
1

Systematic Development of Physical Hypermedia
Applications

Cecilia Challiol 1 , Gustavo Rossi 1,3, ∗ , Silvia Gordillo 1,2 and Valeria De Cristófolo 1

1 LIFIA, Facultad de Informática, UNLP, La Plata Argentina
{ceciliac,gustavo,gordillo,valeriac}@sol.info.unlp.edu.ar

http://www-lifia.info.unlp.edu.ar
2 Also CICPBA

3 Also CONICET

Abstract— In this paper we present a model-based approach
for the development of physical hypermedia applications, i.e.
those mobile (Web) applications in which physical and digital
objects are related and explored using the hypermedia paradigm.
We describe an extension of the Object-Oriented Hypermedia
Design Method (OOHDM) and present an improvement of the
popular Model-View-Controller (MVC) metaphor to incorporate
the concept of located object; we illustrate the idea with a
framework implementation using Jakarta Struts. We first review
the state of the art of this kind of software systems, stressing the
need of a systematic design and implementation approach; we
briefly present a light extension to the OOHDM design approach,
incorporating physical objects and “walkable” links. We next
present a Web application framework for deploying physical
hypermedia software and show an example of use. We evaluate
our approach and finally we discuss some further work we are
pursuing.

I. INTRODUCTION

Physical Hypermedia (PH) extends the idea of hypermedia
navigation to the real world; in a PH application, the (mo-
bile) user can explore physical objects and their relationships
with other physical or digital objects. Real world objects are
augmented with digital information which allows that, when
the user is in the vicinity of an object, he can access this
information in his mobile device. As physical objects are
considered nodes in a hypermedia network, and therefore the
information corresponding to such an object may include links
and thus the user can follow a link to navigate to other related
objects, either virtually, e.g. when the links are implemented
using a Web browser, or physically by moving to the target
object.

PH extends the idea of Location Based Software [35] by
not only providing information access based on the user’s
location but also providing a sort of information structuring
mechanism (namely hypermedia graphs) which allows users to
explore information with the well-known navigation paradigm
of the World Wide Web, and unifies the ideas in hypermedia
with some of the new concepts in ubiquitous and pervasive
computing [31].

A simple example is a mobile tourist guide such as [6].
The user travels through the physical space (e.g. a city)

* This work has been partially funded by Project PICT 2003, Nro 13623,
SeCyT

exploring monuments, tourist spots, etc. When he is in front of
a monument which is PH aware (i.e. the user can be sensed to
be in its vicinity and the application has information on that
object) he can read data about the monument in his mobile
device, for example in a Web page; by following links, he
can also explore some meaningful relationships which this
monument has with other objects (its history, information
about the architect, etc). In this way, the user traverses the
digital hyperspace by navigating to other related documents.
Some links, however, may point him to other tourist spots
in the same city. Instead of navigating in the usual digital
way, he has to “walk” the link [20] to visit the corresponding
tourist spot. In this case, the software system should react to
his intention to navigate by providing him a map showing the
best way to access the target place and eventually some active
help to guide him.

Notice that this application behavior, while somewhat sim-
ilar to existing families of location-based services [35], is
completely based on the well-known ideas of hypermedia
navigation that became popular with the advent of the Web. It
is not surprising then that the physical hypermedia paradigm
has been considered to be a good vehicle to integrate the Web
and the world [19].

Developing PH applications is hard as we have to solve the
problems typical of hypermedia and Web software [8], [9],
[10] and besides we have to face the challenges in mobile
and context-aware applications [1]. Summarizing, these are
some of the engineering problems one need to consider for
developing this kind of software:

• Modeling and Design Aspects: While modeling and
design issues have been widely discussed in the Web
Engineering community [3], [4] and some issues related
with context-aware and ubiquity have been also the focus
of research projects [23], [24], the problem of combining
the real and the digital world has not been tackled from a
modeling point of view so far. We must be able to clearly
express the physicality of some objects, the nature of
“walking” links, the semantics of physical navigation, etc.
Modeling of context-aware functionality is also critical.

• Implementation and Deployment: These concerns involve
a myriad of problems; while the implementation of Web
software is now considered a well-known domain and
there are mature frameworks for creating performing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301093488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

applications, software which deals with mobility issues
must deal with some specific issues such as sensing
the user’s position in different coordinate systems (e.g.
latitude/longitude, local location models, etc), mapping
this position to the application’s semantics (e.g. in terms
of street names and numbers), relating the user’s position
with appropriate application objects (e.g. a building in
this address), etc. At the same time we must decide which
components will run in the server side and which in the
client device; we have to deal with problems related with
unreliable network connections, etc.

• User Interface Aspects: The user interface of applications
running in small devices (like phones or PDAs) is difficult
to design; they must simplify the user’s task, therefore
providing an easy to use interaction style, but at the same
time they can not involve much information to avoid
cognitive over-head. Usability is even more critical than
in Web applications [22], [44].

• Placement Issues. Making real-world objects application
aware, implies either enriching them with an IR emitter
(such as beacons [25]), or expressing their locations in
terms of geographical coordinates (e.g. with GPS-based
sensing is used). In either case, we have to deal with
new problems: can we be sure that IR emitter will be
“seen” by the user’s device and also correctly identified?
how do we deal with objects which can change their
positions (e.g. in a museum or exhibition)?.

Many of these problems have been discussed and solved
in the broader fields of mobile and context-aware computing
[21], [34], [38]; some of them have been already dealt with in
the hypermedia community (as discussed later in the Related
Work section).

We have been working on different aspects of the PH
application’s life cycle. In [16] we presented a modeling
and design approach that allows a high-level specification of
the intended functionality of a PH application. In [15] we
analyzed a more complex engineering aspect of this kind of
software: how to clearly decouple the most critical concerns
that designers face when building PH software. We defined the
concept of concern-driven navigation to support the user while
exploring different application themes and to clearly separate
digital from physical navigation.

In this paper we describe the whole development approach;
particularly, we describe a software framework that allows
seamless implementation of PH applications. This framework,
which implements an extension of the popular MVC metaphor,
has been built on top of the well-known Jakarta Struts Java
infrastructure [41] and therefore can be easily used by Web
application designers.

The main contributions of this paper are the following:
• We describe the process of developing PH applications

from a Web Engineering point of view and present an
original model-based approach which covers the whole
development life cycle.

• We show how to incorporate the concept of location in
the MVC metaphor for interactive applications.

• We present an easy to use and practical framework for
deploying PH applications.

• By describing the implementation of a simple application
we introduce a set of good design practices that help the
implementer to cope with the difficulties that arise while
building this kind of ubiquitous web software.

The rest of the paper is organized as follows: In Section
2 we survey related work in this area; in Section 3 we
summarize our approach and in Section 4 we present the
design framework. Section 5 is devoted to describing the
development framework by both describing the conceptual
extension to the MVC and one specific implementation. In
Section 6 we present a running example and in Section 7 we
briefly evaluate our approach. Section 8 concludes the paper
with the presentation of some further work we are pursuing.

II. RELATED WORK

Physical Hypermedia has its roots in the well-known fields
of Hypermedia and, Augmented Reality and Ubiquitous Com-
puting. The idea of adding Web presence to real world objects
have been early explored in [25]; the use of these ideas to
improve collaboration in social settings by using some kind
of augmented reality have been explored in [12]; a good
example of providing hypermedia functionality to the mobile
user has been shown in [6]. However the term PH has been
coined in [17] and later elaborated in [19]. Topos [17] allows
manipulating and maintaining spatial relationships between
mixed materials (digital and physical) in a tri-dimensional
environment. It is a physical hypermedia system providing
users with a digital workspace which is familiar to their
physical workspace in which digital representations of physical
material can be linked to pure digital objects and grouped in
mixed collections.

HyCon [19] meanwhile is an object-oriented framework
whose goal is to extend the Hypermedia paradigm with the
manipulation of real World objects. In particular, it has been
used to create context-aware hypermedia systems; it supports
classical mechanisms of Hypermedia such as navigation, in-
formation searching, notations and implementations of guided
tours in the physical (real) world. In addition to the facility
to extend digital with physical objects, HyCon supports au-
tomatic collections of contextual and social information and
works with different types of mobile devices.

In [32] meanwhile, an object-oriented framework called
HyperReal, based on the Dexter hypertext reference model
is presented. HyperReal allows building augmented reality
applications, using the basic abstractions mechanism of the
Dexter model [18]. HyperReal uses concept from adaptive and
spatial hypermedia to integrate, in the same setting, virtual
documents, 3D environments and the physical world to build
mixed reality applications.

In [20] the authors describe proXimity, an approach for
improving user’s accessibility to real world objects by giving
them a hypermedia presence. The main goal of proXimity is to
extend the metaphor of links to the real world and to show how
the basic ideas behind adaptive hypermedia can be applied to

3

physical hypermedia spaces. The idea of “walk” the link in
proXimity inspired our WLinks (described in Section 4.2).

Closely related with this field we can mention the UWA
project [43], which has aimed to the design of ubiquitous
Web software. The UWA design model, described in [23],
[24], comprises different sub-models covering the various
aspects of a typical customizable Web application: the core
domain model, the user’s context (which itself comprises the
technical, location, social and other sub-contexts) and the
adaptation rules. All these components are modeled using a
light-weighted extension of the UML [42].

Our research is different from the work in [19], [20], [32]
because it has been initially oriented towards the modeling
and design of physical hypermedia applications more than the
run-time support. We have emphasized the need to produce
implementation-independent descriptions of PH applications;
while [19], [20], [32] describe software substrates for imple-
mentation, we aim to produce design documents that can be
later implemented in any run-time setting. Once the intended
structure and behavior of a PH application has been specified
using the extended OOHDM, it could be implemented for
example using HyCon or HyperReal. From the implementation
point of view, we believe, that for these technologies to
become mainstream, some standardization at the level of
implementation architectures is needed. To fulfill this objective
we made a proof of concept by both extending a well-known
standard paradigm for interactive applications, the MVC and
materializing this extension in a popular framework for Web
software, Struts. Different from UWA we decided to keep the
design approach compact and to rely on the mature OOHDM
by devising a light ex-tension which supports physical objects
and walking links.

III. OUR APPROACH IN A NUTSHELL

In this section we summarize the most important aspects
of our approach and give an overall view of the whole
development process. In Figure 1 we show a graphical rep-
resentation of Physical Hypermedia and its relationship with
Web software.

Objeto1

Objeto7

Objeto2

Objeto6

Objeto3

Objeto4

Objeto5

Physical Objects

Mobile User

Hypermedia Network

Digital Counterpart of

Physical Objects

“Pure” Digital Objects

Web Server

Fig. 1. Physical Hypermedia and the Web

As previously discussed, researchers have emphasized the
feasibility of the PH paradigm by building software infras-
tructures that support the ideas underlying PH [17], [19],

[32]. Our objective meanwhile is to provide a modeling and
design approach and a development framework by reusing and
extending existing methods and software. We have carefully
analyzed the main requirements for a development approach;
in summary it should:

• Simplify the development of this kind of software, pro-
viding reusable classes and semi-complete application
structures together with “hot-spots” in which developers
can add the specific aspects of their own applications,

• Allow a clear separation between application objects and
the lower level aspects needed to indicate their physical
position and to check whether a user is in front of an
object,

• Support different navigation strategies, such as digital (as
in the Web) or physical, allowing the designer to easily
implement both of them,

• Provide ways to maintain basic contextual information,
e.g. when the user navigates digitally, keep the physical
links corresponding to the current location visible,

• Be easy to learn for Web developers; this means that it
should not depart too much from existing Web software
infrastructures.

Finally, applications built using the development framework
should also support conventional access, e.g. from a desktop
browser. In the following sub-sections, we briefly describe
some background concepts that we will use throughout the
paper, namely the philosophy underlying our design approach,
and the basic concepts behind the MVC metaphor.

A. Design Issues
We define a PH application as a hypermedia application (i.e.

the access to information objects is performed by navigation)
in which all or some of the objects of interest are real-world
objects which are visited by the user “physically”. The most
usual scenario for these applications involves a mobile user
and some location sensing mechanism and underlying software
that can determine, for example, when the user is within
interaction range of one of these objects. Objects of interest
can also move and eventually the user may not be mobile and
explore objects which are put in his interaction range (e.g. a
production line in a factory in which application objects like
products move through the line and the user is standing in
some place). A good example of this kind of application is
presented in [17].

For the sake of conciseness, we also assume that digital
information (data about physical objects and links) is obtained
from a Web server and navigated using a browser (see Figure
1).

We chose to extend the Object-Oriented Hypermedia Design
Method (OOHDM) [37] by incorporating the concept of physi-
cal objects and “walking” navigation [20]. In a PH application,
we aim at expressing, in an implementation-independent way,
which are the objects of interest and their properties (including
their location), how they are linked, which links should be
implemented as conventional and which should be “walked”
by the user. Following our approach, a PH application is

4

developed in a four stages process: application modeling,
navigation design, user interface design and implementation.
In Figure 2 we show the basic OOHDM approach together
with the hot-spots in which PH specific features are modeled.

Conceptual Model

Describing

Application Classes

and Behaviors

Navigational Model

Indicating

Hypermedia Classes

(structure and

topology)

Interface Model

Specifying the

Abstract Look and

Feel and Interaction

Style

Nodes and Links are

described as Views on

Conceptual Objects

Interface Objects are

views on nodes.

Interaction behaviors

invoke nodes and

conceptual objects

methods

Physical Hypermedia

Hot-Spots

We must indicate

which classes

represent real-world

objects and store

their positions

Some nodes are

plain “digital” nodes;

others stand for

physical objects

Conventional and

“Walking” Links must

be specified

Fig. 2. The OOHDM approach for Physical Hypermedia

B. The implementation approach
One of the key requirements in our research was to create

a development frame-work which was straightforward to use
for developers of Web software and also not to tight to a
specific development platform (such as .Net or J2EE). We
therefore decided to rely on the MVC metaphor, which is
widely supported in different platforms and then to instantiate
our solution in each specific environment. The Model-View-
Controller [27] is perhaps the most established paradigm for
developing interactive applications. Originally developed for
desktop software in the context of the Smalltalk environment,
it has evolved and it is widely used in Web applications
development. It proposes to partition the concerns of an
interactive application in three components.

• The Model, which contains the basic application’s data
and behaviors.

• The View(s) which comprises the user interface objects.
• The Controller(s) which is in charge of managing user

interaction, and coordinating the View and the Model.

The MVC has been implemented in different platforms and
there are dozens of tools supporting software development
with the MVC, for example [26].

We chose to extend the MVC model for several reasons:
first, MVC provides a reasonable model for separation of
concerns in (mobile) Web applications; besides, we have used
MVC-based architectures to support the implementation stage
for OOHDM models [11], and finally it is a well-known

metaphor, used in every modern middleware platform for Web
application development. Our extension basically enhances the
controller component of the MVC making it location-aware,
and therefore being able to respond to requests containing
physical locations.

In the following sections we describe our approach in more
detail; for the sake of conciseness we concentrate on the
server-side. Details on client side aspects such as providing
communication mechanisms between sensing hardware and
software and Web browsers, though important in our research,
are outside the scope of this paper. When some functionality
has to be assumed in the client side, we will make it explicit
in the paper.

IV. THE DESIGN APPROACH

As previously described we have adapted the OOHDM
development framework by including some features which are
specific to PH software. We limit our discussion to these novel
features and ignore the use of basic OOHDM primitives to
improve the design of PH applications. Further information
on these aspects can be read in [15].

A. Application Modeling
During application modeling we produce a two-layered

model; the first layer contains the application objects, their
properties, relationships with other objects and behaviors,
described in UML [42] as in the standard OOHDM approach.

In the second layer, and for these classes whose instance
may have physical presence, we describe their physical coun-
terparts. Physical classes are described as roles, in fact deco-
rations [39], [14] of base application classes and contain, by
default, the object’s location, geographical relationships among
them, and the basic behaviors needed to manipulate positions,
such as determining if the user is in front of the object or
calculating how to reach a physical object. In Figure 3, we
show these two layers.

The two physical classes (PH A, and PH B) wrap appli-
cation classes A and B, thus obliviously adding them their
physical properties. As shown in Figure 3, concrete physical
classes inherit location properties which are further decoupled
from the abstract class PhysicalObject and included in abstract
class Location and their sub-classes. Details about location
modeling, location properties and behaviors can be read in
[28].

Physical classes may also exhibit geographical relationships
such as near, beside, etc; some of them will be expressed
explicitly between specific objects, others will be calculated
on the fly when needed.

Physical classes may also have attributes which describe
the physical object and which don’t make sense in its digital
counterpart: in a painting we can describe information about its
actual placement, surroundings, data about recent restorations
which may be unnecessary in a “pure” digital access (other
examples are shown in Section 6). This layer may also contain
objects which do not make sense in the digital world, such as
streets, corridors, and other “pure” physical objects.

5

+inFrontOf()
+howToReachFrom()

-location

PhysicalObject

PH_B PH_A

Location

Geographic Symbolic

1 *

DigitalObject

A B C D

* ** *

1

*

1

*

Physical
Layer

Application
Layer

Fig. 3. The products of Application Modeling

By separating physical from digital properties we add
modularity to our design and therefore simplify application
evolution. For example, a navigational model can be built by
solely considering digital objects, thus yielding a “conven-
tional” Web application. As technology evolves and we have
new possibilities for object sensing, we can add new Physical
classes without disrupting base classes with the new, physical,
features.

Our approach also allows greater flexibility with respect to
the process of adding physical presence to application objects.
Roles (and their lower-level counterparts, object decorators)
are handled at the object instead of the class level. The
schema in Figure 3 implies that we can decorate individual
objects with physical properties. This means that a particular
application class (e.g. Church) can have some instances which
can be explored physically, i.e. they have a location (which
means, of course, that there are ways to sense the user in
front of them); however, there may be churches which can
not be explored physically, for example because they are in
restoration, they are far from the place in which the application
runs or simply they do not exist any more (though we may
have digital information describing them).

Treating the physical counterparts of application objects as
roles, that they can play, is a better solution than defining
specializations of application classes; in this latter case we
pollute the application class hierarchy with location issues and
besides an object belonging to a “physical” sub-class can not
loose this peculiarity for example if the object is not longer
available physically because physical properties are defined at
a class level. In the role-based solution, an object can play
the physical role or not dynamically because to cease playing
the role means just changing the value of an attribute; this is
important if we want an object to be temporary not accessible
in the real-world (e.g. an artwork or monument in restoration).

B. Navigation Design
The navigation model specifies which nodes the user will

explore and the links connecting these nodes. Nodes are
defined as views on application objects or on their physical
counterparts and contain the information to be displayed to the
user. As physical objects act as decorators of digital objects,
a node which is built on a physical object has access to both
physical and “pure” digital information (as a consequence of a

property of Decorators, see [14]). This allows that all nodes are
built similarly, i.e. there may be no essential difference among
viewing digital or physical application objects (an interesting
exception can occur with links outgoing from a physical object
as described later).

Links meanwhile can be digital or physical. A digital
link allows “conventional” navigation (i.e. as in the Web),
which means that the semantic of digital links is similar
to a conventional link in hypermedia, i.e. when the link is
activated, the target node is opened. Physical or “walking”
links (WLinks) express a relationship in which the target object
is physical, and therefore exploring the object implies that
the user must change his current position. When the user
activates a WLink, he is indicating his intention to explore
the target; the system response may be a map or plan to guide
him to the target object. He then has to “walk” through the
link and when he arrives to his destiny, he is sensed and
the corresponding node is opened. Physical links might be
derived from both conceptual and geographical relationships.
For example, while we are exploring a monument we may
have links to other objects of interest which are “near”
(which means a geographical relationships) or to other spots
which have a stronger semantic relationship, for example a
monument which was built by the same architect.

WLinks are not a particular meta-class of OOHDM links;
instead we decided to engineer them by refining the default
behavioral response of links, which in OOHDM is defined as a
separate class (using the Strategy pattern [14]). This solution,
described with detail in [15], allows defining the “walking”
nature of a link in an instance basis. In Figure 4, we show
the relationship between two navigational classes Artist and
Church and a link workedIn which allows navigating from the
description of the artist to those churches in which we can see
his artworks. The <w> tag indicates that instances of this link
class may be WLinks; in this way we don’t need to define a
different class for targets (churches) which are not accessible
physically (e.g. they have been destroyed) though we still have
information on them. Of course it is possible to define a digital
link which connects this two node classes; in this case the link
will be traversed “just” digitally.

ArtistNode ChuchNode

workedIn

<W>

Fig. 4. Walking Links vs. Conventional Links

Similar to the base OOHDM approach we can define
navigational contexts, i.e. set of nodes with some common
property, according to geographical properties to allow the
user to explore them physically. For example the context Mon-
uments near the river Seine contain all instance of navigation
class Monument whose corresponding physical counterpart
satisfies the predicate near with the object Seine. The context
Churches by Neighborhood indicate all Churches which are
located in the same neighborhood. In this case the property

6

fulfilled by all churches is not necessarily represented with a
geographical relationship (but perhaps with an attribute which
contains the name of the neighborhood); traversing the nodes
in the context implies traversing WLinks. Physical Guided
tours as those shown in [6] are also described as navigational
contexts. More examples on navigational contexts related with
physical properties can be read in [15].

Once we have specified the application and navigational
models, we can proceed with the abstract interface model
which, for the sake of conciseness, we don’t describe in
this paper; details on our interface primitives can be read in
[29, 37]. The application can then be implemented; though
OOHDM does not prescribe any particular run-time setting
we next show our strategy to implement PH applications on
top of the MVC model.

V. A MVC FRAMEWORK FOR PHYSICAL HYPERMEDIA

A PH application has two main differences with a con-
ventional Web application: the first one, which implies the
strongest requirement for a development framework relates
with the mechanism for opening pages. While in Web soft-
ware, nodes (i.e. pages) open as the result of the triggering
of a link, in PH the node corresponding to a physical object
opens when the user stands in front of that object; in other
words, as the result of the user movement, a node might need
to be opened. The second one is that the triggering of WLinks
does not imply that new information is presented to the user,
but that a path to the target object should be provided by the
system. In both cases, there is a request to the application:
the first one should be generated (implicitly, via a push or
pull mechanism) when the user is sensed to be in front of
a meaningful object, the second one has to be mapped to
the process of triggering a link. The solution presented in
this paper involves the extension of the MVC architectural
pattern to support some kind of location-based behavior. A
slight extension of client software (e.g. the browser) is also
necessary to provide the corresponding information on sensed
data.

As explained before, in the MVC metaphor, the responsi-
bilities of the application are divided in three coarse grained
components: the Model which contains the application objects,
the View which deals with interface issues and the Controller
which handles interaction. In a simplified interaction, the user
perceives the information of the model; this information is
shown in interface objects (which comprise the view). When
he exercises the interface (e.g. clicking on a button, selecting
an option, filling a form, etc), the interface event is handled
by a controller object, which in turns decides which is the
model object that will provide the application’s response. Once
the model returns control to the controller, it generates a new
view and the cycle begins again. As a consequence, in the
Web applications domain, controller objects handle part of the
application logic flow.

We have thoroughly analyzed the standard responsibilities
and concerns of each one of the MVC’s components; we
decided to extend the scope of the Controller component to
support location-aware requests, those requests which are orig-

inated in the user’s movement, and to manage the triggering
of physical links.

The main rationale behind this decision is that we found
that both the View and the Model components can support
PH functionality, without modifying their essence. Notice that
following our approach, a software engineer builds a slightly
more complex model (which contains physical classes); how-
ever the responsibilities of the model component are still the
same as in the standard MVC.

As explained before, the Controller acts as a coordinator
among the Model and the View. In our extension, the controller
will need to identify if a request implies managing a location,
and it will be in charge to process those requests that do
involve location information. We next describe some high-
level issues in our extension.

A. A conceptual view of the Location-Aware MVC
The two main components of the controller, in a Web

setting, are according to [26]: the InputController and the
ApplicationController. Their main responsibilities are the fol-
lowing:

• The InputController extract relevant request information
and cooperate with the ApplicationController component
to specify which Action will be executed, invoking it in
the appropriate context.

• The ApplicationController component coordinates the
application logic flow, the error handling, maintains
long-terms states and decides which view will be shown.

Our extension involves mainly modifying the InputCon-
troller, since it deals with resolving a parameter of the request,
in particular the recognition of the physical object in the user’s
vicinity. For the sake of modularity and compatibility with the
standard MVC, we avoided changing this component but we
introduced a new separated one, the LocationController. In
this way, we didn’t clutter the standard controller with new
functionality and, besides, both of them can evolve separately.

The LocationController will deal with those implicit or ex-
plicit parameters which correspond to requests that involve lo-
cation information. Considering that the kind of pre-processing
needed by a broader range of applications might eventually
involve other issues, we devised a DispatcherController as a
Facade [14] to determine which specific controller receives
control; i.e. depending on the nature of the application the
DispatcherController establishes which Controller will be the
actual InputController’s collaborator as shown in Figure 5. In
the case of requests which do not need any pre processing,
the DispatcherController delegate control directly to the Ap-
plicationController.

The DispatcherController analyzes the request. If it
is a pure digital request it delegates control to the
ApplicationController. If the request involves location
information it delegates to the LocationController, which
will analyze the location issues. A complete diagram of the
extended MVC architecture is shown in Figure 6.

7

Input
Controller

Location
Controller

Application
Controller

XController

Dispatcher
Controller

...

...

YController

Fig. 5. A new Controller Schema

Businnes

object

Application

Controller
View

Input

Controller

notification

notification

Dispatcher

Controller

Location

Controller

Fig. 6. Extended MVC for Physical Hypermedia

The LocationController is activated to analyze a request
which implies location. Therefore, it will have to deal with
that location using the same location techniques (and models)
which the actual application uses. Once the location has been
analyzed the processing proceeds as an ordinary request. For
this, the LocationController gives control to the Application-
Controller, which itself works oblivious from the nature of the
request.

To make this discussion more concrete we detail one specific
materialization of this idea: and extension to the Struts [41]
implementation of the MVC.

B. Adding Location-Awareness to Struts

There are basically three standard ways of extending the
Struts framework:

• Creating a PlugIn; this option is used if we want to add
some customized business logic at the beginning or end
of an application.

• Create a RequestProcessor, if we want to execute some
business logic during the processing of the request.

• We can also extend the ActionServlet, if we want to
execute some business logic either at the beginning
or end of an application or during the processing of
the request. However, we should use the ActionServlet
only for those cases in which neither PlugIns, nor
RequestProcessors can fulfill the intended functionality.
In the case of our DispatcherController, none of these
extensions can provide its functionality.

By distinguishing the format of a URL contained in a
request, Struts allows to define more than one control Servlet.
In our implementation, a URL with the traditional format
(*.do), will be dealt by the ActionServlet. Meanwhile, a
URL with a location-compliant form (in our case /location/*),
will be analyzed by the LocationActionServlet. This is an
easy and straightforward way to implement the task of the
DispatcherController.

This functionality corresponds to the case in which the
DispatcherController delegates control to either LocationCon-
troller or to the ApplicationController in Figure 6.

Both, the configuration of the new Servlet, and the format
of the location-compliant URL are configured in the Struts file
web.xml as shown in Figure 7.

<web-app>
...
<servlet>

<servlet-name>action</servlet-name>
<servlet-class>org.apache.struts.action.
ActionServlet</servlet-class>

</servlet>
<servlet>

<servlet-name>location</servlet-name>
<servlet-class>org.apache.struts.location.
LocationActionServlet</servlet-class>

</servlet>
...
<servlet-mapping>

<servlet-name>action</servlet-name>
<url-pattern>*.do</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>location</servlet-name>
<url-pattern>/location/*</url-pattern>

</servlet-mapping>
...

</web-app>

Fig. 7. Description of Struts configuration file

We next examine how to carry out the LocationController’s
task. PH applications may use different location models (e.g.
symbolic, geometric, etc); this means that the location con-
tained in the request has to be interpreted in the corresponding
location system to obtain a correct result. To achieve this goal
we decoupled the corresponding functionality and create a
hierarchy of LocationFinder classes.

LocationFinder is an abstract class which describes the
common functionality of all location finders. Concrete sub-
classes (e.g. SymbolicLocationFinder) allow the developer to
specialize this functionality.

The ConcreteLocationFinder is configured in the file
web.xml as an additional initialization parameter of the servlet
LocationActionServlet. This is specified as shown in Figure 8.

<web-app>
...
<servlet>

...
<init-param>

<param-name>finder</param-name>
<param-value>ConcreteLocationFinder
</param-value>

</init-param>
...

</servlet>
...

</web-app>

Fig. 8. Specifying a ConcreteLocationFinder

Concrete sub-classes of LocationFinder must implement
at least two methods: one to identify the physical object
the user is facing (inFrontOf), and the other that returns
the path between two physical objects (howToReachFrom).
Each concrete sub-class implements this functionality using
the concrete location model and interacting with physical

8

(application) objects defined in the Model component. The
abstract specifications of these methods (in LocationFinder)
are as follows:

public abstract Object inFrontOfObject(HttpServletRequest
obj);

public abstract Object howToReachFrom(Object from,
HttpServletRequest to);

As the objects returned by these methods must be used both
by the Actions and by the JSPs (the View) we make them
persistent by storing them in the Struts’s session, under the
name specified by the developer in the configuration file as
shown in Figure 9.

<web-app>
...
<servlet>

...
<init-param>

<param-name>objectName</param-name>
<param-value> Name of the physical object
</param-value>

</init-param>
<init-param>

<param-name>travelName</param-name>
<param-value> Name of the travel object
</param-value>

</init-param>
...

</servlet>
...

</web-app>

Fig. 9. Specifying session’s names for physical and the travel objects

Following the standard way to extend Struts with specific
business logics, we decided to create a specialized Request-
Processor, the LocationRequestProcessor, which is configured
in the file location-struts-config.xml as shown in Figure 10.

<struts-config>
...
<controller processor-class=
"org.apache.struts.location.
LocationRequestProcessor"/>
...

</struts-config>

Fig. 10. Specification of LocationRequestProcessor

In Struts there must be a one to one correspondence
between a control servlet and a RequestProcessor.
Therefore, the existing Struts ActionServlet will still
correspond with the RequestProcessor to assure compatibility,
and the LocationActionServlet will correspond with the
LocationRequestProcessor.
The LocationRequestProcessor collaborates (with the
mediation of the LocationActionServlet) with the concrete
LocationFinder to implement the pre-processing of the
request. LocationRequestProcessor is a sub-class of
RequestProcessor, and redefines the following method:

protected boolean processPreprocess(HttpServletRequest
request, HttpServletResponse response)

In this method we process the request, determining if it
involves a search for a path or for an object. Depending on
the nature of the search, it will invoke the appropriate method
in the corresponding LocationFinder.

To determine how the controller establishes whether the
request involves an object or a path, we use ActionMappings,
in which all information about the request is stored. Struts
allows defining ActionMappings with additional information
besides the default one, provided by the framework itself. We
therefore defined a customized ActionMapping, namely, the
LocationActionMapping. The LocationActionMapping will be
associated with the LocationActionServlet, while the Action-
Servlet will be still related with the default ActionMapping
provided by Struts.

The LocationActionMapping, besides the default properties,
defines a new one, locationEvent, which allows to specify
which of the finder methods will be invoked by the Location-
RequestProcessor. We indicate this as shown in Figure 11.

This property is defined in the configuration file location-
struts-config.xml, (the configuration file of LocationAction-
Servlet). It is worth noticing that this property is mandatory,
because without this information the request can not be
processed.

<location-action-mappings>
...

<location-action
... locationEvent="inFrontOf" .../>

<location-action
...locationEvent="howToReachFrom" .../>

...
</location-action-mappings>

Fig. 11. Specification of the locationEvent’s property in the configuration
file

All configuration files are related with DTDs, determining
the internal structure of these files. When adding a new
property in location-struts-config.xml, we need to define a
new DTD (location-struts-config 1 1.dtd) including this new
property, in the file structure.

To change the file structure it is necessary to consider
that parsing rules of this file change; therefore we define
new rules in the LocationConfigRuleSet allowing to parse the
location-struts-config.xml file.

In summary the relationship between the MVC elements and
those that arise from the extension of Struts can be represented
as shown in Figure 12.

The relationships between the conceptual specification and
the Struts implementation is determined as follow:

• The behavior of the DispatcherController is solved using
the structures of the URLs.

• The functionality of the ApplicationController is solved
using the Struts Framework.

• Responsibilities of the LocationController are obtained
by defining component’s specializations of the Struts
Framework which in turn, collaborate with new
components.

9

*.do

struts-config.xml

location-struts-config.xml

ApplicationController

LocationController

Dispatcher

Controller

/location/*

struts-config_1_1.dtd

location-struts-config_1_1.dtd

Request

Processor

Location

Request

Processor

Location

Action

Mapping

Concrete

Location

Finder

Action

Mapping

Config

RuleSet

Action

Location

Config

RuleSet

Action

Servlet

Location

Action

Servlet

Fig. 12. The complete Struts extension for handling location data

Figure 13 shows how control flows through the elements
involved in solving a request.

Location

Action

Servlet

Location

Request

Processor

Location

Finder

Action 1

Action

Mapping 1

Action 2

Action 3

Action

Mapping 2

Action

Mapping 3

View 1

View 2

1.

2.

3.

5.

6.

7.

8.

9.

4.

Fig. 13. The control flow of a request that involves location

In Figure 13 the following event/transitions occur:
1 The request is handled by the LocationActionServlet.
2 LocationActionServlet delegates control to the Loca-

tionRequestProcessor.
3 LocationFinder gets the control.
4 LocationFinder localizes the physical aspect and

returns control to the LocationRequestProcessor.
5 LocationRequestProcessor queries the correspond-

ing LocationActionMappings to determine the cor-
responding Action.

6 LocationRequestProcessor gives control to the ade-
quate Action.

7 The Action realizes the corresponding model opera-
tions and returns control to the LocationRequestPro-
cessor.

8 LocationRequestProcessor gives control to Location-
ActionServlet.

9 Control is forwarded to a new view.

One of the advantages of our approach is that the framework
is very easy to instantiate for a specific application (i.e. a
particular model in the MVC). We only need to:

• Specify a Finder to get physical objects and to compute
paths between two physical objects; specify the name that

will be used to store them in session for physical objects
and paths.

• Create the application Actions and configure them in the
corresponding files depending whether they are related
with location issues or not (location-struts-config.xml and
struts-config.xml).

• Create the corresponding JSPs depending the information
we need to show.

VI. A RUNNING EXAMPLE

To illustrate our ideas, we next present a simple example
in which we show the modeling and design approach and the
instantiation of the framework in practice.

As a proof of concept we have instantiated the framework
in a Natural Sciences Museum, which contains skeletons of
prehistoric animals. Our prototype uses a particular sensing
device (infrared sensors) and location model (symbolic). How-
ever, most design decisions can be easily understood while
analyzing the example independently of these specific features.

A. Design
We first produced a conceptual model, including the location

enrichment. In Figure 14, we show a simplified conceptual
model including some attributes and relationships for animals
and the period in which they lived. The location attribute has
been simply defined as an identifier, because we used a sim-
ple symbolic location model. The class PhysicalAnimal also
includes some attributes corresponding to the physical object.
Objects in the conceptual model have been instantiated and
mapped into a Java implementation which finally represents
the model of the MVC triad; the specifications of nodes in
the navigational model were used to produce a set of JSP
specifications (some of them are shown in Figure 20.a and
20.b).

-location : String

PhysicalObject

+reconstructer : String
+reconstructerYear : Date

PhysicalAnimal

+travelMap

PhysicalRelationship

-physicalRelationship

1

-physicalObject*

+name : String
+description : String

DigitalObject

+liveInEra() : Era

+weigth : float
+heigth : float

Animal

+beginningYear : float
+conclusionYear : float

Period

+duration : float

Era

-liveIn

*

1 -belongsTo*
1

-animal0..* 0..1

Fig. 14. Application and Physical Models for the Museum

The class PhysicalRelationship model the path between
different physical objects. For simplicity, in this example the
path is expressed as a travelMap though it could be enhanced
to be further more elaborated. Notice that travelMaps are
objects with no digital counterpart in the model.

An oversimplified navigational schema is presented in Fig-
ure 15. Nodes for animals show the same attributes defined in
the conceptual model; they are described as views on class
PhysicalAnimal in Figure 14. All links pointing to animal
nodes are tagged as WLinks; when populating the information
base one could treat one instance of those classes as a digital
link (if the animal’s skeleton is not in the Museum).

10

AnimalNode

EraNodePeriodNode

<W>

<W>

<W>

Fig. 15. Navigational Schema of the Museum example

B. Instantiating the framework
For the sake of understanding we separate the configuration

step from the explanation on the dynamic aspects.

1) Configuration Issues: The following steps are necessary
to create a running application using our framework: first,
we need to create a Struts project with the framework as
the library; second we need to implement a specific finder
(we will call it ExampleLocationFinder) with two outstanding
methods: inFrontOfObject and howToReachFrom. The first one
identifies the object the user is facing, the second searches a
path between two objects.

In our prototype each physical object (skeletons of animals
in the museum) has been assigned a code and the beacon
placed in the object emits a signal with that code. For example
the Herrerasaurus emits “1”, while the Diatrina emits “2”.
The implementation of inFrontOfObject returns the associated
object by querying each object with the code which has been
received in the request.

The web.xml file is configured as shown in Figure 16.

<web-app>
...

<init-param>
<param-name>finder</param-name>
<param-value>example.finder.
ExampleLocationFinder</param-value>

</init-param>
<init-param>

<param-name>objectName</param-name>
<param-value>physicalObject</param-value>

</init-param>
<init-param>

<param-name>travelName</param-name>
<param-value>physicalTravel</param-value>

</init-param>
...

</web-app>

Fig. 16. Specifying the initialization parameters of the application

In the specification of Figure 16, “exam-
ple.finder.ExampleLocationFinder” jeans that in the package
example there is a package named finder containing the Class
ExampleLocationFinder. PhysicalObject and physicalTravel
are the names in which a physical object and path are stored
in the session.

The configuration file struts-config.xml indicating actions
related with digital information looks as shown in Figure 17.

The attribute path allows specifying how the action will be
invoked in the corresponding JSP. The attribute type indicates
the Action class which will handle the request, in this case
DigitalRelationshipAction (in package actions).

<struts-config>
...
<action-mappings>

...
<action path="/DigitalRelationship"

type="example.actions.
DigitalRelationshipAction"/>

...
</action-mappings>
...

</struts-config>

Fig. 17. The configuration of file struts-config.xml

The configuration file location-struts-config.xml, contains
the configuration of physical information as shown in Figure
18.

Path and type attributes have the same semantics than in
Figure 17. The attribute locationEvent indicates which method
must be invoked in the Finder.

Package example contains another package namely loca-
tionActions in which classes InFrontOfAction and HowToRe-
achFromAction are specified. The first one is used to handle
requests when the user is in front of a physical object, the
second one is used when walking a link. Classes InFrontO-
fAction, HowToReachFromAction y DigitalRelationshipAction,
are subclasses of Action.

Finally we have to specify the JSP according to the infor-
mation we want to show; in this case we need to define one
for presenting digital information and another one to present
the path to an object.

<struts-config>
...
<location-action-mappings>

...
<location-action path="/InFrontOf"

locationEvent="inFrontOf"
type="example.locationActions.
InFrontOfAction"/>

<location-action path="/HowToReachFrom"
locationEvent="howToReachFrom"
type="exmple.locationActions.
HowToReachFromAction"/>

...
</location-action-mappings>
...

</struts-config>

Fig. 18. The configuration of the location Actions

2) Dynamic Aspects: To complete the description of our
running case, we will show how things work in the framework
as the user moves. We assume that the client is running the
needed software to map the signal of a sensor into a browser
request; this functionality can be performed by an applet in
the JSP or a java application embedded in the browser.

The client must check if the beacon has emitted some
complete signal (e.g. because the user is facing a physical
object).

To achieve reusability of the client software we can either
set a variable in the applet, which will contain the specification
of the application and path to send the request, or the path can
be obtained directly from the browser which is embedded in
the java application.

Suppose that the user is in front of a Herrerasaurus (whose
corresponding beacon emits the identifier “1”). The client

11

software generates a request of the form:

.../location/InFrontOf?id=1

In Figure 19 we show how this request is handled. When the
request arrives, the framework detects (from the configuration
file) that the URL corresponds to a location and therefore
it gives control to the LocationActionServlet. This delegates
in the LocationRequestProcessor the pre-processing of the
request. The LocationRequestProcessor invokes in the Exam-
pleLocationFinder the method inFrontOf(HttpServletRequest
req). This method searches the physical object which corre-
sponds to the code “1” by collaborating with model objects.
The ExampleLocationFinder detects the corresponding physi-
cal object (in our example the “Herrerasaurus”) and stores it
in the session under the name physicalObject.

Once that the request pre-processing is finished, control
returns to the LocationRequestProcessor which queries the
LocationActionMapping to detect which Action corresponds
with the URL.

According to the configuration of location-struts-config.xml,
this request must be handled by InFrontOfAction. Afterwards
the corresponding JSP is generated (Figure 20.a), it retrieves
the information from the physicalObject, which has been
stored in the session.

Location

Action

Servlet

Location

Request

Processor

Location

Action

Mapping

InFrontOf

Action
JSP

.../location/

inFrontOf?

id=1
process()

createActionInstance()

perform() forwardTo()

Example

Location

Finder

inFrontOf(request)

ActionInstance

Fig. 19. Viewing information on a physical object

The generated JSP (Figure 20.a) contains in its upper part
digital information and links; in the bottom we have placed
physical information and links. Though this separation is arbi-
trary and can vary for different applications, it is useful when
one wants to preserve physical links (those which depend on
the user’s location) while the user navigates through physical
information; this allows us to provide digital navigation (e.g.
the user clicks on “Triassic Period”) without changing the
physical links exposed to the user. This means that while
the user stands in front of the Herrerasaurus, he can navigate
digitally and the bottom pane does not change, as shown in
Figure 20.b.

The views in Figure 20.a and 20.b are obtained by using
several collaborating design patterns during framework instan-
tiation, namely Composite View, View Helper and Builder.
First, we applied the Composite View pattern [7], which is
a specialization of the Composite pattern [14]. According to
this pattern each view is itself composed of sub-views (either

composite or atomic). In this case the page is composed of
two sub-views: one for the digital and the other for physical
information. We use the View Helper pattern [7] to express that
each view delegates code processing to helper classes. Helpers
in our case are custom-tags which have been used in our
framework to present both physical and digital information.
Finally, Builder [14] is a creational pattern used to represent
the JSP which is visualized by the user from the digital and
physical information which are stored in the session. Physical
information is stored under the name physicalObject, while
digital information is stored after the execution of the Action
under the name digitalObject. Figure 21 shows a schema of
this collaboration of pattern instances.

Triassic Period

It was the first period of the
Mesozoic Era, about 195
million years ago...

Mesozoic Era

It is located downstairs,

Room IV

Diatrina
Iguanodon

Herrerasaurus

Small canivorous dinosaur,

with an antiquity of 210
million years ...

Triassic Period

It is located downstairs,
Room IV

Diatrina
Iguanodon

[a] [b]

Fig. 20. a) Exploring a physical object. b) Pure Digital navigation

Herrerasaurus

Small canivorous dinosaur,

with an antiquity of 210

million years ...

Triassic Period

It is located in downtairs,

Room IV

Diatrina

Iguanodon

Composite JSP

Digital JSP

Physical JSP

Custom-Tags

Custom-Tags

BuilderComposite View Helper View

Session

phisicalObject

digitalObject

Fig. 21. Using patterns during framework instantiation

As previously discussed Physical links pose another im-
plementation challenge. For example when the user selects
“Diatrina” (another physical object in the museum), he should
be instructed on the best way to reach the object, e.g. showing
him a map as shown in Figure 22.

Fig. 22. The physical path to reach an object

In this case, the request is generated by the user when he

12

chooses a physical link. The URL which represents this request
has the form:

.../location/HowToReachFrom?id=2
The control flow is similar to the one in Fig-

ure 19 except that the LocationRequestProcessor invokes
(in the ExampleLocationFinder) the method howToReach-
From(HttpServletRequest request). This method will find the
path between the current physical object and the object which
is referred in the link (in this case the one with identifi-
cation 2, Diatrina). The ExampleLocationFinder detects the
physical path which is stored in the session under the name
physicalTravel. Similar to the former case, control returns
to the LocationRequestProcessor which queries the Location-
ActionMapping to detect which Action corresponds with the
actual URL. In this case the file location-struts-config.xml,
indicates that it must be handled by HowToReachFromAction.
The corresponding JSP is generated, showing the path to
Diatrina (Figure 21). A sequence diagram with the previous
control flow is presented in Figure 23.

Location

Action

Servlet

Location

Request

Processor

.../location/

HowToRea

chFrom?

id=2 process()

createActionInstance()

perform()

Example

Location

Finder

howToReach

From(request)

Location

Action

Mapping

HowToRea

chFrom

Action

JSP

forwardTo()

ActionInstance

Fig. 23. Viewing information of how to reach a physical object

Digital links are processed a bit differently. In Figure 24 we
show the sequence diagram corresponding to the processing
of the request generated when the link Triassic Period is
triggered. Notice that this sequence does not imply any pre-
processing as we are dealing with a pure digital request.

Action

Servlet

Request

Processor

…/Digital

Relationsh

ip?id=”Tria

ssic

Period”

process()

createActionInstance()

perform()

Action

Mapping

Digital

Realtionship

Action

JSP

forwardTo()

ActionInstance

Fig. 24. Viewing information as a result of digital navigation

Summarizing the previous example, we were able to develop
the whole application by thinking in terms of a typical Web
application, modeling it using the light extension of OOHDM
and using just a set of pre-defined classes of our Struts
extension.

VII. DISCUSSION

While our approach is original and it does comprise the
whole life cycle of a PH application, we still believe that there
is place for improvement, both regarding the design method
and the implementation setting.

The evaluation of a development approach involves many
different aspects, some of them rather technical, others more
related to the underlying process. We limit our evaluation
to the specific foci of the paper: the design approach and
the supporting framework. We do not address interface or
usability issues because they are beyond the scope of our
current research; however the interested reader can find a
thorough analysis of some of these issues in specific projects
in [17], [19].

A. Evaluation of the design approach
To evaluate a design approach we must analyze its goals,

modeling primitives, products, how easy it can be learned,
the supporting tools, etc. A good framework for comparison
of methodologies for ubiquitous applications (which includes
OOHDM) can be found in [23]. In the past we have used
the bare OOHDM model to specify personalized applications.
In [36] we showed that using the base OOHDM query
language for defining nodes and links, and applying some
advanced object-oriented principles, we don’t need to extend
the modeling vocabulary to cope with personalization and
adaptation functionality. In this sense we consider that the base
OOHDM is adequate for applications which involve some kind
of customization.

Our current extension of the OOHDM approach for PH is a
light-weighted extension of OOHDM and therefore it is easy to
learn for OOHDM designers as it introduces only some new
modeling primitives. As an example, roles (used to specify
physical aspects) are well-known mechanisms for achieving
dynamism in assigning behaviors to objects and their use
is considered a good practice in object-oriented design [39].
Therefore, as the conceptual modeling armory is basically the
same as in the native OOHDM approach, it does not need
further analysis.

WLinks meanwhile imply an important departure from the
concept of a link in hypermedia. Their behavior is different
from the usual link’s behaviors. However, their implementation
in OOHDM is straightforward and does not require important
modifications in the underlying meta-model; as a consequence,
the learning process is not substantially modified. Once un-
derstood, the documents we produced while modeling the
navigational aspect of a PH application are concise and not
much complex than a usual OOHDM model.

We have not yet developed a tool for model-based derivation
of running applications from the OOHDM design documents.
Some other further extensions which will improve the method
are discussed in Section 8.

B. Framework Evaluation
A critical consideration when developing the extended

Struts framework was to keep the existing implementation,

13

and use the basic Struts’s extension mechanisms to add
location-awareness. In this way, we preserved all benefits
of the base framework and simplified the learning process.
Besides, the migration of a “conventional” Web application to
the new framework (for example to include physical objects
and user’s mobility) is straightforward; we just keep the
base classes and obliviously add the machinery for location
description and objects finding.

TABLE I
EVALUATING L-STRUTS

Evaluation Criteria Results

Customs Tags L-Struts allows the use of Struts
tags libraries and provides a set of
specific customized tags to support
physical information presentation.

Validation L-Struts keeps the possibility
(available in Struts) of using
Common Validators.

Testability The StrutsTestCase can be used
during the development of L-Struts
applications.

Post and Redirect Double-posting is managed by L-
Struts both for physical and digital
requirements.

Internationalization L- Struts (as Struts) allows local
ResourceBundle.

Page Decoration The use of tiles is possible in L-
Struts, allowing the use of visual-
ization Templates to separate dig-
ital from physical information and
links.

Tools (particularly IDE) Any IDE which supports Struts,
could be used to create a L-Struts
application.

Development L-Struts provides the needed sup-
port for physical and digital re-
quirements.

Pattern MVC L-Struts extends MVC for support-
ing physical hypermedia applica-
tions.

Configuration L-Struts adds complexity in the
configuration steps, as physical fea-
tures must be specified separately
from digital ones. Though the con-
figuration is modular, the process
implies some additional difficulty.

As a summarized evaluation, we use the framework in [40]
by adapting it to our location-aware Struts; the results are
shown in Table 1, where our framework is called L-Struts. We
are also exploring alternative implementations and analyzing
with more detail client-side issues as described in Section 8.

VIII. CONCLUDING REMARKS AND FURTHER WORK

The construction of physical hypermedia applications
presents several challenges to the developer; some of these

challenges had been early indicated in the broader field of
ubiquitous computing [1]; others have been reported in the
seminal work presented in [17].

In this paper, we have presented a design and implemen-
tation framework for developing physical hypermedia appli-
cations. We have detailed a light extension to the OOHDM
design approach which adds physical objects and walking links
to the basic set of modeling primitives.

We have also shown how to slightly extend the MVC
metaphor to support location-aware controllers; we have then
presented an implementation of our ideas on top of the well-
known Struts framework; we presented a simple proof of
concept for a physical hypermedia in a Natural Sciences
Museum.

Our research in this area continues in several directions; we
are now:

• Studying how to provide better modeling primitives with-
out compromising simplicity; particularly we are inter-
ested in obtaining more expressive navigational models
in which we can indicate which links are maintained
visible while navigating physically or digitally. We are
also studying the use of UML-like stereotypes to improve
the notation of WLinks. The notation for context-aware
navigation is rather limited in OOHDM; it must be
improved for this specific field.

• Researching on how to specify orientation and navigation
aids for WLinks; it is evident that when traversing a
WLink, the user can deviate from his path eventually
loosing his way to the intended object (or just changing
his mind). Providing physical navigation services (the
equivalent of their counterpart in the Web) we can help
him in his detour. We have already defined a framework
for pervasive services [33], which we are currently im-
proving.

• Devising model-based development tools to simplify the
creation of a running application, using L-Struts.

• We are working on an open source Web browser to adapt
its basic set of features to the PH domain. For example,
while the “back” operation has well understood semantics
in digital documents, it is not clear what it means in the
physical world. Similarly other well-known features of
our browsers should be analyzed to make them PH-aware.

• Exploring other possible implementation settings;
particularly we are studying how to adapt an architecture
for context-aware software [13] with physical hypermedia
services [5].

Model-based design of Physical Hypermedia and other
similar kind of ubiquitous Web software is not a new area as
described in Section 2; however many problems in this area
still need further research. In this paper we have presented
some of these problems together with our solutions; we think
that the strategy of seamlessly improving existing standard
development tools is a key to the progress of this domain, as
it allows that existing developers can migrate their application
easily to support the mobile user.

14

REFERENCES

[1] G. D. Abowd: Software Engineering Issues for Ubiquitous Computing.
Proc. 21st Int’l Conf. Software Engineering, ACM Press, 1999, pp. 75-
84.

[2] Adaptive Hypermedia Home Page: http://wwwis.win.tue.nl/ah/.
[3] L. Baresi, F. Garzotto, P. Paolini: From Web Sites to Web Applications:

New Issues for Conceptual Modeling. ER Workshops 2000, 89-100.
[4] S. Ceri, P. Fraternali, A. Bongio: Web Modeling Language (WebML):

a Modeling Language for Designing Web Sites. Proceedings of the
9th International World Wide Web Conference, Elsevier, Amsterdam,
Netherlands, (May, 2000).

[5] C. Challiol, S. Gordillo, G. Rossi, R. Laurini: Designing Pervasive
Services for Physical Hypermedia Applications. Proceedings of the IEEE
International Conference on Pervasive Services. Lyon, June 2006.

[6] K. Cheverst, N. Davies, K. Mitchell, A. Friday, C. Efstratiou: Developing
a Context-Aware Electronic Tourist Guide: Some Issues and Experi-
ences. In Proc. of CHI 2000.

[7] J. Crupi, D. Malks, D. Alur: J2EE PATTERNS Best Practices and Design
Strategies. Publisher: Prentice Hall / Sun Microsystems Press, June 2001.

[8] Y. Deshpande, A. Ginige, S. Murugesan, S. Hansen: Consolidating
Web engineering as a discipline. The Journal of Software Engineering
Australia, pp. 31 - 34, 2002.

[9] Y. Deshpande, S. Hansen: Web Engineering: Creating a Discipline
among Disciplines. IEEE MultiMedia 8(2): 82-87 (2001).

[10] Y. Deshpande, S. Murugesan, A. Ginige, S. Hansen, D. Schwbe, M.
Gaedke, B. White: Web Engineering. Journal of Web Engineering, vol.
1, pp. 3 - 17, 2002.

[11] M. Douglas, D. Schwabe, G. Rossi: A software arquitecture for struc-
turing complex Web Applications. Journal of Web Engineering 1 (1):
37-60 (2002).

[12] F. Espinoza, P. Persson, A. Sandin, H. Nystrom, E. Cacciatore, M.
Bylund: GeoNotes: Social and Navigational Aspects of Location-Based
Information Systems. Proceedings of Third International Conference on
Ubiquitous Computing (Ubicomp 2001), Springer Verlag, 2-17.

[13] A. Fortier, G., Rossi, S. Gordillo: Decoupling Design Concerns in
Location-Aware Services. In Proceedings of the IFIP Conference on
Mobile Information Systems (MOBIS),2005, Springer, 2005.

[14] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns. Elements
of reusable object-oriented software, Addison Wesley 1995.

[15] S. Gordillo, G. Rossi, D. Schwabe: Separation of Structural Concerns
in Physical Hypermedia Models. CAiSE 2005: 446-459.

[16] S. Gordillo, G. Rossi, F. Lyardet: Modeling Physical Hypermedia
Applications. SAINT Workshops 2005: 410-413.

[17] K. Gronbaek, J. Kristensen, M. Eriksen: Physical Hypermedia: Organiz-
ing Collections of Mixed Physical and Digital Material. Proceedings of
the 14th. ACM International Conference of Hypertext and Hypermedia
(Hypertext 2003), ACM Press, 10-19.

[18] K. Gronbaek, R. H. Trigg: Design Issues for a Dexter-based hypermedia.
Proc. ACM ECHT Conference (1992) pp. 191-200.

[19] F. Hansen, N. Bouvin, B. Christensen, K. Gronbaek, T. Pedersen,
J. Gagach: Integrating the Web and the World: Contextual Trails on
the Move. Proceedings of the 15th. ACM International Conference of
Hypertext and Hypermedia (Hypertext 2004), ACM Press. 2004.

[20] S. Harper, C. Goble, S. Pettitt: proximity: Walking the Link. In Journal
of Digital Information, Volume 5, Issue 1, Article No 236, 2004-04-07.
Available at: http//jodi.ecs.soton.ac.uk/Articles/v05/i01/Harper/.

[21] T. Hofer, M. Pichler, G. Leonhartsberger, W. Schwinger, J. Altmann:
Context-Awareness on Mobile Devices - The Hydrogen Approach. Pro-
ceedings of the International Hawaiian Conference on System Science
(HICSS-36), Minitrack on Moblie Distributed Information Systems,
Waikoloa, Big Island, Hawaii, January 2003.

[22] M. Jones, G. Marsden: Mobile interaction design. John Wiley & Sons.
February 2006.

[23] G. Kappel, B. Prll, W. Retschitzegger, W. Schwinger, T. Hofer: Modeling
Ubiquitous Web Applications – A Comparison of Approaches. Proc. Of
the Int. Conf. on Information Integration and Web-based Applications
and Services (iiWAS), Austria, Sept. 2001.

[24] G. Kappel, W. Retschitzegger, W. Schwinger: Modeling Customizable
Web Applications - A Requirements’ Perspective. International Confer-
ence on Digital Libraries: Research and Practice (ICDL), Koyoto, Japan,
November 2000.

[25] T. Kindberg, J. Barton, J. Morgan, G. Becker, D. Caswell, P. Debaty, G.
Gopal, M. Frid, V. Krishnan, H. Morris, J. Schettino, B. Serra: People
Places Things: Web Presence for the Real World. in Proceedings of
WMCSA, pp. 19-35.

[26] A. Knight, N. Dai: Objects and the Web. IEEE Software, Jan-
uary/February 2002, 51-59.

[27] G. Krasner, S. Pope: A Cookbook for Using Model-View-Controller
User Interface Paradigm in Smalltalk-80. Journal of Object Oriented
Programming, August/September, 1988, 26-49.

[28] U. Leonhardt: Supporting Location-Awareness in Open Distributed
Systems. PhD thesis, Department of Computing, Imperial College of
Science, Technology and Medicine, University of London, May 1998.

[29] S. S. Moura, D. Schwabe: Interface Development for Hypermedia
Applications in the Semantic Web. WebMedia/LA-WEB 2004: 106-113.

[30] OMG Model-Driven-Architecture. In http://www.omg.org/mda/.
[31] S. Pradhan, C. Brignone, J. Cui, A. McReynolds, M. Smith: Websigns:

Hyperlinking Physical Locations to the Web. Computer, Vol: 34:8, 42-
48.

[32] L. Romero, N. Correia: HyperReal: A Hypermedia model for Mixed
Reality. Proceedings of the 14th ACM International Conference of
Hypertext and Hypermedia (Hypertext 2003), ACM Press, 2-9.

[33] G. Rossi, S. Gordillo, C. Challiol, A. Fortier: Context-Aware Services
for Physical Hypermedia Applications. In Proceedings of the 2006
Workshop on Context-Aware Mobile Systems (CAMS’06), Springer
Verlag, LNCS, forthcoming.

[34] D. Salber, A. Dey, G. Abowd: The Context Toolkit: Aiding the Develop-
ment of Context-Enabled Applications. Proceedings of ACM CHI 1999,
pp 434-441.

[35] J. H. Schiller, A. Voisard: Location-Based Services. Morgan Kaufmann
2004.

[36] D. Schwabe, R. Guimaraes, G. Rossi: Cohesive Design of Personalized
Web Applications. IEEE Internet Computing 6(2): 34-43 (2002).

[37] D. Schwabe, G. Rossi: An object-oriented approach to web-based
application design. Theory and Practice of Object Systems (TAPOS),
Special Issue on the Internet, v. 4#4, October, 1998, 207-225.

[38] J. P. Sousa, D. Garlan: Aura: an Architectural Framework for User
Mobility in Ubiquitous Computing Environments. (3rd IEEE/IFIP Con-
ference on Software Architecture) WICSA 2002: 29-43.

[39] F. Steimann: On the Representation of Roles in Object-Oriented and
Conceptual modeling. Data and Knowledge Engineering 35 (2000) 83-
106.

[40] Struts Evaluation in
http://equinox.dev.java.net/framework-comparison/WebFrameworks.pdf.

[41] The Struts Home Page: http://struts.apache.org/.
[42] The UML Home Page: www.omg.org/uml/.
[43] UWA Project. www.uwaproject.org.
[44] S. Weiss: Handheld usability. John Wiley & Sons, July 2002.

Cecilia Challiol is a PhD student at Facultad de Informática, Universidad
Nacional de La Plata. She got her licenciate degree in the same University.
She is a research and teaching assistant and her research interests are physical
hypermedia and mobile applications design.

Gustavo Rossi is Full Professor at Universidad Nacional de La Plata,
Argentina and holds a PhD from PUC-Rio, Brazil. He is an independent
researcher at CONICET and head of LIFIA (a computing research Labora-
tory). His research interests are Web Engineering and Context-Aware software
design.

Silvia Gordillo is a Full Professor at Universidad Nacional de La Plata,
Argentina and holds a PhD from the Universite Lyon I, France. She is a
researcher at CICPBA and one of the directors of LIFIA. Her research interests
include geographic information systems and mobile applications design.

Valeria De Cristófolo has obtained her Licenciate degree in Facultad de In-
formática, Universidad Nacional de La Plata. She is currently an independent
consultor in the software industry.

