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Abstract- Building phylogenetic trees is one of the significant 
applications within bioinformatics, mainly due to its 
involvement in multiple sequence alignment. Because of the 
high computational complexity required, the use of parallel 
processing during the building process is convenient. Taking 
into account that current cluster architectures are hybrid, in 
this paper we present a parallel algorithm to build 
phylogenetic trees based on the Neighbor-Joining method, 
which uses a hybrid communication model (combination of 
message passing and shared memory), and then analyze its 
performance. Finally, conclusions and possible future lines of 
work are presented. 
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I. INTRODUCTION 

Up to some years ago, the idea of a direct application of 
computer methods in natural sciences was odd and not very 
convincing. However, it is now evident that any serious 
advance in our knowledge and understanding of, for 
instance, the complex mechanisms of the cells, would be 
impossible without the help of powerful algorithms and fast 
computers. 

Studies carried out on molecular mechanisms of 
organisms suggest that all organisms in the planet have a 
common predecessor. Then, any set of species would be 
related, which is called Phylogeny. In general, this relation 
can be represented by means of a phylogenetic tree. The 
task of Phylogeny is to infer the previous tree based on 
observations of the existing organisms [1].  

Phylogenetic trees play an important role for several 
relevant applications within bioinformatics, such as multiple 
sequence alignment [2]. In general, multiple sequence 
alignment comprises of three stages and the second stage 
generates a guided tree using some phylogeny 
reconstruction method. 

There are various methods to build phylogenetic trees, 
including those of maximum probability and those based on 
distance matrixes. Maximum probability methods produce 
accurate results, but unfortunately are usually of an 
exponential order, which makes their use unfeasible for 
building large trees. Distance matrix-based methods use 
matrixes to define the distance between any pair of 
sequences. Even though its results are less accurate than 
those obtained with maximum probability methods, they are 

of polynomial order and thus facilitate processing large data 
sets [3].  

The Neighbor-Joining method (NJ) is based on distance 
matrixes and is widely used by biotechnologists and 
molecular biologists due to its efficiency and temporal 
complexity order. In recent years, it has become very 
popular through its use in the ClustalW algorithm [4], one of 
the most widely used tools for multiple sequence alignment. 
The NJ algorithm was originally developed by Saitou and 
Nei in 1987 [5]. One year later, Studier and Keppler [6] would 
review the algorithm and incorporate an improvement that 
allows reducing the temporal complexity from O(n5) to 
O(n3).  

Nowadays, thanks to the advances in sequentiation 
technologies, increasingly larger data sets can be obtained. 
Building a tree with thousands of taxa using the NJ method 
could take hours or days if a sequential algorithm is used 
due to its temporal complexity order (O(n3)). This makes it 
suitable for parallel processing. 

In the past decade, processors have improved their 
performance in accordance with Moore’s Law [7] mainly due 
to two technology factors. The first of these was the increase 
in the frequency that can be achieved by processor's clock, 
and the second one was based on the increasing number of 
transistors in a chip. The combination of both factors with 
improvements in compilers allowed increasing the number 
of executable instructions per time unit. However, this 
improvement process was limited by the associated increase 
in temperature and energy use.  To sustain the increase in 
the number of executable instructions per time unit, 
hardware architects developed processors with multiple 
cores. This type of processors integrates two or more 
computational cores within a single chip. Even though these 
cores are simpler and slower, when combined they allow 
enhancing the global performance of the processor while 
making a mire efficient use of energy [8] [9] [10]. 

The term cluster is applied to sets of computers built with 
standard hardware components that act as if they were a 
single computer [11]. Nowadays they are fundamental for the 
solution of problems from the science, engineering, and 
modern commerce fields [12]. Cluster technology has evolved 
to support activities that go from supercomputing 
applications and mission-critical software, web servers and 
e-commerce, to high-performance databases, among other 
uses. 
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The addition of multicore processors to traditional cluster 
architectures has led these to a new stage, giving birth to a 
hybrid parallel architecture known as multicore cluster [13]. 
The difference between a multicore cluster and a traditional 
cluster is that the former has one or more multicore 
processors in each node, rather than a single monocore 
processor. The cores that are within the same node 
communicate through the different memory levels of the 
node. The cores that are in different nodes, communicate by 
exchanging messages through the interconnecting network. 

Parallel programming paradigms differ in the way tasks 
communicate and synchronize. In shared memory 
architectures, such as multicores, the most widely used 
paradigm is that of shared memory. In it, tasks communicate 
and synchronize by reading and writing variables in a shared 
address space. OpenMP is the most widely used library to 
program shared memory [14]. Message passing is the most 
commonly chosen paradigm for distributed architectures, 
such as traditional clusters. In it, each task has its own 
address space and task communication and synchronization 
is done by exchanging messages. MPI is the most widely 
used library to program under this paradigm [15]. Multicore 
clusters are hybrid architectures that combine distributed 
memory with shared memory. When it comes to 
programming parallel applications to be run on this type of 
architectures, a mixed paradigm that combines those 
described above is used. It is also possible to use message 
passing only, which involves simulating distributed memory 
over shared memory. However, this strategy is normally 
disregarded due to the loss in performance caused by the 
additional copies between the communication buffers from 
processes in the same node. 

In this paper, a parallel algorithm is presented for 
building phylogenetic trees using the Neighbor-Joining 
method. This algorithm uses a hybrid communication model 
that combined message passing with shared memory, and is 
appropriate for execution on hybrid architectures such as 
multicore clusters. The remaining sections of this paper are 
organized as follows: in Section II, other works that are 
related to this research are presented. In Section III, the 
Neighbor-Joining method is described in detail. The 
algorithms developed are discussed in Section IV. Then, in 
Section V and Section VI, the experimental work carried out 
and the results obtained are described, respectively. Finally, 
in Section VII, the conclusions and future lines of work are 
presented. 

II. RELATED WORKS 

The development of parallel algorithms to speed up the 
construction of phylogenetic trees by means of the Neighbor-
Joining method is a widely discussed topic. Du and Lin [16] 
and Bullard [3], among others, presented distributed 
algorithms, always using MPI for their implementation. 
Sahoo, Bedhura and Padhy presented an algorithm for shared 
memory using Pthreads [17]. Liu, Schmidt and Maskell [18] 
developed an algorithm that uses CUDA [19]. No hybrid 
parallel implementations were found while researching for 
this work.  

III. NEIGHBOR-JOINING METHOD 

The Neighbor-Joining method starts with a star-shaped 
tree. In each step, the pair of nodes that is closest to each 

other are selected and connected through a new, inner node. 
Then, the distances from this new node to the rest of the 
nodes in the tree are calculated. The algorithm ends when 
there are only two nodes that are not connected [1]. 

Figure 1 details the pseudo-code of the algorithm: 

Variables:
    T => set of leaf nodes
    d => distance matrix
    D => normalized distance matrix
    r => divergence array
    L => auxiliary set of nodes
Initialization:
    L = S.
Iteration:
    Pick the pair of nodes i,j for which the
    normalized distance Dij is minimum, where

Dij = dij – (ri + rj),
    and ri is the divergence of node i, where

    Define a new node k and assign
    dks = ½(dis + djs – dij), for all s in L.
    Add k to S with distance edges 
    dik = ½(dij + ri - rj), djk = dij – dik, 
    connecting k to i and j, respectively.
    Remove i and j from L and add k.
Termination:
    When L is formed by two leaves i and j,
    add the pending edge between i and j with 
    distance dij.

∑
∈

×
−

=
Lk

iki d
L

r
2||
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Fig. 1 Pseudo-code of the Neighbor-Joining algorithm 

Figure 2 shows an example of the building process of a 
phylogenetic tree using the Neighbor-Joining method for a 
4x4 distance matrix.  
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Fig. 2 Building process of a phylogenetic tree with the Neighbor-Joining 

method for a 4x4 distance matrix 



Parallel & Cloud Computing                                                                                                                              PCC   Vol. 2, Iss. 3  

 
PCC Vol. 2 Iss. 3, 2013 PP. 74-80 © 2013 American V-King Scientific Publishing 

76 

IV. PARALLELIZATION OF THE NEIGHBOR-JOINING METHOD 

A. Sequential Neighbor-Joining Algorithm  

The algorithm starts with a distance matrix between pairs 
of sequences of N×N denoted as d, N being the number of 
sequences. The distance between two sequences can be 
defined in many ways. The simplest one is known as p-
distance and is defined as the ratio between the number of 
different positions and the total number of positions of the 
two sequences. Other possibilities are the Jukes-Cantor 
method or the Kimura method [20]. Since the distance matrix 
is symmetric, there is no need to store it in full, but only the 
lower triangular matrix or the upper triangular matrix can be 
stored (in this case, the former is chosen).  

In each iteration of the main loop, the pair i, j for which 
Di,j is minimal has to be found. The normalized distance 
matrix D is not stored, but the value of each position is 
calculated in each iteration. Node divergences are computed 
in a one-dimensional array before starting the main loop, and 
are updated in each iteration of the loop, rather than 
calculating them every time they are required. 

For the list of active nodes L, a one-dimensional flag 
arrangement is used; the flags indicate which nodes have 
been selected and which have not. 

Figure 3 details the pseudo-code of the sequential 
algorithm. 

1. L = S.
2. foreach di,j in d do
2.1. Update ri.
2.2. Update rj.
3. end foreach
4. for h in 1 to N-2 do
4.1. foreach di,j in d do
4.1.1. Calculate Dij.
4.1.2. Calculate minimum Dij.
4.2. end foreach
4.3. Create node k by connecting 

nodes i and j.
4.4. S = S + {k}.
4.5. Calculate dik and djk.
4.6. L = L – {i,j} + {k}.
4.7. foreach s in L do
4.7.1. Calculate dks.
4.7.2. Update rk.
4.7.3. Update rs.
4.8. end foreach
5. end for
6. Group both remaining nodes in L.

 
Fig. 3 Pseudo-code of the sequential algorithm 

B. Hybrid Parallel Neighbor-Joining Algorithm 

The algorithm was parallelized using a master-slave 
model with a hybrid communication model (combination of 

message passing and shared memory). Before going into an 
in-depth review of the solution developed, certain aspects of 
the Neighbor-Joining algorithm should be analyzed, since 
these might explain why an efficient parallel solution is 
difficult to obtain. 

First, it should be noted that for each iteration of the main 
loop, a new node is added to the distance matrix, but those 
from the two originating nodes are removed. This means that, 
in a parallel solution, the work carried out by each task in 
each iteration decreases as the iterations of the main loop 
progress. Also, in distributed environments, the distances of 
the new nodes must be distributed among all processes 
forming the solution.  

The search for the pair of nodes whose distance is 
minimal represents the most expensive part of the main loop 
from a computational standpoint. Taking into account that 
the distance matrix is triangular, distributing the work 
required for the search process by assigning the same 
number of rows to each task could result into idle time, since 
not all rows have the same number of cells. Since idle time 
negatively affects the performance of an algorithm, it must 
be removed or, if this is not possible, minimized. For this 
reason, the workload distribution strategy must be chosen 
trying to make it as equitable as possible for all tasks. 

1.    The master process divides distance 
      matrix d into P portions and distributes 
      P-1 among the slaves. Each process keeps 
      approximately ((N)x(N-1)/2P) elements 
      from distance matrix d. 
2.    Each process calculates the partial 
      divergences of the nodes it has, 
      broadcasts them to the other processes, 
      and updates its divergence vector based 
      on the partial divergences received from 
      the other processes. 
3.    for h in 1 to N-2 do
3.1.      Each process calculates its local 
          minimum Di,j
3.2.  The master process collects all 
          local minimums, calculates the 
          global minimum Di,j, and broadcasts 
          it to the other processes. 
3.3.  The master process creates a new 
          node k and adds it to S. 
3.4.  The process owner of node k 
          calculates dik and djk. Each 
          remaining process accumulates in a
          data structure the distances to the 
          pair of nodes i,j it has and then 
          sends it to the owner process of 
          node k. 
3.5.  The owner process of node k 
          calculates the distances from it to 
          the rest of the nodes and updates 
          the divergence vector. 
3.6.  The owner process of node k 
          broadcasts to the other processes 

 the updated divergence vector.
3.7.  Each process removes nodes i and j 
          from their own L and add k.
3.8.  end for

  

Fig. 4 Pseudo-code of the parallel algorithm 
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Fig. 5 Resolution scheme used by the parallel algorithm of an N×N distance matrix with P processes 

As it was mentioned, this solution uses a master-slave 
model of P processes as parallelization strategy. Each 
process generates T threads when computation begins. Then, 
the iterations belonging to different process loops are 
distributed among the threads that have been generated. The 
distances of each newly created node are distributed among 
all processes following a circular order (the node to which it 
is assigned is the owner). 

Figure 4 details the pseudo-code of the parallel algorithm 
and Figure 5 shows the resolution scheme used by it for an 
N×N distance matrix with P processes. 

V. EXPERIMENTAL WORK 

A. Architecture Used 

Tests were carried out on a cluster of Blade multicores 
with four blades and two quad core Intel Xeon e5405 2.0 
GHz processors each. Each blade has 10 Gb RAM memory 
(shared between both processors) and 2 x 6Mb L2 cache for 
each pair of cores. The operating system is GNU/Linux 
Fedora 12. 

Figure 6 shows a schematic representation of the 
architecture used.  
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Fig. 6  Schematic representation of the architecture used. 

B. Algorithms Used  

The algorithms used in this work were developed using C 
language (gcc compiler version 4.4.2) with the OpenMPI 

library (mpicc compiler version 1.4.3) for message passing 
and OpenMP for thread management [14][15]. The sequential 
algorithm is based on the solution presented in Section IV.A, 
while the parallel algorithm is based on the solution 
described in Section IV.B, P being the number of blades 
used and T being the number of cores in each blade. 

C. Tests Carried Out  

Based on the features of the architecture, the parallel 
algorithm was tested using all the cores with different 
numbers of nodes: two, three and four; this means that 16, 24 
and 32 cores were used, respectively. Each process was 
mapped to a different node. Various problem sizes were used: 
N = {4000, 6000, 8000, 10000, 12000, 14000, 16000} and 
synthetic data sets were employed in the tests. Each 
particular test was run five times, and the average execution 
time was calculated for each of them. 

VI. RESULTS 

To assess the behavior of the algorithms developed when 
escalating the problem and/or the architecture, the speedup 
and efficiency of the tests carried out are analyzed [12] [21] [22]. 

The speedup metric is used to analyze the algorithm 
performance in the parallel architecture as indicated in 
Equation (1). 

meParallelTi
TimeSequentialSpeedup =      (1) 

To assess how good the speedup obtained is, the 
efficiency metric is calculated. Equation (2) indicates how to 
calculate this metric, where p is the total number of cores 
used.    

       
p

SpeedupEfficiency =       (2) 

Table I shows the speedup obtained with the parallel 
algorithm for the various tested problem sizes when using 
two, three, and four nodes of the architecture involving 16, 
24 and 32 cores, respectively. Figure 7 is a chart 
representation of those same values.  
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TABLE I SPEEDUP OBTAINED WITH THE PARALLEL ALGORITHM FOR 
VARIOUS PROBLEM SIZES USING DIFFERENT NUMBERS OF CORES OF THE 

ARCHITECTURE 

Problem size 
Cores of the architecture 

16 24 32 

4000 7,02 7,09 7,28 

6000 8,48 9,57 9,84 

8000 9,13 10,78 11,57 

10000 9,66 11,87 13,11 

12000 10,07 12,65 14,32 

14000 10,32 13,12 15,15 

16000 10,57 13,80 16,00 

 

 
Fig. 7 Speedup obtained with the parallel algorithm for various problem 

sizes using different numbers of cores of the architecture 

Based on the previous chart, it can be said that the 
parallel algorithm has a good performance, achieving a 16-
fold reduction of the execution time of the sequential 
algorithm. It can also be seen that the speedup escalates as 
the size of the problem increases. 

Table 2 shows the efficiency obtained with the parallel 
algorithm for the various tested problem sizes when using 
two, three, and four nodes of the architecture involving 16, 
24 and 32 cores, respectively. Figure 8 is a chart 
representation of those same values. 

The previous chart shows that efficiency increases as the 
size of the problem increases, and that, on the other hand, it 
decreases as the number of nodes used increases. It can be 
said that the efficiency levels obtained by the parallel 
algorithm are good considering the large number of 
communications and synchronization operations carried out 
and the idle time that one or more threads in each process 
could have due to the characteristics of the problem. 

Section II described related works. A comparative 
analysis with them would be useful to appreciate the results 
obtained in this work. Unfortunately, not all of them can be 
compared. The Pthreads algorithm presented in the Sahoo, 
Behura and Padhy work [17] was tested using small numbers 
of sequences and processors, making impossible to include it 
in the analysis. The CUDA algorithm [18] developed by Liu, 
Schmidt and Maskell is excluded from the comparison for 
using a too different architecture and technology. Bullard 
declares in his work [3] that his sequential implementation 
was not “optimized”, so including his parallel algorithm in 
the comparison would be unfair. Finally, Du and Lin [16] used 

similar support architecture and technologies, so the 
comparative analysis is made with their algorithm.  

TABLE II EFFICIENCY OBTAINED WITH THE PARALLEL ALGORITHM FOR 
VARIOUS PROBLEM SIZES USING DIFFERENT NUMBERS OF CORES OF THE 

ARCHITECTURE 

Problem size 
Cores of the architecture 

16 24 32 

4000 0,44 0,30 0,23 

6000 0,53 0,40 0,31 

8000 0,57 0,45 0,36 

10000 0,60 0,49 0,41 

12000 0,63 0,53 0,45 

14000 0,65 0,55 0,47 

16000 0,66 0,57 0,50 

 

 
Fig. 8 Efficiency obtained with the parallel algorithm for various problem 

sizes using different numbers of cores of the architecture 

 
Fig. 9 Speedup achieved by the algorithm of Du and Lin and the algorithm 
presented in this work when using different number of processing units of 

the support architecture for N=10000 

Figure 9 shows the speedup achieved by the algorithm of 
Du and Lin and the algorithm presented in this work when 
using different number of processing units of the support 
architecture for N=10000.  

From this last chart, it can be seen that the algorithm 
presented in this work obtains higher speedup values 
compared to the algorithm of Du and Lin. This fact confirms 
the good performance achieved by the first. 

VII. CONCLUSIONS AND FUTURE WORKS 

Building phylogenetic trees following the Neighbor-
Joining method is an application with a high computational 
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demand, which makes parallel processing appropriate to 
speed it up. In this paper, we have presented a hybrid parallel 
algorithm to be run on current cluster architectures.  

The experimental results obtained show that speedup 
increases with the size of the problem, with a greater slope 
when more cores are used. Time is reduced up to 16 times 
when using all the cores of the support architecture for the 
largest problem size. At the same time, efficiency also 
increases with N, although naturally (due to the 
communication overhead), the greatest efficiency is achieved 
with 16 cores. 

Some of the possible future lines of work are: 

• analyzing other possible distance distribution strategies 
for the new nodes that are added to the tree in order to 
improve load balancing among the processes.  

• analyzing scalability in detail when increasing the 
problem size and the number of cores used. 

• designing other types of hybrid solutions combining 
multicore processors and GPUs. 
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