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ABSTRACT. Let J be a separable Banach ideal in the space of bounded oper-
ators acting in a Hilbert space H and U(H)y the Banach-Lie group of unitary
operators which are perturbations of the identity by elements in J. In this
paper we study the geometry of the unitary orbits
{UV : U eU(H)s5}

and

{UVW?* . U W €lU(H)5},
where V' is a partial isometry. We give a spatial characterization of these
orbits. It turns out that both are included in V + J, and while the first one
consists of partial isometries with the same kernel of V| the second is given by
partial isometries such that their initial projections and V*V have null index
as a pair of projections. We prove that they are smooth submanifolds of the
affine Banach space V 4+ J and homogeneous reductive spaces of U(H)5 and
U(H)5 x U(H)5 respectively. Then we endow these orbits with two equivalent
Finsler metrics, one provided by the ambient norm of the ideal and the other
given by the Banach quotient norm of the Lie algebra of U(H)y (or U(H)y x
U(H)5) by the Lie algebra of the isotropy group of the natural actions. We
show that they are complete metric spaces with the geodesic distance of these
metrics.

1. INTRODUCTION

Let ‘H be an infinite dimensional separable Hilbert space and B(H) the space of
bounded linear operators acting in H. It will cause no confusion to denote by || . ||
the spectral norm and the norm of ‘H. By a Banach ideal we mean a two-sided
ideal J of B(H) equipped with a norm || .|| satisfying ||7"]] < ||T||3 = |T7]l7 and
AT B|s < [|AINTI5I1BIl whenever A, B € B(H). In the sequel, J stands for a
separable Banach ideal.

Denote by U(H) the group of unitary operators in H and by U(H )7 the group
of unitaries which are perturbations of the identity by an operator in J, i.e.

UH)y={UeclUH)  U—-Te3}.

It is a real Banach-Lie group with the topology defined by the metric (U, Us) +—
lUy — Uslls (see |5]). The Lie algebra of U(H )5 is given by

Jen={A€T: A" =—A}.
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342 EDUARDO CHIUMIENTO

Let us recall the definition of the (orthogonal) Stiefel manifold St(n, k) in C*,
St(n, k) = { orthonormal k-tuples of vectors in C*} (k <n).

Any element (vq,...,v;) € St(n, k) identifies with the partial isometry that maps
the first & elements of the standard basis of C" to the elements of the k-tuple. We
want to extend this notion to an infinite dimensional separable Hilbert space H,
where the partial isometries can have infinite dimensional range and corange, but
only taking partial isometries which are compatible with a fixed partial isometry V'
and the ideal J. This leads us to study the following orbit:

St(V)g:={UV : UeclU(H);},

which we call the J-Stiefel manifold associated to V. Clearly, this is an orbit of the
left action of U(H )y on the set of partial isometries 7 given by U(H)3 x T — 7,
(U, V) — UV. Moreover, if one wants to move the initial space of V too, then it is
natural to consider

GSt(V)7 ={UVW"* : U W cU(H)5},

which we call the generalized J-Stiefel manifold associated to V. The left action of
UH)s x U(H)y on T is given by U(H)s x U(H)3 x T = I, (U W, V)= UVW*.
Note that each Stiefel manifold is contained in the affine Banach space V + J, so
there is an obvious topology coming from the metric (V1 , V2) — ||V1 — V2| 5.

There are several papers concerning the geometry and topology of partial isome-
tries endowed with the spectral norm (see, for instance, [2], [3], [9] and [12]) . On
the other hand, the article [1] is devoted to studying partial isometries of finite rank
with the Hilbert-Schmidt norm. The aim of this work is to understand some aspects
of the geometry of St(V)y and GSt(V)5 with V' a partial isometry of eventually
infinite dimensional range and corange.

Let us describe the contents of this paper and the main results.

In Section 2, we establish a spatial characterization of the orbits. The first
action defined above is transitive on the set of partial isometries contained in V +7J
with initial projection equal to V*V, while the second action is transitive on the
set of partial isometries contained in V + J such that its initial projection and
V*V have null index as a pair of projections. This result is closely related to the
characterization of the connected components of the restricted Grassmannian (see
6], 7).

In Section 3 we prove that GSt(V)5 is a submanifold of the affine Banach space
V 4+ 3 and the map ny : U(H)y x U(H)3 — GSt(V)q, mv (U, W) = UVW™ is a
submersion. Analogous results hold for St(V'); and the map my : U(H)7 — St(V)7,
my(U) = UV . Moreover, we prove that each Stiefel manifold is a homogeneous
reductive space of the corresponding unitary group which acts on it.

We define in Section 4 two equivalent Finsler metrics over the Stiefel manifolds,
the ambient Finsler metric induced as a submanifold of V + J and the quotient
Finsler metric provided by the homogeneous space structure. Since St(V); and
GSt(V)5 are infinite dimensional manifolds, there are several, in general nonequiva-
lent, notions of completeness [10]. Using the characterization proved in the second
section, we give a short proof of the fact that the Stiefel manifolds are complete
metric spaces in the metric given by the infimum of lengths of smooth curves.
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2. SPATIAL CHARACTERIZATION

In this section we give an alternative description of the Stiefel manifolds. Let us
recall the notion of the index of a Fredholm pair of orthogonal projections (see for
instance [4], [15]). Let P, Q be orthogonal projections in H with range R(P), R(Q)
respectively. The pair (P, Q) is Fredholm if QP : R(P) — R(Q) is Fredholm. The
index of this operator is the index of the pair (P, Q) and is indicated by j(P, Q).

Fix a partial isometry V and a separable Banach ideal J. Consider the following
set of partial isometries:

XV73 = {Vl S B(H) V= V1V1*V17 V-Viesd, keI'(Vl) = ker(V) }

Note that if V| V| are partial isometries such that V' — V; is a compact operator,
then (V*V,Vi*V1) and (VV*,V1V]") are Fredholm pairs. Then, consider also the
following set:

yv7j = {Vl S B(H) V= V1V1*V17 V-V e 37 j(V*V7 VfV1) = O}

We shall prove that Ay 5 = St(V); and My 5 = GSt(V)5. These statements
depend on two results. The first one was proved by Stratila and Voiculescu in [15]
when 7 is the ideal of Hilbert-Schmidt operators. Then, Carey in [7] generalized it
to an arbitrary symmetrically normed separable ideal.

Lemma 2.1 (Carey). Let P,Q be orthogonal projections. Then P —Q € 3 and
J(P,Q) =0 is equivalent to UPU* = Q for some U € U(H)7.

The second result was given in [14].

Lemma 2.2 (Serban-Turcu). Let H, K be separable, infinite dimensional Hilbert
spaces. Let Hy, Hq be infinite dimensional subspaces of H and let P; be the orthog-
onal projection onto H; (i =1, 2). The following are equivalent:

i) There exist two isomelries Vi, Vo in B(KC, H) with ranges Hy and Hy such
that Vi — V5 is compact.
ii) Py — Py is compact and (P, Py) = 0.

The following statement could be read as a factorization result for isometries in
the J-Stiefel manifold associated to V.

Theorem 2.3. Let V' be a partial isometry and J a separable Banach ideal. Then
Xy 3 =38U(V);.

Proof. 1t suffices to prove that the action of U(H); on Xy 5 given by U -V, = UV,
is transitive. Notice that if U € U(H)y and Vi € Xy 3, then

UVi =V =U-DV,+(V, - V) €q.

Clearly ker(UV;) = ker(V;) = ker(V'). Hence U(H )5 acts on Xy 3.
To prove transitivity, take Vi € Ay 5. Assume first that dim R(V) = co. Since
we have R(V*) = ker(V)+ = ker(V1)", then
U1 = V1V* . R(V) — R(Vl)

defines a surjective isometry. Therefore dim R(V;) = oo, and V, V; € B(ker(V)*, H)
are isometries such that V' — V| is compact. Then Lemma 2.2 applies to obtain
J(VV* ViVi") = 0. The projections onto the orthogonal of the respective ranges
satisfy ([ -VV*) —(I-ViV") e Jand 0 = j(VV* ViV]") = —j(I -V V* T -V} V).
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Then there exists Us € U(H)5 such that Us (I —VV*)Us = I - V1 V[ by Lemma 2.1.
Notice that Uy maps R(V)* onto R(V;)"; thus the restriction

Us: RVt — R(V))*
is a surjective isometry. Then set U := U & U,, which is a unitary in H such that
UV = Vi. Moreover, this unitary satisfies (U — N)VV* = V|V* —VV* € J and
(U-D{I-VV*)=(Uy—I)I—-VV*) e TJ; thus we conclude that U € U(H)3.
Assume now that dim R(V) < co. As before we define an isometry from R(V)
onto R(V1), so we obtain dim R(V}) < co. Therefore the orthogonal complements
of the ranges satisfy dim R(V)+ n R(V))T = dim(R(V) + R(V}))* = oco. Let
{f; : 7 € N} be an orthonormal basis of R(V): N R(V;)* and {e; : j € N} an
orthonormal basis of H such that the first n vectors form a basis of ker(V)*. Set
7 V6j7 ISJSTL, VAP V1€j7 ISJSTL,
Vej{ fjf’n7 j>n7 Vlej{ fjf’n? j>TL
So \77 V, are isometries such that V; — V is compact. Then by the first part of

our proof we obtain V; = UV for some U € U (H)5. Finally, it is clear that
Vi=UV. O

The following factorization result gives an idea of how much the initial space of
an isometry in GSt(V)5 can change and still lie in the orbit.

Theorem 2.4. Let V' be a partial isometry and J a separable Banach ideal. Then
Vv 3 =05t(V)s.

Proof. 1t suffices to prove that the action of U(H)y x U(H)3 on Vv 5 given by
(U, W)V} = UV;W* is transitive. Note that it is indeed an action of U(H )3 xU(H )5
on Yy 5. Let Vi € Yy 5, U W € U(H);5. Then
UViW* -V =U-I)V\W" "+ Vi(W"=1)+(V; - V) ed.

Since (UViW)*(UVIiW™*) = W(VV))W* and applying Lemma 2.1, we get
FJOVEVL (VW) (UViW*)) = 0. We use the following formula proved in [4],
which is valid because V*V — V|*V; is compact:
JVIV (UVIWS) T (UVIW?)) = G(VIV VIV 45 (ViVL, (UVIWE) (U VW) = 0.
Thus UViW* € Yy 3.

In order to establish transitivity, note that if Vi € My 5, then V'V —V*V; €7
and j(V*V,V*V}) = 0. Again Lemma 2.1 yields

WV*VIW* =Vv'V;
for some W € U(H);7. In particular, this unitary maps isometrically ker(V') (resp.
ker(V)*) onto ker(V1) (resp. ker(Vi)"). Define
T:RV)— RV), Te=ViWVZe.

This gives a surjective isometry. Notice that if e € ker(V)",

TVe=ViWV*'Ve =V, We.

If e € ker(V),
TVe=0=ViWe.
So we obtain TV = Vi W.

License or copyright restrictions may apply to redistribution; see https://iwww.ams.org/journal-terms-of-use


https://www.ams.org/journal-terms-of-use

GEOMETRY OF J-STIEFEL MANIFOLDS 345

The task is now to change T' for a unitary in U(H);. Observe that
(2.1) TVV* —VV* €3,
This follows because Vi — V & J implies V1V* — VV* € J. Therefore,

TVV —VV =ViWV* —VV =V(W-DNHV "+ WV V" -VV*) el
On the other hand, note that ker(V') = ker(V;W) and by (2.1) we have
V-WW=V_-TVel

Thus, Theorem 2.3 holds, and there exists U € U(H)y with ViW = UV, ie.
Vi=UVWW~. O

Remark 2.5. One implication of the preceding result says that if V, V; are partial
isometries satisfying V — V; € J and j(V*V,V*V]) = 0, then V; = UVW" for
some U, W € U(H)5. In particular, this gives V1V" = U(VV*)U*. Hence by
Lemma 2.1, we obtain j(VV* ViV[") = 0. Therefore two partial isometries with
difference in J and null index of their initial projections also have null index of their
final projections. A similar statement holds for the final projections in place of the
initial projections by taking the adjoint of the partial isometries.

This is not true for arbitrary partial isometries. For instance take V =TI and V;
the unilateral shift operator. Then j(V*V,V{*V}) =0, but j(VV* ViV]") = 1.

3. SUBMANIFOLD AND HOMOGENEOUS REDUCTIVE STRUCTURES

In this section we prove that GSt(V)y is a real analytic submanifold of V' +J
and a homogeneous reductive space of U(H )5 x U(H)5. Analogous results hold for
St(V)5 and the group U(H)5, where the proofs follow easily.

First we prove that the action of U(H)3 x U(H)7 on GSt(V)7 admits continuous
local cross sections.

Lemma 3.1. The map
my UH)g xUH); — GSU(V); CV+ 3, av((WU))=UVW*
has continuous local cross sections. In particular, it is a locally trivial fiber bundle.

Proof. Let Vi € GSt(V)5 such that ||V} — V|5 < 1. The idea to find unitaries
that depend continuously on Vj is adapted from [3]. Recall that || .| denotes the
spectral norm. Set P =VV* P = ViV;". We have

[P = PP = [VV" = VVVIV| < [VI(T = ViV
= [(VF =V =WVIl <V =V <[Vi =Vl <1.
Then
[P = PPP| <[P —PP <1
Therefore we obtain that PPy P is invertible on R(P). Taking the inverse on R(P),
put S = P{(PP,P)~'/2 = P{|P,P|~'. Note the following:
S5*S = (PP P)"V2p (PP P)"Y? = (PP P)Y"Y2(PP,P)(PPP)" "> =P

The next step is to prove that SS* = P;. We first check that PP = S|P P| is
actually the polar decomposition, proving the following two conditions:

1) S|P1P| = P1|P1P|71|P1P| = PP
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ii) Clearly R(P) = R(PP,P) C R(PP,) C R(P),i.e. R(P)= R(PP;). Thus
ker(S) = ker(P) = R(P)* = R(PP,)" = ker(P,P).

Since S is the partial isometry given by the polar decomposition, its final space
coincides with R(P; P) = R(P;) (this equality can be proved as in ii), changing the
roles of P; and P). Therefore, SS* = P.

By the same argument as above,

(I =P) = =P)I - FP)||=||P-PP| <1,

so there exists a partial isometry S’ : ker(P) — ker(P;) implementing the equiva-
lence between I — P and I — P;. Let us define T' = S+ 5’, which satisfies T" € U(H)
and TVV*T* =V, V}.

Analogously, we construct a W € U(H) satisfying WV VW* = V"V,

Notice that the partial isometries TV W™ and V) have the same initial and final
spaces. Then, taking R = Vi(TVW*)* + T — V{V}*, we clearly have R € U(H).
Moreover,

RITVW* =Vi(TVW*)"(TVW*) + (1 =WV iV TVW* =WV V'V, = V.
Finally take U = RT € U(H), which satisfies UVIW* = V1.
Claim. U;W € U(H)7.
For this purpose, recall that Vi — V € 3. Then Py — P € J. Therefore,
(3.1) |P\P|?—P=PPP—-P=P[P —P)Pei.
Since | P, P| and P commute, we can write
|PLP|> — P = (|[PLP| + P)(|PLP| - P).
Moreover, |P;P| + P is invertible in R(P). Then by equation (3.1) we obtain
|PLP| = P =(|PP|+P) " (|PP*—P)eT.
In particular, this implies that
|PLP|™t — P = |PLP|"H (P —|PLP|) €7,
Therefore,
S—P=pP|PP| ' —P=(P,—P)|PP| '+ P(|PP| ' -P)e].
Analogously we can show that S — (I — P) € J. Then,
T-I=(5-P)+(8-(I-P))e?.

By the same argument we have W € U(H)5. Since R = Vi(TVW*)* +1 - V1 V],
we obtain

R—-TI=Vi(TVW*)" =WV}
=ViW -DHV*T* 4+ ViV -+ Vi (V" =V) el
Hence U = RT e U(H)7.
Claim. The map
WV e@GSt(V)y: |Vi=V|s <1} CV+T — UH)y3xU(H) 7, Vi — (U(V1), W(V1))

is continuous.
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We will write this map as a composition of continuous maps. First, consider the
following map:
GSt(V); — P+ P3P, Vi — VIV]'P.
It is clearly continuous. Since CP + PJP is a x-Banach algebra, multiplication and
taking inverses are continuous. Then the map

P+ PIP — P+ P3P, ViV}P = ViV PV P!
is continuous. Therefore, if we define
S:GSt(V)y — P+ PIP, S(Vi) =WV PVV;P| !
it is a continuous map. Analogously, we can prove that
S GSt(V)y — I - P+ (I - P)I(I-P),
S' (Vi) = (I =ViVi)(I = P)|(I = ViV - P)| ™
defines a continuous map. Adding these maps, we obtain that
T:GSt(V)y — UH)7, TVi)=SW)+ 8 (V1)
is a continuous map. On the other hand, since W is constructed like T, we have
that Vi — W (V}) is continuous. Then, the following map, which is multiplication
and taking adjoint,
R:GSt(V)s — UH)7, RV =Vi(T(V)VWHWV)" )" +1-VV7,
is continuous. So we conclude that Vi — (R(V1)T'(V1), W(V1)) is continuous. [
The same result can be proved for St(V);.

Corollary 3.2. The map
vy UH) — St(V); CcV+3, =«U)=UV
has continuous local cross sections. In particular, it is a locally trivial fiber bundle.

We need the following consequence of the implicit function theorem in Banach
spaces, which is contained in the appendix of [13].

Lemma 3.3. Let G be a Banach-Lie group acting smoothly on a Banach space X .
For a fixed zy € X, denote by m,, : G — X the smooth map 7,,(g) = g - zo.
Suppose that

(1) 7z, s an open mapping, when regarded as a map from G onto the orbit
{g-x0: g€ G} of zg (with the relative topology of X ).

(2) The differential (dry,)1 : (TG)1 — X splits: its kernel and range are
closed complemented subspaces.

Then the orbit {g-zo : g € G} is a smooth submanifold of X, and the map
Ty - G —{g-x0 1 g € G} is a smooth submersion.

Note that the isotropy group at Vi € GSt(V)5 of the action of U(H)y x U(H)4
on GSi(V)5 is given by

Gy, ={(UW)eU(H); xUH); : UV1 =ViW }.
The Lie algebra is
ng - { (X7Y) € Jan X Tan 1 XV1 = V1Y}

Recall that a reductive structure for GSt(V)5 is a smooth distribution of hori-
zontal spaces { Hy, : Vi € GSt(V')5 }, which are supplements for the Lie algebra of
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the isotropy groups: Hyv, ® Gv; = Jan X Jarn. Each Hy, has to be invariant under the
inner action of Gy, (see [11]). Now we can state the main theorem of this section.

Theorem 3.4. Let V € B(H) be a partial isometry. Then GSt(V)y is a real
analytic submanifold of V + 3 and the map

Yy oo Z/[(H)j X Z/[(H)j — gSt(V)j

is a real analytic submersion. Moreover, GSt(V)5 is a homogeneous reductive space

of the group U(H)y x U(H)5.

Proof. We only have to apply Lemma 3.3 with G = U(H)3 x U(H)3, X =V + 7
and xzg = V. Notice that my is open by Lemma 3.1. The differential map of 7y at
I is given by

(5\/ = (dﬂv)[ﬁjahXjah—)j7 (5\/(X7Y):XV—VY
The kernel of this map is the Lie algebra of the isotropy at V', which can be expressed

(32)

Xll 0 V*X11V 0
- 7 © X1, Xao, Vi1 € Jan ).
Gy {(< 0 Xo >VV* ( 0 Yy >V*V) 11, Xa22, Y11 n}

Here the subscripts VV*™ and V*V indicate that the matrices are regarded with
respect to this projections. A closed complement for Gy is

(3.3)
X Xy > ( 0 Y >
Hy = . , . : X11 € Jan, X129, Yo €T}
v {(< “Xp 0 ) Y, 0 V*V) 11 hy X12, Y12 €7}

The argument in [1] to show that the range is closed does not depend on the
dimension of the range of V. We repeat it here for the convenience of the reader.
Consider the real linear map,

Ky :3—3x3 Ky(4) = (K, Ks),
Ky = iVV*AV* - iVA*VV* + (I -VVHYAV —VA (I -VV"),
Iy = _iV*AV*VJr iV*VA*V VAT -V*'V)+ (T -V'V)A™V.

It can be proved that §y o Ky o &y = dy. Therefore §y o Ky is an idempotent
operator on J whose range is closed and equal to the range of dy. Since the action
is real analytic we have that GSt(V')5 is a real analytic submanifold of V +J and
7y is a real analytic submersion.

Therefore GSt(V)5 is a homogeneous space of U(H)y x U(H)3. The reductive
structure is given by { Hy, : Vi € GSt(V)7} as in (3.3). It is a straightforward
computation using the matrix decomposition above that these supplements satisfy
Ad(U, W)(Hy) = Hy, for all (U, W) € Gy. O

Now we consider St(V')5. Observe that the isotropy group at V; of the action of
U(H )5 on St(V)y is given by

le :{UEZ/[(H)j : UV1:V1}

The Lie algebra is
gV1 = {X € Jan - XV = O}
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Corollary 3.5. Let V € B(H) be a partial isometry. Then St(V')y is a real analytic
submanifold of V 4+ 3 and the map

Ty - Z/[(H)j — gSt(V)j
is a real analytic submersion. Moreover, St(V')5 is a homogeneous space of U(H)7.

Proof. Apply Lemma 3.3 with G =U(H)5, X =V +T and 2o = V. It is a corollary
of the proof of Theorem 3.4. [l

4. COMPLETENESS AS METRIC SPACE

In this section we prove that GSt(V)5 and St(V)5 are complete metric spaces
with the geodesic distance given by the ambient metric and a quotient metric. First
we consider GSt(V)3. Recall that since 7y, is a submersion, the tangent space of
gSt(V)j at V1 is

(TQSt(V)g )Vl = {XVl -y : X7Y & jah}.

We shall describe two metrics which are invariant by the action of U(H)y x U(H)
on GSt(V)5. For XV; —=V1Y € (TGSt(V)5 )y, we define the ambient Finsler metric
by

Fo(XVi = WViY) = || XV, = V1Y)

On the other hand, we have a natural Finsler quotient metric. Fix a symmetric
norming function ® in R?, i.e. a norm which is invariant under permutations, only
depends on the absolute values of the coordinates and satisfies ®(1,0) = 1. For
XVi = WViY € (TGSt(V)3 )y, define the quotient metric by

Fq(XV1 — V1Y) = 1nf{ (I>( ||X +A||j7 ||Y+ B”j) AV =ViB, A B¢ jah}.

Indeed, in each tangent space, this is the quotient norm of (J,5 X Jup)/Gv,. Now
we show that both metrics are equivalent with bounds that do not depend on the
partial isometry V', the ideal J or the symmetric norming function .

Proposition 4.1. Let XV, — V1Y € (TGSt(V)3)v,. Then

1
7 FU(XVL = VIY) < Fy(XVi = ViY) < 2F,(XVi = WY).

Proof. Since both metrics are invariant by the action, we can assume V = V;. We
shall use the following elementary inequality (see [8]): For any symmetric norming
function ® and (z,y) € R? we have

(4.1) max{ |z, [y[} < ®(z,y) < |=] + [y|.
Then, to prove the first inequality, observe that for any (A, B) € Gy, we obtain
(4.2) Fy(XVi=WY) < @(|IX+Ally, [Y+Bl5) <2 max{||[X+A|s, [Y+Bl5}.

In particular, we can choose

SX VYRV VX VoYL
A 2 B- p
( 0 —X22>7 ( 0 —Y22>7
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where the matrix decompositions are regarded with respect to the same projections
as in (3.2). Therefore,

_ 3 12

( Xp=Vypve >
< 2
X 0

XllV;VYll O
B ( ~XpV 0)

J

0 X12
A

0 XV
NI

J

3
Xi1V-VY 0 X1V -VY VY
= (M )] = (™ )
=2|| XV -VY|s;.
A similar argument shows that ||Y + B|l; < 2|| XV — VY|5. Hence by (4.2) we
obtain )

1 F,(XVi =WY) < F(XVi = V1Y),
In order to prove the other inequality, fix ¢ > 0 and take (A, B) € Gy such that
| X+ All7, |IY +B|l7) < Fy(XV =VY) +e
Then by (4.1) we have
F XV -VY)= || XV -VY | =X+ AV -V(Y + B)|j

<X+ Allg + 1Y + Bllg <20([|X + Allg, 1Y + Bll)
<2F,(XV -VY)+ 2

Hence we conclude that

F (XV -VY)<2F,(XV -VY),

and the proposition follows. [l

Remark 4.2. When we consider the ideal Ba(H) of Hilbert-Schmidt operators and
that the symmetric norming function is the Euclidean norm in R?, we have that

(4.3) F,(XVi = V1Y) = V2 F(XV; — ViY).

In this case, the quotient norm can be explicitly computed as follows. Let us define
a real bounded projection onto Gy, by

PV1 : BQ(H)ah X BZ(H)ah — ng ;

Xpvypve VIXpVav o
Pl = o W T )

It is easy to see that Py, is the orthogonal projection onto Gy, if one considers in
Bo(H) x Bo(H) the induced inner product

(A1, B1), (A2, Ba)) = Tr(A1A;) + Tr(B1B;),
where T'r denotes the trace. Then, the expression of the quotient norm reduces to
Fy(XVi =WViY) = | (I = Pv ) (X, Y) 2,

where || .||z is the Hilbert-Schmidt norm in Ba(H) x Ba(H) given by the inner
product above. Now the equality stated in (4.3) is a straightforward computation.
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We measure the length of a piecewise smooth curve ~(t) in GSt(V')7 defined for
0<t<1by

Lo = [ mGwa
Therefore, the geodesic distance is given by
da(V1, V2) = Inf{ La(7) + v C GSU(V)7, 4(0) = Vi, v(1) = Va },
where the curves v considered are piecewise smooth.

Remark 4.3. Actually, since we are in an infinite dimensional Finsler manifold, we
have to prove that d,(.,.) is a metric in GSt(V')3. The only nontrivial fact to
check is that d,(V1, V4) = 0 implies V; = V,. Consider a piecewise smooth curve v
in GSt(V')5 joining V; and V5. Then

1
HW—%MSAwanﬁ

Therefore, we obtain
(4.4) Vi = Valls < do(V1, Va),
which clearly proves our assertion.

Let P € B(H) be an orthogonal projection and J any symmetric normed ideal.
We call the 3-Grassmannian Gr(P)y corresponding to the polarization H = R(P)&®
R(P)™* to the following unitary orbit:

Gr(P); = {UPU* : U €U(H)3}.

By Lemma 2.1 we have that Q € Gr(P)5 if and only if P —@Q € J and j(P,Q) = 0.
We need to show that Gr(P); is closed with the ideal norm.

Lemma 4.4. Let P € B(H) be an orthogonal projection. Let (Py)yn >1 be a sequence
in Gr(P)y such that lim | P, — Pyl =0. Then Py € Gr(P)5.
n—oo

Proof. 1t is obvious that P, is an orthogonal projection satisfying P — Py € J. We
only have to prove that j(Pp, P) = 0. Fix n > 1 satisfying ||Py — P,|l7 < 1. The
fact that j(P,, P) = 0 implies that

Since j(P, P,) # 0, we have dim(ker(Py) N R(P,)) # dim(ker(P,) N R(F)). If
we suppose that dim(ker(Fy) N R(F,)) > dim(ker(P,) N R(Fy)), then in particular
there exists e € ker(FPy) N R(FP,), |le|| = 1. Therefore, we have a contradiction since

L= llell = I(Po = Po)ell < [1Po = Poll < [[Po = Pulls < 1.

The same argument follows in case dim(ker(Py) N R(P,,)) < dim(ker(P,,) N R(Py)).
O

Using the spatial characterization of GSt(V )7 given in Section 2 we have a short
proof of the fact that it is a complete metric space.

Theorem 4.5. GSt(V)7 is a complete melric space with the geodesic distance d,.

License or copyright restrictions may apply to redistribution; see https://iwww.ams.org/journal-terms-of-use


https://www.ams.org/journal-terms-of-use

352 EDUARDO CHIUMIENTO

Proof. Let (V,,)r, >1 be a Cauchy sequence in GSt(V)5 for the metric d,. By equa-
tion (4.4), (Vi)n>1 is also Cauchy for the norm || .||5. Since J is a Banach space,
there exists Vo € V 4 J such that ||V, — V5|l — 0. Using Lemma 4.4 we obtain
that Vo € GSt(V)5.

In Lemma 3.1 we prove that 7y, : U(H)y x U(H)7 — GSt(V)5 has continuous
local cross sections. Hence for n > 1 large enough there exists U,, W,, € U(H);
satisfying V,, = U,VoW}, ||U,, — I||l3 — 0 and ||W,, — I||3 — 0. Since U(H);5 is a
Banach-Lie group, the exponential map is a local diffeomorphism. Then there exists
X, Yy € Jap such that V,, = eXnVoe ¥ || X,]|3 — 0 and ||Y,||; — 0. Taking the
curves v, (t) = eXrVye " we conclude that

da(Vi, Vo) < La(n) < | Xnlla + [Yalls = 0,

and the theorem follows. O

In St(V)7 we can prove the same result. Since the map my, : U(H)7 — St(V);
is a submersion, the tangent space of St(V)5 at V; is given by

(TSt(V)g)y, ={XV, : X €T}
The quotient metric in St(V)5 reduces to the following expression:
[XVillv, = inf{[|X + Alls - AVL =0, A€ Tan }.
Corollary 4.6. St(V)5 is a complete metric space with the geodesic distance d,.

Proof. 1t suffices to show that St(V)5 is d,-closed in GSt(V')5. Moreover, we will
prove that St(V)y is || .|[5-closed in GSt(V)5. Let (Vi)n>1 a sequence in St(V)y
satisfying ||V, — Vo|lz — 0, where Vi € GSt(V)5. It suffices to demonstrate that
ker(Vp) = ker(V). Let e € ker(Vy), |le]l = 1. For all n > 1,

[Vaell = [[(Vie = Vo)ell < [[Va = VoIl < IV = Vollz — 0.
Since V,, € St(V)y, there exists U,, € U(H)5 such that V,, = U, V. Then,
Vel = [[UpVaell = [Vael,
which implies that
Vel = lim [[Vyell = 0.
n—rod

In order to prove the other inclusion, let e € ker(V) = ker(V,,), |le]| = 1. Observe
that

[Voell < [I(Vo = Viell < [IVo = Vall < [[Vo = Valls = 0,

so we have e € ker(V})), and the proof is complete. O

Note that we can also define a geodesic distance d, induced by the Finsler quo-
tient metric F;. The next result follows immediately from Proposition 4.1.

Corollary 4.7. The metric spaces St(V)7 and GSt(V)3 are complete with the
geodesic distance d.
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