
Capture and Evolution of Web Requirements
Using WebSpec

Esteban Robles Luna1’2, Irene Garrigós3
Julián Grigera1, and Marco Winckler4

1 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{esteban.robles,julian.grigera}@lifia.info.unip.edu.ar

2 Also at Conicet
3 Lucentia Research Group, DLSI, University of Alicante, Spain

igarrigos@dlsi.ua.es
4 IRIT, University Paul Sabatier, France

winckler@irit.fr

Abstract. Developing Web applications is a complex and time consuming
process that involves different kind of people, ranging from customers to devel
opers. Requirement artefacts play an important role as they are used by these
people to perform their daily activities. However, state of the art in requirement
management for Web applications disregards valuable features that tend to im
prove the development process, such as quick validation during elicitation,
automatic requirement validation on the final application and useful change
management support. To tackle these problems we introduce WebSpec, a re
quirement artefact for specifying interaction and navigation features in Web ap
plications. We show its use through the development of an example application
in the social networking area, and its implementation as an Eclipse plugin.

1 Introduction

It is usual to have multidisciplinary teams (including customers, analysts, developers,
QA staff, etc) involved in the development of real world Web applications, making it
a complex and time consuming process. Moreover, requirements are susceptible of
changing along the development cycle, so it is important to keep them updated and
record their changes to reduce risks and time efforts. Many times, the success of a
Web project relies on how Web requirements are captured and specified [16],

Several studies [16, 19] in industrial cases have shown the importance of require
ments in Web application development. Requirements are generally described in in
formal documents (e.g. use cases [13]) that are shared by the different stakeholders of
the project. However, Web applications tend to evolve in short periods of time [16]
and sometimes not having a comprehensive way of handling requirement changes in
coherent documents. Therefore, testing against the requirement specification is not
feasible [19], Furthermore, it is sometimes necessary to get deeper in the development
or design phases so that customers start to understand their own needs [19],

In this context, capturing requirements should be efficient enough to accomplish
the time constraint, without disregarding the interactive nature of Web applications.

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 173-188, 2010.
© Springer-Verlag Berlin Heidelberg 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301095836?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:igarrigos@dlsi.ua.es
mailto:winckler@irit.fr

174 E. Robles Luna et al.

Therefore, requirement artefacts have to be easily understood and validated by stake
holders prior to the development, in order to avoid future wastes of time. Moreover,
during the development process, the application has to be checked to validate that
new requirements have been correctly implemented without “breaking” previous
ones. Furthermore, requirement artefacts should help to maintain good quality stan
dards during the development process, which are hard to keep with short time con
straints.

In the context of model driven Web engineering approaches [22, 20, 14, 2, 11] the
aforementioned concerns are not generally taken into account [7], As a consequence,
Web applications developed with these methodologies share some commonalities
with the industrial cases, such as outdated requirements, unfeasibility to test against
the requirements and unsuitably to handle fast evolution. Web requirements artefacts
(e.g. user interaction diagrams [22], extended use cases [6], etc) capture important
aspects of Web applications like navigation; however they are either used to docu
ment [13] or to derive the first version of the domain or navigation models [8, 10] and
do not consider either evolution or validation (except WebRe [8] which provide test
derivation from WebRe models) or even quick validation during the capture phase.

To tackle these problems we present WebSpec, a multi purpose requirement arte
fact used to capture navigation, interaction and UI (User Interface) features in Web
applications. To improve the capturing phase, WebSpec can be used in conjunction
with mockups to provide realistic UI simulations, hence improving requirement elici
tation. Also, to allow quick requirements’ validation in the final application, WebSpec
automatically derives a set of interaction tests. Finally, WebSpec enforces change
management support which could be used to improve the development cycle by
automating structural changes in the application. Summarizing, we show how to:

• Simulate the application using WebSpec and mockups to improve communica
tion between the different stakeholders and reduce elicitation times.

• Derive tests from WebSpec diagrams to reduce requirement validation times.
• Capture requirement changes and use them to semi/automatically upgrade the

application and maintain quality standards.

The rest of the paper is structured as follows: in Section 2 we present WebSpec, its
concepts and syntax. In Section 3 we show how it is used in different activities in the
development cycle by improving requirement’s elicitation, helping to automatically
validate the requirements and managing their changes. Section 4 briefly shows Web
Spec Eclipse plugin and describes its use in a real application. Section 5 presents re
lated work and finally in Section 6 we conclude and present further work.

2 WebSpec: A DSL to Capture Interactive Web Requirements

WebSpec is a DSL (Domain Specific Language) that allows specifying navigation,
interaction and UI aspects in a more formal way than, for example, use cases. A
WebSpec diagram has two key elements: interactions and navigations (Fig. 1).

An interaction (the counterpart of a Web page in the requirements stage) represents
a point where the user can interact with the application by using its interface objects
(widgets). Interactions have a name (unique per diagram) and may have widgets such

Captare and Evolution of Web Requirements Using WebSpec 175

as: labels, list boxes, buttons, radio buttons, check boxes and panels. Labels define the
content (information) shown by an interaction. Interactions are graphically repre
sented with a rounded rectangle which contains the interaction's name and widgets. A
WebSpec diagram must have a starting interaction represented with dashed lines.

{precondition}
action 1;
assignment;

Widgets

Fig. 1. WebSpec’s basic concepts

A mockup is a sketch of the "possible" application which generally represents UI
elements. We can associate interactions with mockups and WebSpec widgets with
their concrete UI elements in the mockup to improve the stakeholder's communica
tion during the elicitation phase. There are several tools that could be used to create
mockups, such as Balsamiq [1] or plain HTML. WebSpec allows using any of them
as long as they provide a unique way to locate the interface elements.

O Register

QfirstName
O lastName

O username
□ password
□ co n f i r m Pa s s wo rd

□ register

#
{}
username := îusernamesî;

—password S-passwordsS;
tweets := 0;

jt added := false;
“ type(Regi

type(Reg
type(Regi , ,
type(Reg i ster. pas sword, ${pas sword});
type(Regi
cl ickfRegi ster. register)

I

Ister.firstName, $firstNames $);
I ster, lastName, S la stNames Î);
lister.username, Î{usernarne});

I ster.con fi r m Pas sword, S{pas sw

usernames

s.b passwords

s.b messages

*.b invalid Messages

a.b fi rstNames

s.b last Names

#i oval id Rost
{}

g added := false;
~ long := true;

type(Home.m sgTF, Î invai id Messages Î);
cl ick(Home.tweet)

#
$ {}

cl ick(Log in. regi ster

(Ù Login

J nginar

3rd]);

QHome 0

tweets Count |âbÿ] username

□ rn sgTF @ messages

□ tweet

|»bc| tweet Mes sage □delete

#delete
{${tweets} > 0}
tweets := ${tweets} - 1;
added := false;
long := false;
chckfHome. delete)

message : = SmessagesS;
added ; = true;
long := false;
type(Home.msgTF, ${message});
tweets := ${tweets}+ 1;
c I i c k(Ho m e. t weet)

?

Fig- 2- Tweet Webspec diagram

Invariants are Boolean predicates that must always hold. Every interaction has an
invariant that specifies which properties must be satisfied (in case that we do not de
fine one, it is assumed that the invariant is true). Fig. 2 shows a simplified diagram of
a Twitter-like application that specifies the post a message (tweet) requirement and

176 E. Robles Luna et al.

has 3 interactions named: Login, Register and Home. The Home interaction defines
an invariant (marked with the I icon near the interaction's name): Home.username =
${username} && Home.tweetsCount = ${tweets} && ${long} -> Home.messages =
“Invalid message " that states that the contents of the username label must be equal to
the username variable (denoted as ${variableName}') and the contents of the tweet-
sCount label must be equal to the tweets variable and if the long variable is true then
the contents of the messages label must be equal to "Invalid message".

A navigation from one interaction to another can be activated if its precondition
holds by executing a sequence of actions such as: clicking a button, adding some text
in a text field, etc. As well as invariants, preconditions can reference variables previ
ously declared in the diagram. For example, the delete navigation (Fig. 2) has the pre
condition: ${tweets} > 0. Navigations are graphically represented in the WebSpec
diagrams with gray arrows while its name, precondition and actions are displayed as
labels over them. Actions are written in an intuitive DSL conforming to the syntax:
var := expr I actionName(argl,... argn). Traditional hyperlink navigation is repre
sented with no precondition (indeed, an always true precondition) and with only one
action click (follow) a link widget (see Login to Register navigation in Fig 2). An
example of a more complex sequence of actions is the invalidPost navigation (Fig. 2):

(1) added : = false;
(2) long := true;
(3) type(Home.msgTF, $invalidMessages$);
(4) click(Home.tweet);

The first 2 sentences (1-2) assign constant values to variables. Then some text gen
erated by the invalidMessages generator (denoted between $) is typed in the msgTF
text field (3) and finally the tweet button is clicked (4).

WebSpec allows specifying general properties like "an error must be shown if the
user tries to post a message with more that 150 characters" using generators. Follow
ing the idea of QuickCheck [3], we extract the data used for specifying interaction
requirements into generators. If a property in a WebSpec diagram holds, then it must
hold for any element that could be generated by a generator. A generator is a function
that can be called from navigation actions (e.g. $invalidMessages$) and generates
data. For example, Fig. 2 has 6 generators: usernames, passwords, messages and in
validMessages, firstNames, lastNames. The invalidMessages generator generates
strings with size > 150, so when that invalidPost navigation is activated, some invalid
text will be typed and because the long variable will be true an error message must be
display (recall the invariant of the Home interaction) in the messages label.

Fig. 3. WebSpec simplified metamodel

L AMttactWidgei
o name
o location

0.,‘

widge**

Capture and Evolution of Web Requirements Using WebSpec 177

For those Web requirements that have strong hidden behaviour (not perceived from
an interaction point of view, e.g. send an email), Webspec could be combined with
simple notes over the diagram or by linking navigations with use cases or user stories.
For example, if an email has to be sent when a user posts a message, we can easily
add a note over the post navigation.

Finally, WebSpec is formally defined in a metamodel (Fig. 3) that is used to im
prove the development process as shown in the following section. A diagram has a
root object of the class Diagram which contains many Interaction and Navigation in
stances. An Interaction instance knows its name, forward navigations and associated
mockup. A Navigation knows its source and target Interaction and the sequence of
Action instances that triggers them. Finally, the interaction knows its root widget
Container which can contain many AbstractWidget (Widget or Container) instances.

3 Using WebSpec along the Development Cycle

WebSpec allows specifying interaction requirements for Web applications at a con
ceptual level without imposing any particular development process. Notwithstand
ing, WebSpec diagrams can be used at different steps of the development cycle of
Web applications. To illustrate this fact, we show in Fig. 4 how WebSpec can be
used in the different activities of a test-driven approach like WebTDD [21] and in a
methodology using a RUP [15] like process. Simulation (S in Fig. 4) can be used to
share design options between stakeholders and validate their requirements in the
requirements phase of both kind of processes. Tests generated from the diagrams
(TG in Fig. 4) can be used to validate requirements against the final implementation
when using a RUP style or to drive the development process in WebTDD. Changes
during the development cycles are recorded (CR in Fig. 4) in the requirements phase
of both. Finally, semi/automatic upgrades (CA in Fig. 4) using the previously re
corded changes can be applied to the application in the development phase of
WebTDD and RUP. In the following subsections we show how these features are
supported in WebSpec.

WebTDD

Mcxkups +
WebSpec

>?rtve interaction lwi ©

Q| Creat&lmpcovt;
- Prewrwirttort Modds
■ Navigation Models
□ata Models

Q <5ecierate Application

Q Run Tests against Application

o
simulation

tests
generation

©
change

recording

©
change

application

RUP

Q Business modelirvg

Requirements ©0
Ql Andris and design

implementation

Q Ocptoyinenc

Fig. 4. Using WebSpec in activities of different approaches

178 E. Robles Luna et al.

3.1 Simulating the Application during Requirements Elicitation

With the aim of improving the requirement elicitation phase, WebSpec diagrams al
low the simulation of the resulting application. Simulation is important to bridge the
gap between the understanding of customers and designers about requirements thus
getting real feedback from them.

Most requirement artefacts [13, 8, 1, 22] require some level of knowledge from cus
tomers to be fully understood, causing communication or understanding problems dur
ing elicitation. WebSpec is not the exception; understanding a diagram may take some
time and require some knowledge of WebSpec’s concepts, e.g. variables and interac
tions. To ameliorate this scenario WebSpec provides some interesting features such as
mockup association and formal specification which allows to formally simulating the
application to improve the communication between stakeholders during elicitation. We
say formally, because different from the simulation provided by tools such as Balsamiq
[1], we not only show transitions between the pages but also execute real actions and
provide descriptions of what would be the real output of the application directly over
mockups. The descriptions provided are generated automatically from the WebSpec
diagram and they are easy to understand because they are written in natural language.
In this way, from every WebSpec diagram a set of simulations is automatically gener
ated which could be used at any time by customers to understand the meaning of the
diagram and suggest changes or improvements to the analyst.

The set of simulations is obtained following the different paths from the starting in
teraction of each WebSpec diagram. If the diagram has cycles (a path that contains
more than one occurrence of an interaction) then we have to prune those paths to ob
tain finite paths. For example, in the Tweet Diagram (Fig. 2) we can obtain the fol
lowing paths pruning them (as it is a cycled diagram) to a length of 5 interactions:

Login -> Register -> Home -> (post nav) Home -> (post nav) Home
Login -> Register -> Home -> (invalidPost nav) Home -> (post nav) Home
Login -> Register -> Home -> (post nav) Home -> (invalidPost nav) Home
Login -> Register -> Home -> (invalidPost nav) Home -> (invalidPost nav) Home
Login -> Register -> Home -> (post nav) Home -> (delete nav) Home

Each simulation is created following the sequence of interactions and navigations
of the path and data is generated when a generator is referenced inside expressions.
The path is transformed into a simulation model (not shown for space reasons) that
specifies the simulation steps. A simplified version of the transformation algorithm is
shown next:

(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)

simulation := new Simulation () ;
for (Pathitem item : path.getlterns()) {

if (item.islnteraction()) {
Interaction interaction = (Interaction) item;
simulation.openMockup(interaction.getMockup());
simulation.showPredicate(interaction.getlnvariant());

} else {
Navigation navigation = (Navigation) item;
simulation.showPredicate(navigation.getPrecondition());
for (Action action : navigation.getActions()) {
simulation.simulateAction(action);

}

Captare and Evolution of Web Requirements Using WebSpec 179

Line 1 creates the simulation model. For every item (interaction or navigation) in
the path (2): if it is an interaction (3) we show the mockup associated with it (5) and
show the predicate of its invariant to describe which properties must hold (e.g. "The
label should have the value 'John') (6); if the item is a navigation, we show the pre
condition (9) and for every action we simulate it (10-12).

As an example of a simulation we next show a sequence of the simulation steps of
the path: Login -> Register -> Home -> (post nav) Home -> (post nav) Home generated by
the algorithm. For space reasons, we can not show all the steps so we will describe the
first 11 steps and show steps 8 through 11 (except step 10 which is equal to step 11
without the label) in Fig. 5.

(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)

open("loginMockup.html");
click("register", "the user clicks the register button");
open("régis terMockup.html") ;
type (" f irstName11 ,
type("lastName",
type("username" ,
type("password",
type("confirmPassword",
click("register", "the user clicks the register button");
open("homeMockup.html");
showDescriptionNearTo("it should contain the text 'John'",
"username");

"John",
"Doe",
"john.doe",
" aaa "

"the user types 'John'");
"the user types 'Doe'");

"the user types 'john.doe'");
"the user types 'aaa'");
"aaa", "the user types 'aaa'");

Line 1 opens the first mockup. Line 2 clicks the register button and line 3 we simu
late navigation by opening the mockup associated with the Register interaction. Lines
4-9 execute the actions to move from Register to Home interaction. Specifically, line
8 (Step 8 of Fig. 5) types 'aaa' to the confirm password field and line 9 (Step 9 of Fig.
5) clicks the register button. Line 10 simulates the navigation by opening the mockup
associated with the Home interaction and finally line 11 (Step 11 of Fig. 5) shows the
label with the condition that must be satisfied according to the filled information. No
tice that the algorithm has to use generators in lines 4, 5, 6, 7, 8 to generate data ac
cording to the specification of Fig 2 (Register to Home navigation).

oRofntot to Twootio Retate I to Tweetie

Tweetie Tweetie

Fig- 5- Simulation steps of the Tweet diagram

Once the requirements elicitation phase is completed we can automatically gener
ate a set of tests that the application must pass as shown in the following subsection.

180 E. Robles Luna et al.

3.2 Automatic Validation of Requirements

New requirements must be validated to guarantee their correct implementation while
previous ones still work as intended. However, it is hard to perform this task in short
periods of time thus making it more important to keep requirements updated for the
quality assurance team.

A well known way of validating requirements consists in running automated tests
(that express the requirements) over the application. If one of these tests fails, then a
requirement is not satisfied by the application. In particular, interaction tests play an
important role in industrial settings as they execute a set of actions in the same way a
user would do on a real Web browser, thus their use is continuously growing [17],
However, in the Web engineering research area their use is recently appearing in ap
proaches like WebTDD [21],

In a similar way we have created the simulations, we build a test suite (a set of test
cases) from a WebSpec diagram by following the different paths from the starting
interaction. To capture the basic concepts of tests, we have created a metamodel (Fig.
6) which is independent of the technology used. The metamodel contains the Test and
TestSuite classes that conceptualize a test and a set of tests. A Test has a sequence of
actions: assertions on interface objects or actions performed by the user over the ap
plication. Both cases are covered by the Testitem hierarchy.

o.'
rests

■ Test
o name

- P TestSuitt P Simplelesj I A «serf ion

® e-ecute

¡4 Action______
j= action Name
♦ e-ecute

arguments

C..’

Er • - - ’

Fig- 6- Test metamodel

To build the test suite, we transform each path into a SimpleTest (see Fig. 6) by
executing the following simplified version of algorithm over each path. Similar to
simulations, we will use generators to generate data according to the specification
when an expression references it. The TestSuite is obtained by simple composition
(see the composition relationship in the metamodel of Fig. 6) of the previous Sim
pleTest instances. More complex scenarios could be manually created by composing
different Test suites into a bigger one. Once the TestSuite model is generated, we can
translate it to a specific implementation framework such as Selenium [24].

(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)

test := new SimpleTest();
test.additem(new OpenURL(applicationURL));
for (Pathitem item : path.getltems()) {

if (item.islnteraction()) {
Interaction interaction = (Interaction) item;
test.additem(new Assert(interaction.getlnvariant()));

} else {
Navigation navigation = (Navigation) item;
for (Action action : navigation.getActions()) {
test.additem(new Execute(action));

}

Capture and Evolution of Web Requirements Using WebSpec 181

Line 1 creates the test model and line 2 generates the action to open the applica
tion. For each element in the path: if it is an interaction (4), we assert its invariant (6);
if it is a navigation (8) we execute the actions that allow us to navigate from one in
teraction to another one (9-11).

To better illustrate these ideas, let us consider a specific path of the Tweet diagram:
Login -> Register -> Home -> (post nav) Home -> (delete nav) Home. Applying the previ
ous algorithm to the path and deriving a Selenium version of the test gives the next
result:

(01) selenium.open("http://localhost:8080/index.html");
(02) selenium.click("id=register");
(03) selenium.waitForPageToLoad("30000");
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)

"John");
"Doe");
"j ohn.doe") ;
"wqe4yt24");

"wqe4yt24");

selenium.type("id=firstName"
selenium.type("id=lastName",
selenium.type("id=username",
selenium.type("id=password",
selenium.type("id=confirmPassword",
selenium.click("id=register");
selenium.waitForPageToLoad("30000");
assertTrue((selenium.getText("id=username").equals("John"))

&& (selenium.getText("id=tweetsCount").equals("0")));
selenium.type("id=tweetMessage" "©Office");
selenium.click("id=tweet");
selenium.waitForPageToLoad("30000");
assertTrue((selenium.getText("id=username").equals("John"))

&& (selenium.getText("id=tweetsCount").equals("1"))
selenium.click("id=tweetDeleteO");
selenium.waitForPageToLoad("30000");
assertTrue((selenium.getText("id=username").equals("John"))

&& (selenium.getText("id=tweetsCount").equals("0")));

Line 1 opens the application in the Web browser. Lines 2-3 click on the register
link. Lines 4-10 fill the register information (first name, last name, username, pass
word and confirm password) and clicks the register button. Lines 11-12 assert that the
labels of the Home page have the values previously filled. Lines 13-15 post a new
message to the wall. Lines 16-17 assert the new value that the labels must have after
the post are valid. Lines 18-19 click on the delete button of the first message to delete
the post. Finally, lines 20-21 assert the values of the labels after the delete operation.

As aforementioned, Web applications tend to change very fast, thus recording re
quirements changes is important to improve the development process. In the next sub
section we show how requirement changes are captured in WebSpec.

3.3 Capturing Requirement Changes

Capturing requirements changes is an important feature to predict their impact in the
application. Though some mature requirement artefacts [13] provide extensions to
support change management, in the Web engineering field there are not many studies
about how requirement changes can be captured and used to improve some part of the
development process (see Sect. 5 for details).

In WebSpec, changes are recorded into change objects that group a set of changes.
WebSpec can suffer different coarse grained changes, such as the addition or deletion
of an interaction or navigation element. These elements can be modified too, by the

http://localhost:8080/index.html

182 E. Robles Luna et al.

Fig. 7. Change metamodel

addition or deletion of widgets to an interaction, changes in invariants, etc. As for
navigations, we can add or delete preconditions, change their source, target, or the
actions that triggers them. All these types of possible changes have been represented
in the metamodel of Fig. 7. When the user modifies the diagram, a change object is
created and the sequence of changes is recorded as instances of these classes.

As an example, let us suppose we want to add a link between the Login interaction
(Fig. 2) and a new TermsOfService interaction. The change in the diagram generates a
new change object (Fig. 8) which has the following elements: a new interaction
(TermsOfService), a new navigation (Login -> TermsOfService), a new link (tosLink)
and a new label (the description of the terms of service). To take advantage of captur
ing changes, we show in the following subsection how to use WebSpec change ob
jects to semi/automatically upgrade the application.

Change

Fig. 8. Change object representing the new Terms of Service functionality

3.4 Using Requirement Changes to Evolve the Application

Though handling requirement changes serves for multiple useful purposes, we will
focus on how to semi automatically upgrade the application using them. Since change
objects represent changes at the WebSpec level, we decouple the process of upgrading
the application by providing different effect handlers. An effect handler is a compo
nent responsible of mapping the changes in the diagrams to a concrete technology and
storing the trace links between the WebSpec elements and the technology ones. For
example, a WebSpec diagram generates a change that can be applied with different
effect handlers depending on the underlying technology: Seaside [23], GWT [12],
WebRatio [25], etc. Seaside and GWT effect handlers will create/update methods and
classes but WebRatio effect handler will produce model transformations in order to
update the models.

Capture and Evolution of Web Requirements Using WebSpec 183

As an example of the use of effect handlers, we next show how to use the change
object of the previous subsection to upgrade the application. We assume that the ap
plication is developed with Seaside, so we use the Seaside effect handler.

The effect handler "reads" the change object and suggests actions to the developer.
The first change (add the TermsOfService interaction) suggests to create a new class
(WATermsOfService) that extends the base class of the Seaside framework (WALay-
outPane) (see row 1 of Fig. 9). The developer accepts the proposal and continues with
the next change that represents the navigation from Login to TermsOfService interac
tion. This change refers to behavioral aspects that the effect handler does not handle
yet, so it does not propose an action. The two remaining changes involve adding wid
gets to the interactions. The first one adds a link in the Login interaction; because the
effect handler stores the trace link between the interaction and the implementation
class, it suggests adding a new method that creates the link to the WALogin class
(Row 2). Finally, the effect handler suggests adding a new method to the WATerm
sOfService to create the new label (Row 3).

change generated code

New interactiornTermiOfService

New link at Login

New label at TtrmiOfService

WALayouîPane subclass; #WATermsOfService
InstanceVarlahleNanWffi! 14
classVarlableNames;
poolDictlonarles: "
category: 'Twitter'

cre*teTerms0f$4rvke
| control [J

control ;■ SFAnchor link: (self termsLinkPressed L
control name: 'terms'¡label: 'terms.
~ control

c ceit ePar* graph
[control |
contra(:■ SFPAragraph new.
control «tame: *paragraph';contents! These Terms of Service
(- • - I Terms. By accessing or using the Services you agree
tn be bound by these Terms.U
* control

Fig- 9- Semi/automatic upgrades using the Seaside effect handler

4 Implementation

WebSpec has been implemented as an Eclipse plugin using EMF and GMF technolo
gies. The plugin allows the creation of diagrams and the association of interactions
with HTML mockups inside the environment. Simulations are implemented using a
small extension to the Selenium framework, and JUnit selenium tests are automatically
generated from diagrams. Finally, changes are recorded and stored into XML files that
could be read by different effect handlers. We have implemented effect handlers for
Seaside and GWT. Fig. 10 shows a screenshot of the WebSpec Eclipse plugin.

Using the plugin and following the WebTDD approach, we have successfully im
plemented a complete application for the Post-graduate area of the College of Medi
cine in the University of La Plata. We have used GWT, Spring and Hibernate as base
technologies for the development process and actively used the generated tests to

184 E. Robles Luna et al.

Fig. 10. Webspec Eclipse plugin

check that the application satisfies the requirements in an incremental way. Simula
tion was used for improving the elicitation of requirements and change objects al
lowed automating the creation of the structural UI classes of the application.

5 Related work

In the context of Web Engineering, the specification of interaction requirements is a
complex task due to some unique characteristics of Web applications such as the need
to represent the navigation in information spaces, the need of describing technical
constraints related to the information flow (e.g. session management), the rapid evolu
tion of requirements, sensitive communication among developers and the participa
tion of customers in the development process (e.g. marketing experts, editorial board,
etc) [26], In the last years, a large variety of model-based artefacts have been em
ployed to capture Web requirements like UML use cases and sequence diagrams [4],
User Interaction Diagrams [22], task models [27], and navigation models [11], It is
also worthy noting a widespread use of paper-based mockups to capture requirements
related to the user interface of Web applications [9] which has lead to the develop
ment of advanced tools for sketching and storyboarding the user interface of Web
applications such as Denim [18] and Balsamiq [1],

In Table 1 we compare the expressiveness power of some artefacts with respect to
the concepts for representing Web requirements. As shown in the table, each artefact
includes only part of the concepts required to express requirements of Web applica
tions. For example, whilst use cases can be used to represent functional requirements,
mockups (either paper-based or supported by tools) are more likely to capture and
represent requirements related to the composition of the user interface. Task models
allow expressing fine-grained functional requirements including navigation, user
transactions and business processes. As can be seen, Web engineering methods have

Captare and Evolution of Web Requirements Using WebSpec 185

Table 1. Expressiveness power of requirement artefacts for Web applications

Concept Artefacts used for representing requirements
Use cases (UC) Task Models WebRE WebSpec Mockups

Be
ha

vi
ou

r

Navigation Dependencies
between UC

Dependencies
between tasks

Navigation Navigation arrows Arrows

Process Use cases Tasks, WebProcess WebSpec diagram -
User interac
tion

Functional
requirements

Interactive
tasks

User transaction Action -

Constraints OCL Lotus opera
tors

OCL Precondition Annotated
text

Information
flow

- Data transfer
between tasks

Data transfer in
user transaction

Data transfer
between interactions

-

St
ru

ct
ur

e Node/page - - Node Interactions /
navigations

Prototype

Content - - Content Widgets Widgets
UI composition - - - Containers Prototype
User roles Actor Actor WebUser - -

often included more than one artefact for capturing requirements; for example use
cases are present in OOHDM [22] in combination with UIDS. Besides, use cases and
activity diagrams, WebML [2] uses semi-structured textual descriptions to capture
additional information that can hardly be expressed using the former models. Simi
larly, UWE [14] proposes extended use cases, scenarios and glossaries for specifying
requirements and WSDM [6] employs task models using concurrent task trees.

Currently, there is no consensus on which notation(s) should be used to capture and
specify Web requirements. In order to provide a more uniform view on the coverage
of requirements by each artefact, Escalona and Koch [8] have proposed a metamodel
based on WebRE profiles [8], Its main advantage is the automatic generation of con
ceptual models (content and navigation models) which automatically satisfy the re
quirements. Notwithstanding, some requirements such as detailed composition of the
user interface and behaviour constraints cannot be fully described with this notation.

In another study, Escalona and Koch [7] have investigated how different Web en
gineering methods support the capture of requirements. They demonstrated that Web
engineering methods do not pay equal attention to requirements. Some methods em
ploy classical notations to deal with Web requirements or ignore this phase of the
development process. It is interesting to notice that requirement artefacts might play
several roles during the development process: they can act as communication tools
(for elicitation requirements with clients), as elements for early specifications (that
should be taken into account during implementation phases) and as checklists for as
sessing if the final implementation complies the initial requirements. Requirement
checklists can indeed be employed in regression testing [28] for assessing in a longer
term, the evolution of requirements expressed for a single application.

In [5] the authors have investigated the communication role of artefacts and they
proposed MoLIC which acts as a kind of blueprint of the application and thus allow
ing professionals from multidisciplinary backgrounds to share the same understanding
of the essence of the application. Other authors however, have investigated how to
automate the generation of the system specification from the requirements specifica
tion; for example OOWS [20] which extends activity diagrams with the concept of
interaction point to describe the interaction of the user with the system. It provides
automatic generation of (only) navigation models from the tasks description by means

186 E. Robles Luna et al.

of graph transformation rules. A-OOH [10] considers the i* framework in order to
specify the requirements model which is goal-oriented. From this specification, the
conceptual models (e.g. domain and navigation models) are generated by means of
QVT transformations. Both OOWS and A-OOH approaches are examples of methods
that specify requirements and provide code derivation; however the level of detail
they provide make them unsuitable as communication tools with clients.

WebSpec supports features that tend to improve the development process when
changes appear often and should be implemented fast, in comparison with the afore
mentioned requirement artefacts. It provides a means to describe several of the unique
aspects of Web applications (such as navigation and information flow); when used in
combination with mockups, it provides animated storyboards to improve the commu
nication between stakeholders. Moreover, they contain enough information to support
test generation independently of the development method. Finally, change support
and effect handlers allow managing the fast evolution of the application.

6 Concluding Remarks and Further Work

In this paper we have presented WebSpec: a requirement artefact used to capture
navigation, interaction and UI features in Web applications independently of the de
velopment process. WebSpec presents several advantages that help to improve the
development cycle in short periods of time. We have shown its use in conjunction
with mockups to provide a formal simulation of the final Web application, getting real
feedback during the requirement elicitation phase. Furthermore, requirements ex
pressed in WebSpec diagrams are easily validated due to the automatic derivation of
interaction tests. Finally, it has been shown how keeping diagrams updated contrib
utes to semi/automatically upgrade the application thus improving development times.

This work focuses on interactive requirements of Web applications. In the future
we aim at exploring how WebSpec can be used in conjunction with other techniques
for expressing non-interactive requirements such as accessibility and usability of Web
applications. We are currently working on adding RIA expressiveness to WebSpec, so
that RIA features (e.g. autocomplete, hover detail, etc) can be easily specified in the
diagrams. Also, we aim to associate WebSpec diagrams to tasks, so we can monitor
the progress of a development process. Finally, we are analyzing different alternatives
to support the specification of requirements at the domain level which can be seam
less integrated in WebSpec.

References

1. Balsamiq, http: //www.balsamiq. com/products/mockups
2. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Modeling Lan

guage for Designing Web Sites. Computer Networks and ISDN Systems 33(1-6), 137-157
(2000)

3. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of Haskell
programs. In: Proceedings of the fifth ACM SIGPLAN international conference on Func
tional programming, vol. 35, pp. 268-279 (September 2000)

http://www.balsamiq

Capture and Evolution of Web Requirements Using WebSpec 187

4. Conallen, J.: Building Web Applications with UML, 300 p . Addison-Wesley, Reading
(2000)

5. de Paula, M.G., da Silva, B.S., Barbosa, S.D.: Using an interaction model as a resource for
communication in design. In: CHI ’05 Extended Abstracts on Human Factors in Comput
ing Systems, Portland, USA, April 02-07, pp. 1713-1716 (2005)

6. De Troyer, O., Casteleyn, S.: Modeling Complex Processes for Web Applications using
WSDM. In: 3rd Int. Workshop on Web-Oriented Software Technologies, Oviedo, Spain
(2003), http://www.dsic.upv.es/-west/iwwost03/articles.htm

7. Escalona, M.J., Koch, N.: Requirements engineering for web applications - a comparative
study. J. Web Eng. 2(3), 193-212 (2004)

8. Escalona, M.J., Koch, N.: Metamodeling Requirements of Web Systems. In: Proc. Interna
tional Conference on Web Information System and Technologies (WEBIST 2006),
INSTICC, Setübal, Portugal, pp. 310-317 (2006)

9. Flannagan, S.: The PaperVersion of the Web. In: Deeplinking,
http://deeplinking.net/paper-web/

10. Garrigös, I., Mazön, J.N., Trujillo, J.: A Requirement Analysis Approach for Using i* in
Web Engineering. In: Gaedke, M., Grissnikalus, M., Diaz, O. (eds.) ICWE 2004. LNCS,
vol. 5648, pp. 151-165. Springer, Hidleberg (2009)

11. Gomez, J., Cachero, C.: OO-H Method: extending UML to model web interfaces. In: van
Bommel, P. (ed.) Information Modeling For internet Applications, pp. 144—173. IGI Pub
lishing, Hershey (2003)

12. GWT, http : / /code . google . com/webtoolkit/
13. Jacobson, I.: Object-Oriented Software Engineering: A Use Case Driven Approach. ACM

Press/Addison-Wesley (1992)
14. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-Based Web Engineering, An Ap

proach Based On Standards. In: Web Engineering, Modelling and Implementing Web Ap
plications, pp. 157-191. Springer, Heidelberg (2008)

15. Kruchten, P.: The Rational Unified Process: an Introduction, 3rd edn. Addison-Wesley
Longman Publishing Co., Inc., Amsterdam (2003)

16. McDonald, A., Welland, R.: Web Engineering in Practice. In: Proceedings of the Fourth
WWW10 Workshop on Web Engineering, pp. 21-30 (May 1, 2001)

17. Maximilien, E.M., Williams, L.: Assessing test-driven development at IBM. In: Proceed
ings of the 25th international Conference on Software Engineering, Portland, Oregon, May
03-10, pp. 564-569. IEEE Computer Society, Washington (2003)

18. Lin, J., Newman, M.W., Hong, J.I., Landay, J.A.: DENIM: finding a tighter fit between
tools and practice for Web site design. In: Proceedings of the SIGCHI Conference on Hu
man Factors in Computing Systems, CHI 2000, The Hague, The Netherlands, April 01 -
06, pp. 510-517. ACM, New York (2000)

19. Lowe, D.: Web system requirements: an overview. Journal of Requirements Engineering,
102-113 (2003)

20. Pastor, O., Abrahäo, S., Fons, J.: An Object-Oriented Approach to Automate Web Appli
cations Development. In: Bauknecht, K., Madria, S.K., Pemul, G. (eds.) EC-Web 2001.
LNCS, vol. 2115, pp. 16-28. Springer, Heidelberg (2001)

21. Robles Luna, E., Grigera, J., Rossi, G.: Bridging Test and Model-Driven Approaches in
Web Engineering. In: Gaedke, M., Grissnikalus, M., Diaz, O. (eds.) ICWE 2009. LNCS,
vol. 5648, pp. 136-150. Springer, Heidelberg (2009)

22. Rossi, G., Schwabe, D.: Modeling and Implementing Web Applications using OOHDM.
In: Web Engineering, Modelling and Implementing Web Applications, pp. 109-155.
Springer, Heidelberg (2008)

http://www.dsic.upv.es/-west/iwwost03/articles.htm
http://deeplinking.net/paper-web/

188 E. Robles Luna et al.

23. Seaside, http ://www. seaside . st/
24. Selenium web application testing system, http : / /seleniumhq. org/
25. The WebRatio Tool Suite, http : / /www.webratio . com
26. Uden, L., Valderas, P., Pastor, O.: An Activity-theory-based to analyse Web applications

requirements. Information Research 13(2) (June 2008)
27. Winckler, M., Vanderdonct, J.: Towards a User-Centered Design of Web Applications

based on a Task Model. In: Proceedings of IWWOST 2005, Porto, Portugal, June 12-13
(2005)

28. Zheng, J.: In regression testing selection when source code is not available. In: Proceed
ings of the 20th IEEE/ACM international Conference on Automated Software Engineer
ing, ASE ’05, Long Beach, CA, USA, November 07-11, pp. 752-755. ACM, New York
(2005), doi:http : / /doi . acm. org/10.1145/1101908.1101997

http://www.webratio

