation models responds 
to variations in the SUSY breaking quotient F / X2 in a way similar to that of MGM. 
Namely, it is quite insensitive to the value of F/X2 except when this value is very close 
to 1. These results hold only in the limit of small effects arising from mixing of the multi­
messenger scales.

JHEP03(2009)038
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4 D-term contributions

Realistic models at hand do not span the most general spectrum that can be achieved 
through gauge mediation [15]. A program to construct models allowing to cover such space 
(and therefore allowing to explore general phenomenologies [23]) was started in [21]. In 
that paper the models have the correct number of variables, but do not span the general 
spectrum. More recently, a proof of the existence of specific models that explore the full 
parameter space of general GMSB was given in [22], where in addition to F-breaking, the 
possibility for D-breaking was considered. In this section we will provide complete formulas 
of soft masses for such models.

We start, by considering the (SUSY broken) messenger mass matrices of [22]

y FX + (4-1)

with £ hermitic matrices, that can arise for example when messengers are charged under 
a U(l) gauge group with a non-vanishing Fayet-Illiopulos D-term [56]—[57], or also through 
some strong gauge dynamics [58]. They correspond to “diagonal type” terms of the form

U D £,ij + Cij (4-2)

in the potential.
As we have done previously, we stand in a basis in which M is diagonal and real, and 

impose a messenger parity. Such symmetry constraints FA to be hermitic, and imposes £ = 
£. By demanding that the theory be insensitive to UV physics, we impose the supertrace of 
the whole messenger mass matrix to be vanishing [22, 33], which in this case accounts for 
Tr[d £] = 0. Under these conditions, exactly all the results (B.4)-(B.3O) of the appendix, 
and expressions (2.3), (2.9)-(2.11) of section 2 hold, except for the fact, that (m±)2 are now 
the eigenvalues of Ai2 ± FA + £, U± the diagonalizing matrix of Ai2 ± FA + £ and there 
is an additional contribution to the sfermion scale

AA| = 4Tr A42
4^ log — (4-3)

JHEP03(2009)038

This is a pure D-term contribution and is not. definite positive, so it. can largely alter the 
relation amongst, sparticles. In [22] it. was shown that this type of D-term contributions 
can enable the possibility of covering the general GMSB spectrum.

In the limit, in which the eigenvalues (FA ± £)& are small compared to the eigenvalues 
(m°)2, from equations (2.3), (2.11) and (4.3) we obtain

1 N
A« = 2 52 52 2'/;,A

/. I ±

(FA±£)* A^= 152 522ilu'
k=i ±

+ 2^kk lo8(™fe)2
(4-4)

As before, we can argue that this is a. good approximation except, when (FA±£)a- « (m“.)2.
Notice that if FA and £ are both simultaneously diagonalizable, these expressions become
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to lowest order

/F2'2 \
As = 12 2dkk + 2^k lo§ H) J = Asf + As? (4-5)

where are the eigenvalues of £.
Let us illustrate from equation (4.5) for a U(l) gauge group that these models cover 

the general GMSB spectrum. In this case, the parameter space of general GMSB is two 
dimensional and parameterized by Ag and A2. Following [22], one can define the quotient n

and show that when there are more than one messenger, n spans R. In fact, specializing 
equation (3.22) for a U(l) gauge group, it can be seen that when there is only one messenger 
k is bounded k G (0.37,1). When there is more than one messenger it can be seen from (4.5) 
that arbitrarily large values of |«| can be obtained setting £ = 0. This is achieved by 
adjusting the values and signs of the Afe’s in such a way that Ag is small, while As is 
finite. On the other hand, with nonzero £ we can make |«| arbitrarily small, by taking 
*2 a2Tsy ~ ivSF.

This is a strong motivation for analyzing these general models. In fact, in [22] it was 
shown that the extension from this U(l) toy model to the physically relevant case of Gssm 
is possible. This requires messengers in at least three different irreps, and either D-breaking 
or arbitrary amount of SUSY breaking. The generalized messengers analyzed in this paper 
include such features, and should then be considered as a starting point to analyze complete 
and viable specific models of general GMSB. Implementing general GMSB with D-term 
breaking was also addressed in [59].

JHEP03(2009)038

5 Summary and discussion

We consider in this work a messenger sector with a generic mass term defined in (1) 
which includes all couplings consistent with renormalizability and gauge invariance and 
encompasses many of those found in the literature. The gauge group can be general, and the 
messengers can lie in different representations. To avoid dangerous negative contributions 
to the sfermion masses, we constraint the superpotential by imposing a messenger parity. 
Through a recently introduced formalism [15], we derive expressions for the soft masses of 
gauginos (2.3), and of sleptons and squarks (2.9)-(2.11). The formalism needs as unique 
input from the hidden sector some correlators for the components of the gauge current 
superfield. The detailed computation is presented in the appendix.

We then consider two different limits. One consists in taking the splitting of bossonic 
messenger masses to be small compared with the typical scale of the fermionic messenger 
masses (we refer to this as the “small SUSY breaking limit”), in which case we recover the 
results of [30, 32, 34], The other one is the limit in which “effects due to multiple messenger 
scales” can be ignored, in which case we assume that the eigenvalues of the messenger mass 
matrix are almost degenerate ~ \/k,n. In this case, we obtain simple expressions 
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for the soft scales that are manageable and can be predictive (2.7), (2.13), and generalize 
those of [29].

After constraining the messenger sector with a global symmetry under which the spu­
rion field is charged, we recover the mass expressions of Extraordinary Gauge Mediation 
previously obtained in [29] through a generalization of the Wave-function Renormalization 
Technique [34]. Our masses generalize those, being valid beyond the small SUSY breaking 
limit, and we show that the deviation from this limit is analogous to that in the Minimal 
Gauge Mediation case [31]. Namely, the physics does not seem to change much, except 
when the SUSY breaking parameters FXk/(m°)2 are close to 3. Some bounds are obtained 
for the masses (3.21)—(3.22), generalizing those in [31].

Finally, we derive a correction to the soft masses (4.3) induced by D-term effects. These 
effects are encoded in the matrix £ of section 4, which we have constraint to have vanishing 
trace Tr[d £] = 0 since this translates into vanishing messenger supertrace, thus avoiding 
sensitivity to UV physics. These additional effects promote the messenger sector to be 
the most general one that can be constructed after F and D-breaking. We then provide 
complete formulas for the soft masses, after integration of the general messenger sector. We 
specialize the expressions in the limit of small SUSY breaking, and reproduce the results 
of [22], showing for a toy example that it fully spans the general GMSB spectrum [15].

There are many routes for further research. One would be to analyze the effects 
of multi-messenger scales and verify if they are actually ignorable or not; it would also 
be interesting to look for mechanisms to suppress these effects. Analyzing dynamical 
mechanisms to enforce messenger parity and real parameters in the messenger sector would 
also be very interesting. Some work in this direction was done in [21, 27].

Perhaps the most interesting continuation of this work would be to explore models 
leading to messenger mass matrices like those of (4.1), and then analyze how much they 
span the general GMSB spectrum of the Supersymmetric Standard Model, trying to find 
those that cover it completely. A motivation for this are the results of [22], where it 
was demonstrated that spanning the whole parameter space is possible and that there are 
multiple ways to do so.

Let us finally mention that our investigation was focused on the case in which, in the 
limit of vanishing coupling constants, the observable and hidden sectors are completely 
decoupled. It would then be of interest to study direct couplings between messenger and 
matter fields. In particular, couplings between the Higgs field and messenger doublets or 
singlets can lead to solutions to the //. problem (see [20] and references therein).

JHEP03(2009)038
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A Avoiding tachyonic sfermions

As was pointed out in [30], one-loop contributions to the masses of squark and sleptons 
arise in models in which the supersymmetric mass matrix Al cannot be made diagonal in 
a basis in which the SUSY breaking one, FA, is hermit.ic. These contributions come from a 
one-loop contraction of the hypercharge messenger D-term D = g^Y (j> — <j>Y(j)[') and are 
phenomenologically unacceptable since they render the sfermion masses tachyonic. These 
terms are not generated up to three loops if there is a basis in which Al is diagonal and 
FA hermit.ic, a fact, that is not. automatic but. must, be enforced for example through the 
so-called messenger parity [30, 32], Another possibility to avoid this problem is that the 
so-called “GUT-singlet. hypothesis” holds [32],

In the absence of the superpotential (I.I) the theory would have an SU(A) x SU(A) 
messenger invariance transforming as

(/>->D*(/)D, 0-+D0d, F> x P G SU(A) x SU(A) (A.I)

This symmetry is broken by (1.1), but. we can use it. to fix a. basis for Al

MD = DjMD (A.2)

The theory is also invariant, under a. messenger parity (this symmetry is broken by ordi­
nary particles)

(¡>D~U*DfD, (f>D — UD <p*D , V- -V, WD, UD G SU(1V) (A.3)

provided that for some given Ud, Ud, we have

M]d = UdMdUd , FX]d = U^FXdUd (A.4)

Then, imposing a. messenger parity defined by Ud = Ud = 1, we guarantee that there is 
a. basis D x D in which Alp and FAp are both hermit.ic, and in particular D x D can be 
chosen so as to diagonalize Al. In this paper we impose this symmetry and when deriving 
the mass spectrum we find it. convenient, to stand in the basis in which Al is diagonal and 
real and FA hermit.ic.

B Soft spectrum from the general GMSB formalism

In this appendix we use the general GMSB formalism introduced in [15] to compute the soft, 
masses for gauginos and sfermions. The advantage of this formalism is that one can avoid 
computing all the Feynman diagrams, and simply compute correlators for the components 
of the gauge current, superfield, since they encode all the information needed from the 
hidden sector.

We begin by defining the lagrangian for the messengers coupled to the vector fields 

6C = I d20d20 '7 '(f)i + <^e~2i/l ‘TU(pi^ + (/ d20 W + c.c.^ (B.l)

JHEP03(2009)038
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where the superpotential W is given by (1.1). All our computations are clone in a basis 
in which M. is diagonal and FA hermit.ic. For simplicity in this appendix we consider 
all messengers in the same representation of a single gauge group. The generalization to 
multiple representations and gauge groups is straightforward. Now we define the real gauge 
current superfield J (satisfying D2Ja = D2Ja = 0) as

(B.2)

In components it reads

ja = ja + idf - io]a - Oa^dj“ + - -odo^(\ja - -eeeen,ja (b.3)

where

Ja =
ja = -iy/2^Ta^-^Ta^

ja = iVz

j“ - i ($Tad^ - d^Ta^ - ^Tad^i + d^,Ta^ (B.4)

We denote the chiral fields and their lowest component with the same letter <f). The two- 
point. correlation functions for the components of J are given by 

JHEP03(2009)038

(J“(0)) = 0 (B.5)
(J“(a;)J6(0)) = 2 dS^ IY [A+^A“^)] (B.6)

- -2 ddub 1 ■ [(A+(a?) - A (a?))eQ/3A°(a?)] (B.7)

(XX)j*(0)) = -2z ddab TY [(A+Gr) + A^))< • ^A°M (B.8)

0“(a<(0)) = 2 ddab TY Y, (^A^HA^X - A^^A^)) (B.9)

where d6ab = Tr[T"'T6] is the Dynkin index of the messengers, which is normalized to 1/2 
for SU(-ZVc) fundamentals. The trace runs in messenger space, and we have defined the 
(rotated) propagators

I ^V‘ -2 _ 4„, (B.10)

aO _ y f d p rivx X iH I I)- “Ik J (2?r)4e p2 _ (m0)2 (B-U)

N.W = (O±)u. I (B.12)
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in terms of and (m±)2, the eigenvalues of M and Al2 ± FA respectively, and U± the 
matrices that diagonalize Al2 ±FA. Now we implicitly define the functions Ca(x2M2) and
Bi/2(x2M2) as follows

(J“(æ)J6(0)) = ^C0(x2M2) ôab (B.13)

O'aWJÌ(O)) = (j^C1/2(x2M2^ ôab (B.14)

0»J>)) = - d,dv) (±C1(x2M2^ ôab (B.15)

(£(*0$(O)) = ea^B1/2(x2M2) ôab (B.16)

Here M is some characteristic mass scale of the theory (for instance X in (1.2)), which is 
introduced to express the arguments in terms of adimensional quantities. We also define 
the Fourier transformed functions Cafp2 /M2\M/X) and Bl/2(p2 /M2) as

Ca(p2/M2;M/A)

MB1/2(p2/M2)

2-7r2clog(A/A/) + finite (B.17)

(B.18)

Now, inserting the correlators (B.6)-(B.9) in (B.13)-(B.18) one obtains (repeated indices 
are summed)

C = 2d B . Î dq______________ 1________A" J (27t)4 (r/2 + (m^)2)((p + q)2 + (mF)2)

, = A± [ d4(i_____________ p ■ Q____________
1/2 P2 kn J (2^)4 ((p + q)2 + (m±)2)(g2 + (O2)

(B.19)

(B.20)

2d f d4q 
~3pJ^X ' k'

V- (_______ (p + g) ■ (p + 2g)______________4
\(q2 + (m±)2)((p + q'l2 + (m±)2) q2 + (m±)2

4g ■ (p + g) + 8(m°.)2 
(g2 + (m£)2)((p + g)2 + (m£)2)

</4g_______________»¡n_____________
(2tt)4 (g2 + (m±)2)((p + g)2 + (m°)2)

(B.21)

(B.22)

where we have defined the messenger-rotating matrices4

Bkn = (^[/_)fcra([/l[/+)rafc , = (HÌ)fcra([/±)rafc (B.23)

The last term in the first line of (B.21) represents a specific choice of contact terms, which ar 
set such that the currents satisfy the conservation equations (ward identities) in momentum 
space [15].

4For a U(l) gauge group, these correlators coincide with the results of [22] after the imposition of a 
messenger parity.

JHEP03(2009)038
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If the messenger supertrace vanishes (as it is the case here), all Ca agree up to O(l/p2), 
which is expected if supersymmetry is spontaneously broken. Notice that one obtains 
from (B.I7) that the logarithmic divergent, terms of Ca lead to c = 2r/Ar/(2x)1. and from 
it one finds the shift in the beta function due to the presence of the hidden sector, namely

frhigh - &iow = Aft = -(2-7t)4c = -2dN (B.24)

On the other hand, Bx/2 is finite and receives no contributions from the UV mass scale.
From the Ca functions we define the quantities Aa as

Ao = - J Co = —‘2dBknG2(mk,m~) (B.25)

A1/2 = 4y C1/2 = 4d^Akn [Gi(0)(Go(m±) -G0(m°)) +G2(m±,m°)

+((S )2 - (^°)2)G3(m^, m“)]

Ci = -dSkn^2 [4Gi(0)(Go(m^) - G0(m°)) + G2(m±,m±)

• 2(','2i a/).'.mk) + 4(m±)2G3(m±,ink) - 4(m^)2G3(m^,m°)]

which we have expressed in terms of the following integrals

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)

JHEP03(2009)038

Now we have all the necessary ingredients to compute the soft terms. The gaugino 
mass-matrix is diagonal, and each entry reads

where
AG = 2d

M? = 92MB1/2(0) = ^AG (B.31)

(m*)2log((m*)2/(m°)2) 
(m±)2 - ■ ///',;■2

(B.32)12
This concludes our derivation of the gaugino masses. The sfermion masses are obtained 
through the relation

mi“- — i/4 Cf (Ao + Ax/2 + Ai) (B.33)

Each Aa in (B.25) is expressed in terms of the divergent integrals (B.26)-(B.29). Notice 
from (B.25) that since all Ca agree up to O(l/p2), the sfermion masses (B.33) are LTV
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finite, even though the individual terms contributing to it are not. Following [31], we use 
the Dimensional Regularization (DR) scheme in which the dimension is n = 4 — 2e, and 
an infrared regulator me is introduced. All the terms proportional to Go and Gi in (B.25) 
vanish due to the messenger supertrace formula, and the identity

(-1 + 2e) G2(mi, m2) = m2 Gi(m2, mi) + m^ G4(mi, m2) (B.34)

can be used to express the quantities Aa exclusively in terms of the adimensional integrals 
G3 and G4, which after DR read

Here we have defined the functions

Fi(m2, ml) = (m2 log m2 — m?2 log ml)/(ml — m?2)
F2/m2i ml) = (m2 log2 m2 — m22 log2 ml)/(m2 — m22)
Fi(m2, ml) = • m/l.i 4 \ — ml/m2) — m22l.i4\ — m2/m‘l))/(m2 — m22) (B.37)

when m2 7^ m'l, and otherwise

Fi(m2,m2) = 1 + log m2
F2(m2, m2) = 2 log m2 + log2 m2
F3(m2,m2) = 2 (B.38)

Li2 being the dilogarithm function. Finally, from (B.33) we obtain after some algebra and 
repeated use of the identity

Li2(—x) = -Li2 |log2(l + x) (B.39)

the desired formula for the sfermion masses

(B.40)

A; = 2<i £(mj)2 log^A-2Aj

(™±)2/
(B.41)

JHEP03(2009)038
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