
14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 240

Software Requirements Quality Evaluation: State of the
art and research challenges

Roxana Saavedra1, Luciana Ballejos2, Mariel Ale3

1CIDISI – UTN – Facultad Regional Santa Fe – rsaavedra@frsf.utn.edu.ar

2CIDISI- UTN - Facultad Regional Santa Fe – lballejos@santafe-conicet.gov.ar

3CIDISI- UTN - Facultad Regional Santa Fe – male@frsf.utn.edu.ar

Abstract. Quality models are important tools for quality management. In software de-

velopment projects, they are useful as predictive tools for assessing the state of the

product being developed and the process used. In order to achieve software quality, a

high-quality Software Requirements Specification (SRS) is required. This document is

generated at the beginning of a software development project, and is used in all stages.

Thus, it is essential to evaluate the quality of the SRS in order to be able to take early

corrective and enhancement actions. However, assessing the quality of a SRS is not a

simple process, mainly by the multitude of proposals, often contradictory, of the attrib-

utes to be evaluated and the methodologies used for that purpose. Thus, it is mandatory

to consider proven quality models for guiding this evaluation process. Related to this,

this work performs an exploratory analysis of various quality models proposed in this

area which can be used as a basis for SRS quality evaluation. Moreover, the work is in-

tended to be a compendium of the most important tendencies and strategies in the field

that serves as a starting point for developing comprehensive models and tools for quality

attributes evaluation in a SRS.

Keywords. quality model; Software Requirements Specification; quality evaluation.

1 Introduction

The primary measure for a software-intensive information system to be successful is the

degree in which it meets the intended purpose. Requirements Engineering (RE) is a

subtask of Software Engineering which deals with the discovering of that purpose by

identifying stakeholders and their needs, and documenting them for their future analy-

sis, communication, and subsequent implementation [1].

In RE processes there is a continual need for efficiently managing a great volume of

information and knowledge generated and used during all activities involved in software

development process. Thus, diverse are the challenges that must be considered when

managing requirements-related information in software development projects. In this

sense, ambiguous requirements must be minimized, since they produce waste of time

and repeated work. The same occurs with software requirements volatility, where un-

stable requirements have significant impact on project performance, regarding time and

effort [2].

Related to this, there exist in the literature diverse proposals in order to give guidance in

the assessment of different attributes or properties for requirements, which helps in

controlling if their specification is made in a correct way. Some of them also propose

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301090708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 241

quality models to be considered when evaluating a Software Requirements Specification

(SRS), the main deliverable produced in RE, which is used throughout the project [3, 4].

The main goal of this paper is to analyze the state-of-the art in this area, in order to give

a more consistent support for software engineers when generating requirements specifi-

cations. Moreover, the results might be considered for the future development of tools

for supporting automate or semi-automate evaluation of SRS quality.

The paper is organized as follows: Section 2 describes the research methodology used

for the study. Section 3 describes existing quality models found in the literature, analyz-

ing their similarities and differences. Meanwhile, Section 4 discusses and analyzes di-

verse proposals or approaches for evaluating the attributes described in the previous

section. Related to this, Section 5 describes influences between these properties. Finally,

Section 6 is devoted to discuss conclusions and future trends in this area.

2 Research Methodology

The main goal of a research analysis is to provide an overview of a research area. Thus,

a research question or main goal must be defined [5]. In this sense, the purpose of this

study is to “understand the trend of quality-related attributes assessment for SRS” by

examining published articles and offering, at the same time, insights and future direc-

tions in this area.

To this end, the following electronic journal databases were searched to provide an ex-

haustive bibliographic revision of research papers in the area:

• EBSCO Discovery Service,

• EconPapers,

• Compendex. Engineering Village,

• Engineering Village 2: Referex Engineering ,

• National Digital Library of Theses and Dissertations (NDLTD),

• NTRS: NASA Technical Reports,

• Scopus. Elsevier,

• Social Science Research Network (SSRN),

• ACM Portal,

• IEEE Library.

The search process was performed based on three descriptors: “Software Requirements

Specification”, “Quality Models” and “Quality Attributes Evaluation”. The selection of

the descriptors was performed according to their different levels of generality, which

allows refining the search results. The search process started from more general (e.g.

"quality models") to more specific (e.g. "Software Requirements Specification")

phrases, using the facilities of “search within the results” offered by most search en-

gines. Despite the above, and due to the large quantity of papers returned by the data-

bases, the following exclusion criteria were used:

• Given the limited number of indexed publications addressing this particular subject,

the consideration of publications only in English. This was done in order to ensure

that these articles have been accessed and validated by the widest possible audience.

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 242

For the same reasons, non-refereed conference papers, unpublished master and doc-

toral dissertations were excluded.

• Because the idea of evaluating quality attributes for the SRS is relatively new, the

search was restricted from 1990 onwards.

3 Requirements Quality Models

Commonly, a quality model is composed of quality properties to be evaluated by means

of quality indicators [4]. Diverse proposals exist specifically for the RE area. Some of

them suggest a list of desirable requirements quality properties [3, 4, 6, 7, 8, 9, 10, 11,

12], while others provide a taxonomy of possible defects which can be found when

evaluating requirements [13, 14]. Moreover, According to Gnesi [15], a quality model

for a SRS also includes syntactic and semantic rules, document structure and sentence

structure characteristics.

Considering those proposals describing concrete desirable properties, Table 1 shows

those more referenced in the analyzed literature, which are described afterwards.

3.1 Davis et al. Quality Model.

Davis et al. [3] proposed a comprehensive set of quality attributes that must exhibit a

SRS. They promote that a SRS, in order to have quality, must be free of any errors that

violate these attributes.

The authors present a list of attributes that are a compilation of lists made by other au-

thors. The attributes are:

1) Unambiguous: Every requirement stated in the SRS has a unique interpretation.

2) Complete: The SRS contains everything that is supposed to make the software;

software responses to all possible data inputs in all possible situations; all pages

numbered, all figures and tables numbered, named and referenced , all terms de-

fined, all units of measure provided, and all referenced material present; sections

completed, i.e., there is not "To Be Determined" (TBD).

3) Correct: Every requirement in the SRS represents something required of the system

to be built, i.e., every requirement contributes to the satisfaction of some need.

4) Understandable: All SRS readers can easily understand the meaning of all require-

ments with a minimum of explanation.

5) Verifiable: There are finite, cost effective techniques that can be used to verify that

every requirement in the SRS is satisfied by the system as built.

6) Internally Consistent: There is no subset of requirements in the SRS that includes

conflicts.

7) Externally Consistent: The requirements in the SRS exclude conflicts with any pro-

ject documentation.

8) Achievable: There is at least one system design and implementation that correctly

implements all requirements of the SRS.

9) Concise: SRS is as short as possible without affecting its quality.

10) Traceable: The SRS is written in a way that facilitates the referencing of each re-

quirement.

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 243

Table 1. Requirements quality models proposed by different authors.

11) Modifiable: If the structure and style of a SRS is such that any changes can be made

easily, completely and consistently.

12) Electronically Stored: The entire SRS has been produced with a word processor, has

been generated from a requirements database, or has otherwise been synthesized

from some other form.

13) Executable/Interpretable/Prototypable: A software tool must be capable of taking

the SRS as input and providing a dynamic behavioral model.

14) Annotated by Relative Importance: A reader can easily determine which require-

ments are most important to customers, which are the next most important, etc.

15) Annotated by Relative Stability: A reader can easily determine which requirements

are most likely changing, which are the next most likely, etc.

Models

Quality Properties

D
a
v
is

 e
t

a
l.

 [
3
]

F
a
b

b
ri

n
i

et
 a

l.
 [

4
]

W
ie

g
er

s
[6

]

IE
E

E
 8

3
0
-R

2
0
0

9

[7
]

L
o
u

co
u

p
u

lu
s

a
n

d

K
a
ra

k
o
st

a
 [

8
]

W
il

so
n

 e
t

a
l.

 [
9
]

P
o
h

l[
1
0

]

S
w

a
th

i
et

 a
l.

 [
1
1
]

G
én

o
v
a
 e

t
a
l.

 [
1

2
]

Achievable X X

Annotated by Relative Importance X X X X X X

Annotated by Relative Stability X X X X X

Annotated by Version X

At Right Level of Detail X X

Atomic X X

Complete X X X X X X X X X

Concise X X

Correct X X X X X X X

Cross-Referenced X

Design Independent X X X

Electronically Stored X

Externally Consistent X X X X X

Internally Consistent X X X X X X X X X

Modifiable X X X X X X X

Not Redundant X X

Organized X X

Precise X X

Prototypable X

Reusable X

Traceable X X X X X X X

Traced X X X X X

Unambiguous X X X X X X X X

Understandable X X X X X

Up to Date X

Verifiable X X X X X X X X

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 244

16) Annotated by Version: A reader can easily determine which requirements will be

satisfied in which program versions.

17) Not Redundant: The same requirement is not declared more than once in the SRS.

18) At Right Level of Detail: The SRS should be specific enough so that any system built

that satisfies the requirements in the SRS, satisfies all user needs, and abstract

enough so that all systems that satisfy all users needs also satisfy all requirements.

19) Precise: In the SRS, numeric quantities are used whenever possible and appropriate

levels of precision are used in all numeric quantities.

20) Reusable: SRS sentences, paragraphs and sections can be easily adopted or adapted

for their use in future SRS.

21) Traced: The origin of each SRS requirement is clear.

22) Organized: SRS content is ordered, so that readers can easily locate information and

logical relations between adjacent sections.

23) Cross-Referenced: Cross-references are used in SRS sections SRS in order to relate

requirements to other sections containing requirements: redundant requirements,

more abstract or more detailed descriptions of the same requirements, requirements

that depend on them, or on which they depend.

Davis et al. [3] point out that although SRS quality is achievable, perfection is not. Any

of the quality attributes above mentioned can be achieved, but often at the expense of

other attributes. Therefore, on a given project, requirements analysts need to agree on

what quality attributes are most important.

As seen in Table 1, this proposal is the most complete, since it considers most quality

aspects which must be considered when writing or verifying the SRS. It has also the

particularity of separating all quality properties, while some authors group several of

them in a single one. For example, Davis et al. [3] distinguish Traceable and Traced

properties, while the standard IEEE 830:2009 [7] joint these two quality attributes in a

single property called Traceable.

On the other hand, another related to this proposal is that quality attributes are defined

in relation to the overall SRS document. Moreover, although the proposal is considered

the most comprehensive, it does not provide explanation for quality attributes mention

by other authors like Atomic [10, 12] and Up to Date [10].

3.2 Loucopoulos and Karakostas Quality Model

Loucopoulos and Karakostas [8] proposed six desirable properties for a SRS that should

be verified. They are listed below:

1) Internal Consistency: No contradictory conclusions can be derived from the SRS.

2) Non-Ambiguity: Each requirement in the SRS cannot be interpreted in more than one

way.

3) External Consistency: Agreement between what is stated in the SRS and what is true

in the problem domain must exist.

4) Minimality: This is equivalent to Design Independent and, in a way is the opposite to

over specification which is the tendency to include in the SRS more than it is neces-

sary. Usually over specification is an attempt to recommend a design solution while

the requirement is specified.

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 245

5) Completeness: The SRS must not omit essential information about the problem do-

main, which could result in a system that does not meeting users needs.

6) Redundancy: A requirement is redundant if it can also be obtained from some other

parts of the SRS.

As shown in Table 1, this proposal defines just a few quality properties for the entire

requirements document. In particular, Minimality is equivalent to Independent Design

defined by other authors [3, 12], since Loucopoulos and Karakostas [8] define that the

over specification is the opposite of Minimality, which is simply the tendency to include

in the SRS more than necessary.

3.3 Wilson et al. Quality Model

Wilson et al. [9] define a set of desirable requirements specification characteristics.

They also propose two sets of categories for quality indicators, one concerning SRS and

other related to individual requirements, which allow the evaluation of other properties.

The quality properties defined by this proposal are:

1) Complete: A SRS must precisely define all the real world situations that will be en-

countered and the responses to them.

2) Consistent: In the SRS there is no conflict between requirements that define the be-

havior of essential capabilities. Moreover, specified behavioral properties and con-

straints do not have an adverse impact on that behavior.

3) Correct: The SRS must accurately and precisely identify the conditions and limita-

tions of all situations that the desired capability will encounter and it must also define

proper responses to those situations.

4) Modifiable: In a modifiable SRS related concerns must be grouped together, while

unrelated ones must be separated.

5) Ranked: A ranking according to the stability and/or importance is established in the

organization and structure of the SRS.

6) Testable: The SRS must be expressed in a way so that pass/fail or quantitative evalu-

ation criteria can be derived from the SRS and/or reference information.

7) Traceable: Each requirement in the SRS must be uniquely identified.

8) Unambiguous: A requirement in the SRS is unambiguous if it can only be interpreted

one way.

9) Valid: All project participants, managers, engineers and customer representatives,

must be able to understand, analyze, and accept or approve the SRS.

10) Verifiable: In order to be verifiable, requirements at one level of abstraction must be

consistent with those at another level of abstraction.

In addition, some quality properties not described by the proposal, but which can be

evaluated using the categories of quality indicators defined by this author are:

1) Understandable

2) Concise

3) Organized

4) At Right Level of Detail

These quality properties are related to the entire requirements document. In addition,

although Wilson et al. [9] do not define the quality properties Understandable, Concise,

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 246

Organized and At Right Level of Detail, diverse categories of indicators to evaluate

them are presented.

Some features of this quality model are equivalent to others shown in Table 1: Con-

sistent refers to Internally Consistent, Ranked refers to Annotated by Relative Im-

portance and Annotated by Relative Stability; Testable makes reference to Verifiable;

Traceable refers exclusively to Traceable (excluding Traced). Finally, Valid and Cor-

rect refer to Correct.

3.4 Fabbrini et al. Quality Model

Fabbrini et al. [4] propose a quality model for software requirements in natural language

compound of high level quality properties that can be evaluated in the requirements

document through quality indicators. The high level quality properties are:

1) Testability: each requirement in the SRS should be able to be evaluated in a pass/fail

or quantitative manner.

2) Completeness: the requirements in the SRS should be able to refer to precisely identi-

fied entities.

3) Understandability: each requirement in the SRS must be fully understood. Also, SRS

must be fully understood when read by the user.

4) Consistency: each requirement specification in the SRS should be able to avoid po-

tential or actual discrepancies.

The quality properties above do not cover all aspects of software requirements quality,

but are specific enough to verify the quality of requirements documents with the support

of an automated tool. In addition, this property set includes many of the issues related to

the syntax of a requirements document as well as semantic issues.

As shown in Table 1, should be noted that Testability refers to Verifiable and Con-

sistency refers to Internally Consistent and Externally Consistent.

3.5 Wiegers Quality Model

Wiegers [6] proposes two sets of desirable characteristics, one applicable to individual

requirements and other applicable to the entire requirements document. The author con-

siders that it is not enough to have excellent individual requirements and requires, there-

fore, that the requirements set collected in a SRS must be also of good quality.

According to Wiegers [6], each user, business and functional individual requirement

exhibit the following qualities:

1) Complete: Each requirement in the SRS must fully describe the functionality to be

provided.

2) Correct: Each requirement in the SRS must accurately describe the functionality to

be built.

3) Feasible: Each requirement in the SRS must be possible to implement within the

known capabilities and limitations of the system and its operating environment.

4) Necessary: Each requirement in the SRS should document a capability that custom-

ers really need or that is required for compliance with an external system require-

ment or a standard.

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 247

5) Prioritized: An implementation priority must be assigned to each functional re-

quirement, feature, or use case in the SRS, in order to indicate how essential the el-

ement is to a particular product release.

6) Unambiguous: All readers of a requirement statement should arrive at a single, con-

sistent interpretation.

7) Verifiable: Some tests must be defined or other verification methods must be used to

determine whether the product properly implements each requirement.

Furthermore, the set of requirements which are collected in a SRS should exhibit the

following characteristics:

1) Complete: In the SRS should not be absent requirements or necessary information.

2) Consistent: The SRS requirements do not conflict with other requirements of the

same type or with higher-level business, system or user requirements.

3) Modifiable: Each requirement in the SRS must be uniquely labeled and expressed

separately from other requirements, and it must appears only once in the SRS. For

facilitating SRS modification, a table of contents and an index should be included.

4) Traceable: Each requirement in the SRS can be linked backward to its origin and

forward to the design elements and source code that implement it, and test cases that

verify the correct implementation.

As it can be seen, there is a set of quality attributes relative to individual requirements

and another set that refers to entire requirements document. The particularities found in

this model compared to the others shown in Table 1 are: Feasible refers to Achievable;

Necessary is part of the definition of Correct; Prioritized refers to Annotated by Rela-

tive Importance; Consistent refers to Internally Consistent and Externally Consistent;

Traceable refers to Traceable and Traced.

It should be noted that Wiegers [6] do not define Atomic and Not Redundant quality

attributes, but he states them as required features to achieve Modifiable quality attribute.

3.6 IEEE 830:2009 Quality Model

The IEEE 830:2009 standard [7] defines a set of features for a good SRS. The properties

that a SRS should meet are:

1) Correct: Every requirement in the SRS is one that the software will satisfy.

2) Unambiguous: Every requirement in the SRS has a unique interpretation.

3) Complete: The SRS includes the following elements: all significant requirements,

definition of the responses of the software to all realizable classes of input data in all

realizable classes of situations, and full labels and references to all figures, tables

and diagrams and definition of all terms and units of measure.

4) Consistent: A SRS is internally consistent if no subset of requirements is in conflict.

If a SRS does not agree with some higher-level document, then it is not correct.

5) Ranked for Importance and/or Stability: Each requirement in the SRS has an identi-

fier which indicates its importance or stability.

6) Verifiable: Every requirement in the SRS is verifiable, i.e., there is some finite, cost

effective process with which to check that the software product meets each one.

7) Modifiable: The structure and style of the SRS is such that any changes in require-

ments can be made easily, completely, and consistently while maintaining SRS

structure and style.

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 248

8) Traceable: The origin of each requirement in the SRS is clear and facilitates the

referencing of each requirement in future development or enhancement documenta-

tion. The standard recommends two types of traceability: Backward traceability and

Forward traceability.

The IEEE 830:2009 [7] proposes a set of desirable characteristics relative to the SRS.

The attributes listed in this proposal coincide with some of the attributes listed by Davis

et al. [3], since the model is based on the 1984 version of the IEEE 830 standard.

As shown in Table 1, should be noted that Consistent refers to Internally Consistent, if a

SRS disagree with some top-level document -such as the system requirements specifica-

tion- so it is Not Correct instead of Externally Consistent. Meanwhile, for Traceable

two types of traceability are defined: Backward Traceability (Traced) and Forward

Traceability (Traceable). Ranked for Importance and/or Stability refers to Annotated by

Relative Importance and Annotated by Relative Stability.

3.7 Pohl Quality Model

Pohl [10] states that quality criteria define the expected quality of requirements docu-

ments. The quality of requirements set depends on the quality of individual require-

ments, as well as the satisfaction of the quality criteria defined for the (set of) require-

ments. Thus, the quality criteria can be defined for each individual requirement as well

as for an entire requirements document, or for a specific section in a document or set of

requirements defined in this document.

The quality criteria for individual requirements defined by Pohl [10] are:

1) Complete: A requirement is complete if it adheres to the rules and guidelines defined

for this type of requirements artifact, and does not omit any information that is rele-

vant to some stakeholder.

2) Traceable: A requirement is traceable if the source, evolution, impact and use in

subsequent development phases is traceable.

3) Correct: A requirement is correct if the relevant stakeholders confirm its correctness

and demand that the system must realize the documented requirement completely.

4) Unambiguous: A requirement is unambiguous if its documentation allows only one

valid interpretation.

5) Comprehensible: Requirements content must be easy to comprehend.

6) Consistent: A requirement is consistent if the statements inside the artifact do not

contradict each other.

7) Verifiable: A requirement is verifiable if stakeholders can check whether the imple-

mented system satisfies the documented requirement.

8) Rated: A requirement is rated if its relevance and/or stability have been identified

and documented.

9) Up to Date: A requirement is up to date if it reflects the current status of the system

and its context, such as current stakeholder desires or current legal regulations.

10) Atomic: A requirement is atomic if describe a single, coherent fact.

The proposal also defines three essential quality criteria to be applied to the whole doc-

ument:

1) Completeness: A SRS is complete if all relevant requirements are specified, and if

each documented requirement is specified completely.

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 249

2) Consistency: A SRS is consistent if each requirement is consistently defined and

there are no inconsistencies between the requirements defined in the SRS.

3) Modifiability: A SRS is modifiable if its structure and style supports a simple, con-

sistent and complete modification of the requirements, still retaining the structure

and style.

4) Readability: A SRS is readable if the reader can easily extract and comprehend its

content.

As it can be realized, Pohl [10] defines two sets of quality attributes, one relative to

individual requirements, and the other refers to the entire requirements document.

As shown in Table 1, some features found in this quality model are: the property that

many authors define as Understandable is defined here as two different attributes, on

one hand, Comprehensible (on individual requirements) and, on the other, Readability

(relative to the entire requirements document). Moreover, Consistent and Consistency

refer to Internally Consistent for individual requirements and entire requirement docu-

ment respectively, while Traceable refers to Traceable and Traced. Rated refers to An-

notated by Relative Importance and Annotated by Relative Stability.

It should be noted that Up to Date quality attribute was only found as such in this quali-

ty model. Not Redundant is not defined as a quality attribute, but described as a charac-

teristic required to achieve other quality attributes such as Modifiable and Readability.

3.8 Swathi et al. Quality Model

Swathi et al. [11] propose some characteristics that a good SRS should exhibit. Listed

below are the desirable characteristics:

1) Correct: The SRS correctly reflects the actual needs.

2) Unambiguous: Every requirement in the SRS has a unique interpretation.

3) Complete: In the SRS are declared all conditions under which the requirement ap-

plies are declared in the SRS and every requirement is expressed a whole idea or

statement.

4) Consistent: This refers to SRS internal consistency, and must ensure that it does not

conflict with other documents.

5) Verifiable: Every requirement in the SRS is verifiable if there is a finite cost-

effective process with which it can be checked that the software product meets the

requirements.

6) Traceable: The origin of software requirements is clear and facilitates the referenc-

ing of each requirement in future development or enhancement document.

7) Modifiable: The structure and style of the SRS are such that any changes to the re-

quirements can be made easily, completely, and consistently while retaining the

structure and style.

8) Ranked for Importance and/or Stability: Each requirement in the SRS must be

ranked for importance and/or stability.

Swathi et al. [11] define a set of desirable characteristics relative the entire software

requirements document. If this quality model is compared with the proposed by the

IEEE 830:2009 [7], it can be found that the quality properties are the same in both mod-

els, but there is one difference in the definition of consistency. Swathi et al. [11] defines

Consistent as Internally Consistent and Externally Consistent and IEEE 830:2009 [7]

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 250

proposal defines Consistent as Internally Consistent and, as described above, if a SRS

does not agree with some top-level document, then this is Not Correct instead of Exter-

nally Consistent.

As shown in Table 1, note that Traceable refers to Traceable and Traced, and Ranked

for Importance and/or Stability refers to Annotated by Relative Importance and Anno-

tated by Relative Stability. Furthermore, these authors do not define quality attributes

Not Redundant, Atomic, and At Right Level of Detail, but they are taken into account

when guidelines to be considered in the requirements documentation are described.

3.9 Génova et al. Quality Model

Génova et al. [12] propose qualitative desirable requirements properties, which depend

on a subjective judgment, and quantitative measurable indicators, based on the objec-

tives characteristics of requirements.

Listed below are the desirable properties of a SRS proposed by Génova et al. [12]:

1) Validability: The client must be able to confirm that the requirements in the SRS

express the system that answers his/her needs.

2) Verifiability: The engineer must be able to check that the developed system meets

the one specified in the SRS.

3) Modifiability: The requirements in the SRS must be modifiable to facilitate the sys-

tem modification for maintenance.

4) Completeness: The SRS requirements set covers all needs.

5) Consistency: There are no contradictions among requirements in the SRS.

6) Understandability: The requirements in the SRS are properly understood without

difficulty.

7) Unambiguity: Every requirement in the SRS has a unique interpretation.

8) Traceability: Every requirement in the SRS has an explicit relationship with design,

implementation and testing artifacts.

9) Abstraction: Software requirements tell what the application must do without telling

how it must do it, i.e., avoid excessive technical details about the implementation.

10) Precision: All used terms in the SRS are concrete and well-defined.

11) Atomicity: Every requirement in the SRS is clearly determined and identified, with-

out mixing it with other requirements.

Génova et al. [12] propose a list of quality attributes referring to entire requirements

document. As shown in Table 1, some features found in this quality model are:

Validability refers to Correct, Consistency refers to Internally Consistent, Traceability

refers to Traceable, and Abstraction refers to Independent Design.

4 Quality Properties Evaluation

The diverse proposals for evaluating SRS quality attributes previously analyzed can also

be grouped in relation to the approach used for giving some concrete idea on how prop-

erties can be evaluated and verified. Table 2 shows the approaches identified as result of

this research. For more detail, Table 3 shows the authors with concrete proposal on

attributes evaluation techniques.

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 251

Table 2. Approaches identified for concrete proposals on attribute evaluation techniques.

APPROACH

PROPERTY

Vocabulary or
Language

Relations
between

Requirements
and Artifacts

SRS Structure

Software
Require-

ments
Themselves

Jointly
Evaluation

of Re-
quirements

Groups

U
se

 o
f

D
o
m

a
in

 V
o
ca

b
u

la
ry

U
se

 o
f

D
o
m

a
in

 K
n

o
w

le
d

g
e

U
se

 o
f

N
a
tu

ra
l

L
a
n

g
u

a
g
e

P
a
tt

er
n

s

U
se

 o
f

O
v
er

la
p

 b
et

w
ee

n

R
eq

u
ir

em
en

ts

U
se

 o
f

R
e
q

u
ir

em
en

ts
 D

e-
p

en
d

en
ci

es

U
se

 o
f

T
ex

t
S

tr
u

ct
u

re
 i

n
 t

h
e

S
R

S

S
p

ec
if

ic
 C

h
a
ra

ct
er

is
ti

cs
 o

f
th

e
S

R
S

A
ch

ie
v
a
b

le
 F

ea
tu

re
s

fr
o
m

S

R
S

U
se

 o
f

S
p

ec
if

ic
 R

eq
u

ir
em

en
t

C
h

a
ra

ct
er

is
ti

cs

U
se

 o
f

D
ed

u
ct

ib
le

 F
ea

tu
re

s
fr

o
m

 a
 R

eq
u

ir
em

en
t

U
se

 o
f

M
et

r
ic

s
th

a
t

C
a
lc

u
-

la
te

 t
h

e
P

er
ce

n
ta

g
e

o
f

R
e-

q
u

ir
em

en
ts

 t
h

a
t

M
ee

t
th

e
A

tt
ri

b
u

te
 i

n
 Q

u
es

ti
o
n

Achievable X

Annotated by Relative
Importance, Relative
Stability or Version

 X X

Atomic X X X X X X

Complete X X X

Concise X

Correct X X X

Cross-Referenced

Design Independent X X

Electronically Stored X

Externally Consistent X

Internally Consistent X X X

Modifiable X

Not Redundant X X

Organized X X

Precise X X

Prototypable X

Reusable X X

Right Level of Ab-
straction/Detail

 X

Traceable X X X

Traced X

Unambiguous X X X X

Understandable X X X X X X

Verifiable (Testable) X X X

Some approaches considering the use of vocabulary or language are:

• Use of domain vocabulary, related to the use of user vocabulary (glossary) in re-

quirements descriptions. This approach is proposed for the evaluation of Unambigu-

ous and Understandable [16, 17], Atomic and Precise [12] quality attributes.

• Use of domain knowledge, which considers interpretation and domain semantic

knowledge (some authors use ontologies as knowledge resource). This approach is

included in assessment techniques proposed for Unambiguous [3, 18, 19], Complete

[3, 18, 19, 20, 21, 22, 23], Internally Consistent [3, 23], Correct [18, 19, 20, 21],

Understandable [3] and Atomic [21] quality attributes.

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 252

Table 3. Authors with Concrete Proposal on Attributes Evaluation Techniques.

Authors

Property
D

a
v
is

 e
t

a
l.

 (
1
9
9
3

)
[3

]

S
in

h
a
 a

n
d

 P
o
p

k
en

 (
1
9

9
6

)
[2

3
]

W
il

so
n

 e
t

a
l.

 (
1
9
9
7
)

[9
]

H
a
m

m
er

 e
t

a
l.

 (
1
9
9

8
)

[2
5
]

D
u

rá
n

 e
t

a
l.

 (
2
0

0
1

)
[1

6
]

F
a
b

b
in

i
et

 a
l.

 (
2
0
0
1

)
[4

]

D
u

rá
n

 e
t

a
l.

 (
2
0

0
2

)
[1

7
]

K
a
iy

a
 a

n
d

 S
a
ek

i
(2

0
0
5

)
[1

8
]

K
a
iy

a
 a

n
d

 S
a
ek

i
(2

0
0
6

)
[1

9
]

T
jo

n
g
 e

t
a
l.

 (
2
0

0
7

)
[2

4
]

V
er

m
a
 a

n
d

 K
a
ss

 (
2
0
0

8
)

[2
2

]
D

zu
n

g
 a

n
d

 O
h

n
is

h
i

(2
0
0

9
)

[2
0

]

H
u

 e
t

a
l.

 (
2
0
1

0
)

[2
1

]

S
w

a
th

i
et

 a
l.

 (
2
0
1

1
)

[1
1
]

G
én

o
v
a
 e

t
a
l.

 (
2

0
1
3

)
[1

2
]

Achievable X
Annotated by Relative
Importance, Relative
Stability or Version

X X

Atomic X X X
Complete X X X X X X X X X X X
Concise X X X
Correct X X X X X X
Cross-Referenced
Design Independent X X
Electronically Stored X
Externally Consistent X
Internally Consistent X X X X X X X X
Modifiable X
Not Redundant X X
Organized X X X
Precise X
Prototypable X
Reusable X
Right Level of Ab-
straction/Detail

 X

Traceable X X X X
Traced X X
Unambiguous X X X X X X X X X
Understandable X X X X X X X
Verifiable (Testable) X X X X

• Natural language patterns detection using keywords, key phrases and/or symbols as

evidence of the occurrence for certain attributes. This approach is proposed for eval-

uation techniques related to Unambiguous [9, 12, 24, 17, 25], Complete [4, 16, 17,

25], Verifiable [4, 25], Annotated by Relative Importance and Relative Stability

[17], Understandable [4, 9, 12, 25], Atomic [11, 12], Design Independent and Pre-

cise [12] quality attributes.

 Other approaches analyze relations between requirements and artifacts in SRS, in

order to evaluate diverse attributes. Among them:

• Those proposing overlapping between requirements consider requirements referring

to the same subject, where contradictions between requirements, redundancy when

there is a unnecessary repetition, or simple coupling (which implies some kind of

dependency relationship) can be distinguished. This approach is proposed for the

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 253

evaluation of Internally Consistent [18, 19, 20, 21, 22], Not Redundant [20], Unam-

biguous, Traceable, Understandable and Atomic [12] quality attributes.

• Other approach considers the evaluation of requirements dependencies with other

requirements or other artifacts of the development process. In this approach, evalua-

tion techniques are proposed for quality attributes such as Traceable, Understandable

and Atomic [12].

Moreover, diverse approaches are based in the analysis of SRS structure for evaluating

some attributes. Between them:

• Approach analyzing text structure in the SRS considers requirements found in each

SRS hierarchical level. This approach is considered when proposing evaluation

techniques for quality attributes such as Understandable (considering the degree of

nesting between requirements) [12], Organized (number of requirements at each hi-

erarchical level), and Right level of Abstraction/Detail (considers the specification

depth) [9];

• Proposing the consideration of SRS specific characteristics includes the analysis of

the presence of sections, table of contents and index, SRS size, etc. This approach, is

applied in assessment techniques related to quality attributes like Complete (consid-

ering that certain sections are present in the SRS) and Organized (considering

whether the required sections are present in the required order and with the content

required) [16, 17], Concise (considering the size of the SRS) [3, 9, 25], Modifiable

(considering the presence of table of contents and index, and the degree of cohesion

and coupling of SRS sections), Electronically Stored (considers SRS volume that

has been electronically stored) and Reusable (considers paragraphs in the SRS that

exhibit reuse properties) [3].

• Approach describing achievable features from SRS document includes the evaluation

of actual solution system designs, if it is a ‘single’ system, etc. In this approach, a set

of evaluation techniques for diverse quality attributes is proposed. The attributes are:

Design Independent (number of actual solution system designs that satisfy all re-

quirements of SRS), Achievable (considering the existence of a single system),

Prototypable (considering whether SRS can be partially written in a executable, in-

terpretable or language), and Reusable (considering whether the content of the SRS

has been used in subsequent SRS) [3].

The analysis of the software requirements themselves is performed by diverse pro-

posals. In this sense:

• The use of specific requirements characteristics approach considers the use of ex-

plicit references, unique identifiers, cross-references, versions and requirements size.

Also, this approach is used for evaluating quality attributes like Internally Consistent

(considering the use of explicit references in a requirement) [4], Traceable (consid-

ering using of requirement unique identifier) [3, 16, 17], Traced (considering the use

of requirement source unique identifier [16, 17]), Correct and Verifiable (consider-

ing the number of versions of a requirement) [12], Atomic (considering the size of a

requirement) [12].

• The analysis of deductible features from a requirement includes the evaluation of

required cost and time for verifying a requirement. Moreover, in this approach, Da-

vis et al. [3] propose assessment techniques for the quality attribute Verifiable, con-

sidering the cost and time required to verify the requirement.

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 254

Finally, some approaches which consider the jointly evaluation of requirements

groups, propose metrics that calculate the percentage of requirements that meet the

analyzed attribute. In this approach, Davis et al. [3] propose diverse metrics for evaluat-

ing quality attributes such as Externally Consistent, Correct, Annotated by Relative

Importance, Relative Stability and Version, and Not Redundant. The metrics proposed,

in general, consider the ratio between the requirements satisfying some specific attrib-

ute, over the total number of requirements in the SRS. However, no concrete proposals

are described by the authors, in order to give guidance over how considering or identify-

ing the requirements which satisfy each attribute.

Davis et al. [3] indicate that Organized, Cross-Referenced, Traced and Right Level of

Abstraction/Detail attributes cannot be measured for different reasons. The authors af-

firm that “organization” is purely subjective and, thus, it cannot be measured. On the

other hand, Cross-Referenced cannot be measured because there is no way to determine

how many cross-references are appropriate in an SRS. Also, measuring the level of

traceability is not possible, making it impossible to measure Traced attribute. In rela-

tion to Right Level of Abstraction/Detail, measuring the appropriateness of the SRS

level of abstraction is highly scenario-dependent. Moreover, for Up to Date attribute

was not found in the literature any evaluation proposal.

5 Influences between Quality Properties

The possibility of creating a SRS of reasonable quality exists. Nevertheless, most quali-

ty properties mentioned in this paper have positive or negative incidence on other prop-

erties (see Figure 1). Because of this, it is necessary to determine which quality attrib-

utes are most important to the project, in order to achieve them. Thus, influences which

can be detected between quality attributes described above are now described:

• Generally, requirements considered unverifiable are ambiguous [6, 7, 12], incomplete

or inconsistent [6, 12], or unfeasible requirements [6].

• The elimination of ambiguity in the SRS requires adding formality, which is not un-

derstood by people who are not computer experts, e.g., users or customers [3, 6, 12].

• The less ambiguous is the SRS, the easier its modification [12].

• If a SRS is not complete in terms of objectives, rules, facts, and constraints of the

problem domain, then it is considered incorrect for that domain [8, 12].

• Exceeding the completeness of the SRS causes losing conciseness [3].

• It is not always possible to significantly reduce the SRS size without negatively affect-

ing other quality attributes [3].

• If a SRS is inconsistent, then the client cannot confirm that requirements effectively

express the system that responds to their needs (correctness) [12].

• A SRS is more modifiable if it is traceable, organized, cross-referenced and electron-

ically stored [3].

• Traceability facilitates correctness [7] and verifiability [12].

• Requirements not understood are not verifiable and its correctness may not be vali-

dated [12].

• A non-atomic requirement has the risk of excessive detail, and thus, may affect design

independence [12].

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 255

• The redundancy is often used to increase readability of the SRS. Nevertheless, redun-

dancy can negatively affect the modifiability, since not changing all occurrences of a

redundant requirement generates an inconsistent SRS [3].

• Atomicity influences requirements precision and traceability [12].

• Design independence can help verifiability. The presence of requirements technical

details is more difficult to verify and modify [12].

• A more precise language helps to write more complete, consistent, understandable

and unambiguous requirements [12].

Figure 1 resumes the influences among quality attributes previously described. In addi-

tion, it can be noted that no dependencies can be found for some attributes, due to it is

possible to reach them without affecting other attributes. They are: Reusable, Up to

Date, Annotated, Prototypable and At Right Level of Detail.

Fig. 1. Influence between quality properties.

6 Conclusions and Future Work

In this work, an exploratory analysis of the various software requirements quality mod-

els that can be used to perform a evaluation of SRS quality is presented.

Diverse quality models exist in bibliography proposing attributes and properties to eval-

uate SRS. As was detailed, several quality properties are present in those models. Many

of them coincide in their names and descriptions, but others not. This is due to the effort

made by some authors in order to consider diverse issues related to SRS structure or

content, and thus, generating new attributes. Moreover, analyzed quality models differ

in scope, since some authors propose quality properties to SRS, while others contem-

plate further quality properties for individual requirements in the SRS.

It can be also observed that some quality models are more likely to be automatically

verified through tangible indicators, because they propose more specific quality proper-

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 256

ties and measurement methods, for example, Fabbrini et al. [4] quality model. Further-

more, in Table 1 it is shown that there are more comprehensive quality models that cov-

er most of the quality aspects of software requirements specification [3], while others

are more limited, suggesting only some desirable characteristics [4, 8].

Other particularity detected is that some authors detail each separately quality property,

giving more specificity to the explanation, while others group several of them on a sin-

gle property. For example, Davis et al. [3] distinguish the Traceable and Trace proper-

ties, while the IEEE 830: 2009 [7] brings together these two attributes in Traceable

property. Moreover, not all the quality models refer in the same way the same property.

For example, Génova et al. [12] describes Abstraction to refer to Independent Design.

Analyzing the properties proposed in each quality model, it can be observed that most

of them provide the attributes: Complete, Internally Consistent, Unambiguous, Verifia-

ble, Correct, Traceable and Modifiable. On the other hand, some quality attributes are

considered by a unique proposal, including: Cross-Referenced, Prototypable and Up to

Date. Moreover, some authors define Not Redundant, Atomic and At Right Level of

Detail as properties, while others only suggest some guidelines to consider them in the

requirements documentation.

Finally, it can be concluded that the definition of a quality model including desirable

properties applicable to the entire requirements document and to the individual require-

ments contained in it is required. This will allow not only the consistent and concrete

definition of each property, but also the definition of quantifiable indicators. This con-

stitutes the main goal for future research, in order to analyze and propose possible met-

rics and methods to evaluate properties compliance level and to develop supporting

tools for implementing metrics, so automatic assessing can be performed for obtaining

quality SRS.

7 References

1. Nuseibeh, B.; Easterbrook, S.: Requirements engineering: a roadmap. In: Proc. Conference on

the Future of Software Engineering, pp. 35-46. (2000).

2. Pfahl, D.; Lebsanft, K.: Using simulation to analyse the impact of software requirement volatili-

ty on project performance. Information and Software Technology, 42(14), pp. 1001-1008. Else-

vier Science B.V. (2000).

3. Davis, A.; Overmyer, S.; Jordan, K.; Caruso, J.; Dandashi, F.; Dinh, A.; Kincaid, G.; Ledeboer,

G.; Reynolds, P.; Sitaram, P.; Ta, A.; Theofanos, M.: Identifying and measuring quality in a

software requirements specification. In: Proc. 1st International Software Metrics Symposium,

pp. 141-152. (1993).

4. Fabbrini, F.; Fusani, M.; Gnesi, S.; Lami, G.: An Automatic Quality Evaluation for Natural

Language Requirements. In: Proc. 7th International Workshop on Requirements Engineering:

Foundation for Software Quality, Interlaken, Switzerland. (2001).

5. Petersen, K.; Feldt, R.; Mujtaba, S.; Mattsson, M.: Systematic Mapping Studies in Software

Engineering. In: Proc. 12th International Conference on Evaluation and Assessment in Software

Engineering (EASE), Giuseppe Visaggio, Maria Teresa Baldassarre, Steve Linkman, and Mark

Turner (Eds.). British Computer Society, Swinton, UK, UK, pp. 68-77. (2008).

6. Wiegers, K.: Software Requirements, Second Edition. Microsoft Press. (2003).

7. IEEE Recommended Practice for Software Requirements Specifications. IEEE Standard 830-

1998 (R2009), Institute of Electrical and Electronics Engineers. (2009).

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 257

8. Loucopoulos, P.; Karakostas, V.: System Requirements Engineering. McGraw-Hill, Inc. New

York, NY, USA. (1995).

9. Wilson, W.M.; Rosenberg, L.H.; Hyatt, L.E.: Automated analysis of requirement specifications.

Proceedings of the 19th International Conference on Software Engineering. (1997).

10. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques. Springer-

Verlag Berlin Heidelberg. (2010).

11. Swathi, G.; Jagan, A.; Prasad, Ch.: Writing Software Requirements Specification Quality Re-

quirements: An Approach to Manage Requirements Volatility. Int. J. Comp. Tech. Appl., 2(3),

631-638. (2011).

12. Génova, G.; Fuentes, J.M.; Llorens, J.; Hurtado, O.; Moreno, V.: A Framework to Measure and

Improve the Quality of Textual Requirements. Requirements Engineering, 18(1), pp 25-41.

(2013).

13. Lanubile, F.; Shull, F.; Basili, V. R.: Experimenting with Error Abstraction in Requirements

Documents. In: Proc. 5th International Symposium on Software Metrics, pp. 114-121. (1998).

14. Schneider, G.M.; Martin, J.; Tsai, W. T.: An Experimental Study of Fault Detection In User

Requirements Documents. ACM Transactions on Software Engineering and Methodology, 1(2),

pp. 188–204. (1992).

15. Gnesi, S.; Lami, G.; Trentanni, G.; Fabbrini, F.; Fusani, M.: An Automatic Tool for the Analy-

sis of Natural Language Requirements. International Journal of Computer Systems Science &

Engineering, 20(1). (2005).

16. Durán, A.; Bernárdez, B.; Ruiz, A.; Toro, M.: An XML–based Approach for the Automatic

Verification of Software Requirements Specifications. In: Proc. 4th Workshop on Requirements

Engineering, pp. 181-194. (2001).

17. Durán, A.; Ruiz-Cortés, A.; Corchuelo, R.; Toro, M.: Supporting requirements verification

using XSLT. In: Proc. IEEE Joint International Conference on Requirements Engineering, pp.

165–172. (2002).

18. Kaiya, H.; Saeki, M.: Ontology Based Requirements Analysis: Lightweight Semantic Pro-

cessing Approach. In: Proc. 5th International Conference on Quality Software, pp. 223-230.

(2005).

19. Kaiya, H.; Saeki, M.: Using Domain Ontology as Domain Knowledge for Requirements Elicita-

tion. In: Proc. 14th IEEE International Requirements Engineering Conference, pp. 189-198.

(2006).

20. Dzung, D.; Ohnishi, A.: Ontology-based Reasoning in Requirements Elicitation. In: Proc. 7th

IEEE Int. Conf. on Software Engineering and Formal Methods, pp. 263-272. (2009).

21. Hu, H.; Zhang, L.: Ye, C.: Semantic-based Requirements Analysis and Verification. In: Proc.

International Conference on Electronics and Information Engineering, pp. 241-246. (2010).

22. Verma, K.; Kass, A.: Requirements Analysis Tool: A Tool for Automatically Analyzing Soft-

ware Requirements Documents. In: Proc. 7th International Conference on The Semantic Web,

pp. 751–763. (2008).

23. Sinha, A.P.; Popken, D.: Completeness and Consistency Checking of System Requirements: An

Expert Agent Approach. Expert Systems With Applications, 11(3), pp. 263-276 (1996).

24. Tjong, F.; Hartley, M.; Berry, D.M: Extended disambiguation rules for requirements specifica-

tions. In: Proc. 10th Workshop in Requirements Engineering, pp. 97-106. (2007).

25. Hammer, T.; Huffman, L.; Rosenberg, L.: Doing Requirements Right the First Time.

CROSSTALK, The Journal of Defense Software Engineering, pp. 20-25. (1998).

