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Abstract. This paper studies alternatives to solve the problem of au-
tonomous mobile robots navigation in unknown indoor environments.
The navigation system uses fuzzy logic to combine the information ob-
tained from range sensors and the navigational data to plan the robot’s
movements. The strategy is built upon five modules: i) target following,
ii) obstacle avoidance, iii) possible path, iv) deadlock detection and v)
wall following. Given a possible path and obstacles near the environment
of the robot, the controller will modulate the output velocity in order to
go to the target and avoid collisions. In case of dead lock situations, a
method that enables the robot to detect, escape and reach the target is
proposed. The performance and behavior of the proposed navigational
system was evaluated through simulations in different conditions, where
the effectiveness of the proposed method is demonstrated and compared
with previous results.

1 Introduction

One of the main objectives in mobile robotics is the design of autonomous robots:
robots that can be told what to do without having to tell them how to do it.
A major challenge faced by such robots is to make sure that their actions are
executed correctly and reliably, despite the dynamics and inherent uncertainty
of the working space.

A possible solution to this problem is to combine both path planning and path
tracking, this approach is known as motion planning with complete information.
This method requires to know the environment before the motion starts and
then the algorithm transforms this information into proper motion trajectories.
Li et al. [8] uses a genetic algorithm for optimum path planning, focusing on
the shortest distance criterion. Several other optimization methods have been
developed to solve the optimum path-planning problem [4, 7, 12, 15, 21]. While
this approach is well suited for structured environments, cannot be used in any
real world situations, mainly because sometimes objects cannot be described or
because one doesn’t know which object is going to be where and when.

If the robot has to move in an environment that is not predesigned and/or
has no complete prior information, we are in the scope of motion planning with
incomplete information. In this case, the robot must use real-time sensing and
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sensor data processing to gather information about the surroundings. Generally,
the robot moves reacting to obstacles while trying to get to the target. Typical
examples of these techniques include potential-field methods [3] and fuzzy ap-
proaches [1, 2, 5, 16, 17, 19, 20]. Because the source of information is mainly local,
these methods have the drawback that are prone to get trapped in deadlock
situations [1, 2, 16, 17] and because of this, particular attention is paid to the
deadlock problem.

When the robot is in a deadlock situation –also called local minima, limit
cycle or infinite loop–, it will repeat indefinitely the same trajectory unless this
is detected. This problem has been addressed using three types of approach:
i) the boundary-following approach [1], ii) the virtual subgoal approach [18,
19] and iii) the behavior integration approach [10, 16]. Boundary-following ap-
proaches generally detect a deadlock when the robot makes a sharp turn or when
all sensors detect short obstacle distances. Then, the robot follows the bound-
ary of the obstacle until an escape criterion is satisfied. This strategy can get
trapped following a boundary indefinitely if the escape criterion fails to activate
and may lead to rather inefficient paths because there is no way to choose the
right boundary-following direction. Virtual subgoal approaches typically detect
a deadlock whenever the robot makes a sharp turn or when the robot visits the
same location more than one time. Then, the robot generates a new subgoal to
escape the deadlock and returns the original goal when an escape criterion is
satisfied. These methods may overproduce virtual subgoals leading to a dead-
lock arising from conflictive subgoals. Behavior integration approaches usually
make a map that models the surroundings of the robot, while a planning and
a reactive module suggest a direction to escape from the deadlock and a direc-
tion that avoids obstacles, respectively. These behaviors are then integrated to
drive the robot to the goal. Building a map of the traversed path may be an
issue when the system requires low memory and processing capabilities, like a
microcontroller or a small computer.

In this paper we develop an autonomous navigation system for mobile robots
in unknown environments, where the robot must be capable to go from a starting
point A to a target point B. The information available to the robot is limited
to its own position and those of the starting point A and target point B. Also,
the robot is capable of detecting its own distance to obstacles. This information
should be sufficient to reach the objective position. The proposed navigation
system was developed using fuzzy logic, which has proved to be an appropriate
tool to design robust systems in presence of noise [5, 14, 19] and signal processing
tools [13] for detecting the deadlock situation.

In an attempt to meet these objectives, we make the following restrictions:
i) we consider the navigation of a single mobile robot, ii) the robot does not
generate maps of the traversed path, and iii) the environment is assumed to be
a flat indoor environments without slippage between the wheels of the robot and
the floor.

The main contribution of this article is a procedure for the identification of
the deadlock situation during the robot’s traversal. The proposed method uses
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only the distance to the target dt and the autocorrelation function to detect if
the robot is in a deadlock. Once a deadlock situation is detected, a wall-following
behavior makes the robot escape from the deadlock.

The organization of the article is as follows. Section 2 presents the system
configuration. Section 3 describes the fuzzy based navigation system and Sub-
section 3.4 describes the deadlock detection and avoidance strategy. Section 4
shows the simulation results obtained using the described method and Section
5 presents the conclusions.

2 System Configuration

Fig. 1. Robot sensor configuration.

2.1 Sensors Arrangement

To achieve autonomous behaviors, one of the most important tasks of mobile
robot is acquiring the information of the surrounding environments. In order to
control a mobile robot to reach its goal without colliding any obstacle, the robot
must be equipped with some sensors to sense the environment and transfer that
information to the robot to interpret the sensed information. The commonly
used sensors on mobile robot are ultrasonic sensors, CCD cameras, infrared sen-
sors, laser sensors, global positioning systems and so on. Because the ultrasonic
sensor has many characteristics such as cost-effective, simple operation, easy im-
plementation in hardware and little information processing, it has gotten widely
used in mobile robot. Therefore, we adopt ultrasonic sensors to detect obsta-
cles distance and the mobile robots direction. Figure 1 show the robot sensor
configuration where we can see that five sensors are arranged to cover 180◦.

2.2 Coordinate System and Control Variable

There are two coordinate systems: world coordinate system depicted by XOY
and robot local coordinate system depicted by xoy, the relationship between
these two coordinate systems and the relationship of control variables are shown
in Fig. 2. The robot is modeled as a differential drive wheeled mobile robot. We
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Fig. 2. Robot coordinate system.

can vary the trajectories that the robot takes by varying the velocities υl and
υr of the two wheels.

When the mobile robot moves in the unknown environments, the distance to
the target dt and the steering angle θt can be computed from the robot current
position and target positions in global coordinate.

3 The navigation system

The robot moves in an environment with unknown obstacles. In the following
we will ignore all the problems related to position uncertainty (such as wheels
drifting), by assuming that a sufficient accurate self-localization subsystem is
available. This enables us to use odometry methods to calculate the robot and
the target position at every moment. Besides this, the only other source of in-
formation available to the robot are the range sensors.

The navigation system consists of three main components: i) target tracking,
that finds a set of desired directions from the current robot and target positions;
ii) obstacle avoidance, that finds a set of disabled directions from the data avail-
able from the range sensors; and iii) get possible direction, that combines the
fuzzy conclusions of the previous modules to find a direction that takes into
account both the desired and the disabled direction.

3.1 Target tracking

This behavior finds a set of desired directions from the robot actual orientation
θr, which can be obtained at every time interval from the robot actual posi-
tion (xr, yr) and the target position (xT , yT ). The rotation angle θg required to
align the robot to the target is calculated from this data. The angle θg is then
translated to a steering set named RIGHT, FRONT-RIGHT, FRONT, FRONT-
LEFT and LEFT. The fuzzy rules that perform this translation are:

– IF θg is close to -90, THEN desired-heading is R.
– IF θg is close to -45, THEN desired-heading is FR.
– IF θg is close to 0, THEN desired-heading is F.
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– IF θg is close to 45, THEN desired-heading is FL.
– IF θg is close to 90, THEN desired-heading is L.

3.2 Obstacle avoidance

This behavior determines the direction θd in which the robot should be heading
to avoid obstacles. It uses the data available from the range sensors to represent
the level in which a given direction (L, FL, F, FR or R) has an obstacle near or
not by measuring the degree of membership of each sensed distance to a fuzzy
set which we call “near” (see Fig. 3(a)). Each sensor has a steering label (see Fig.
3(b)) that is scaled according to the proximity of obstacles, thus determining the
degree of traversability in the vicinity of the robot.
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Fig. 3. a) Membership function for every sensor. b) Membership functions for the
output variable θd.

3.3 Possible direction

This module combines the fuzzy conclusions of the target tracking and obstacle
avoidance components. We want the robot to be heading towards a direction
that takes into account both the desired and the disabled direction. To do this,
we realize the following fuzzy operations:

θp = θg AND NOT θd (1)

= θg ∩ (1− θd) (2)

Figures 4(a) shows the robot with obstacles in the right, while Fig. 4(b) shows
the output of each of the fuzzy systems, where we can see that θg is trying to
make the robot go to the right, while θd is disabling this set of directions. The
possible direction module combines these fuzzy sets in a way that makes the
robot turn approximately 25◦ to the left.
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Fig. 4. The fuzzy system in action. (a) The robot near obstacles. (b) The output of
each of the fuzzy components.

3.4 Deadlock detection and avoidance

Since the robot does not remember the location visited before and the navigation
algorithm is based only on local information, it can get trapped in local min-
ima commonly called deadlock [11], limit cycle [1, 17] or infinite loop [6]. While
trapped in this situation, the robot will repeat indefinitely the same trajectory
unless this is detected and deal with this situation.

Xu et al. [17] detects a deadlock whenever the robot makes a sharp turn
while Yang et al. [19] detects a deadlock when all sensors detect small distances
to obstacles, both of them produce a set of subgoals that help escape the dead-
lock until an escape criterion is met. The algorithm proposed by Xu et al. [17]
obtains good results, although in some complicated environments the algorithm
may produce a significant quantity of subgoals. It is worth mentioning that Yang
et al. [19] experimental results are all with simple maps, where the anti-deadlock
mechanism cannot be properly evaluated. Krishna et al. [9] uses a fuzzy classifi-
cation scheme coupled to Kohonens self-organizing map and fuzzy ART network
determines this classification and Wang et al. [16] builds a memory grid map
which records the environmental information and the robot experience while
traversing the map. Ordonez et al. [11] uses a virtual wall approach. Our pro-
posed method uses the distance to the target dt to detect if the robot is in a
deadlock. At every time interval the navigation algorithm calculates the distance
dt and orientation θt of the robot to the target. If we store the last N records
we could think of the distance as a signal over time dt and see how this behaves
in different situations, being the main case of interest how this signal behaves
when the robot is in a deadlock situation.

When the robot is in an obstacle free environment , the distance would
initially beD0 and it would decrease down to 0 . However, when facing a deadlock
situation the robot travels indefinitely along the deadlock loop (see Fig. 5(a)) and
the measurements of the distance dt will then become periodic, as shown in Fig.
5(b). The usual method for deciding if a signal is periodic and then estimating
its period is the autocorrelation function. The discrete autocorrelation R at lag
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j for a discrete signal xn is defined by

R(j) =
X
n

xn xn−j . (3)

If the signal is periodic with period P , the autocorrelation R will attain a max-
imum at sample lags of ±nP , where n ∈ Z [13]. We can see in Fig. 5(a), that
the size of the traversed path is 148 centimeters and the period of the autocor-
relation signal R(j) in Fig. 5(b) is 148. By calling M0 = R(0) and M1 = R(P ),
we can check the periodicity of the signal through

M1

M0
≥ τ, (4)

where τ is a real valued constant defined by the variance of the system noise. If
this check gives positive results we can change the robot’s behavior to wall-follow
and escape the deadlock.

begin
p←− is periodic(d10);
if ¬p then

p←− is periodic(d20);
end
if ¬deadlock status ∧ p then

deadlock status←− True;
else

deadlock status←− False;
end

end
Algorithm 1: Periodicity detection algorithm

3.5 Selecting the window size

The window size plays a critical role in the correct behavior of the deadlock
detection algorithm. Small window sizes will detect small sized deadlocks, but
will fail to catch the periodicity of big sized deadlocks. On the other side, using
a large window will enable us to detect big sized deadlocks, but it will spend
much more time until a small sized deadlock fills the window and the deadlock
detection method detects the periodicity. Thus, there is a trade-off between the
window size N , the suspected periodicity size and the time spent to detect the
deadlock situation.

We chose to implement a constant size, multi-window approach. The first
window is the signal dt and the others being downsampled versions of the first.
We can downsample dt as many times as we want and we can run our detection
algorithm in parallel through all the windows. This enables us to detect deadlocks
of various sizes while mantaining a quick response and a small storage space. In



14th Argentine Symposium on Artificial Intelligence, ASAI 2013

42 JAIIO - ASAI 2013 - ISSN: 1850-2784 - Page 140

0 50 100 150 200 250 300 350 400 450 500 550 600 640
0

50

100

150

200

250

300

350

400

450

480

(a)

10 20 30 40 50 60 70 80 90 100

1.6

1.8

2

2.2

2.4

2.6

d t(t)

Time [s]

20 40 60 80 100 120 140 160 180

0

0.5

1

j

R
(j)

(b)

Fig. 5. The robot in a typical deadlock-prone scenario. (a) Simulation results. (b) Evo-
lution of the measured distance through time (top) and its autocorrelation (bottom).

our experiments we chose to use two windows of size N = 100, named d10 and
d20. The second window being the downsampled version of the first, keeping
every second sample of the signal and discarding the others. By doing this, we
ensure to keep the windows size small enough while catching periodicities of two
different sizes that are appropriate for the map sizes we work with. The method
used to check if the robot is in a deadlock situation is shown in algorithm 1.

3.6 Wall following

Once the robot knows it is in a deadlock situation it can change its behavior
and try to escape from it. We chose to implement a fuzzy logic wall following
controller. When the deadlock detection algorithm checks positive, we store the
distance to the target dt as the deadlock distance dl and the robot follows a wall
until dt ≤ dl and |θp| < β, where β is a real valued constant.

3.7 Algorithm

The main navigation algorithm can be seen in algorithm 2.

4 Simulation results

We ran different experiments on various deadlock-prone maps from Wang et al.
[16] and compared our algorithm with the “minimum risk method” proposed in
this work. The blue lines show the robot traveling in the normal goal-oriented
behavior while the red lines show the deadlock-detection and wall-following be-
havior.

We first compare our method in concave environments. Figure 6(a) detects a
deadlock before making entering the first repetition of the infinite loop. It then
follows the left wall until the escape criterion is met and reaches the target.
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while dt ≥ MIN DISTANCE do
acquire sensor readings;
if deadlock situation then

while dt ≥ dl do
compute wall follow direction;
wall follow;

end

else
compute target direction dp;
go to target;

end

end
Algorithm 2: Navigation algorithm

Figure 6(b) shows the result of the minimum risk method. The robot exhibits a
so-called “trial and return” phenomenon and manages to escape the deadlock.
In Wang et al. there are comparison with virtual target methods [18] and Kr-
ishna and Kalra’s method [9]. While the first fails to reach the target, the second
exhibits a similar behavior as our method by using a fuzzy classification scheme
coupled to Kohonen’s self-organizing map (SOM) and fuzzy ART network to
determine the deadlock situation. This requires to train the SOM to learn typ-
ical landmarks that are expected to occur in a general environment. However,
all the experiences of spatio-temporal patterns cannot be modeled through the
landmarks learnt offline. Under some situations this can result in the robot not
getting aware of its trapped condition and because of this, a Fuzzy ART network
is added to dynamically add new patterns to the knowledge base. This archi-
tecture is more complicated than our approach, which has only to calculate an
autocorrelation.

We next compare our algorithm in a concave environment shown in Fig. 7(a)
where we can see that we get similar results that the ones in Fig. 7(b). In Wang et
al. it is shown that Krishna and Kalra’s method reaches the target, but choses a
wall boundary that leads to a longer traversed path. It is very difficult to choose
the correct boundary to follow without making maps or remembering the past
as the minimum risk method does.

We finally test our algorithm in a complicated environment shown in Fig
4. We can see that the proposed method is capable of reaching the target. It
detects and escapes from two different sized deadlocks during the traversal of
the environment.

Our method exhibits a behavior similar to Krishna and Kalra’s and the
minimum risk method, but is worth to mention that it neither uses a Kohonens
self-organizing map nor makes a grid of the traversed path. In this way, the
proposed scheme is much simpler while maintaining the effectiveness. The only
extra data needed is the distance to the target dt and a deadlock can be detected
by checking the autocorrelation of the vector that stores the last N distances.
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Fig. 6. In large concave and recursive U-shaped environment. (a) Our method. (b)
Minimum risk method
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Fig. 7. In a concave environment. (a) Our method. (b) Minimum risk method.
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Fig. 8. Our method in a complicated environment.
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5 Conclusions

The proposed method is effective and enables the robot to escape from deadlock
situations while using as little data as the distance to the target. The obtained
results are comparable with methods that use more complex schemes.

It is extremely difficult to guarantee that a selected direction will ensure to
leave the deadlock situation once detected. Without further information nothing
guarantees that following a wall to the right is better than following it to the
left. In unknown environments optimal navigation distance is not known, but
travel time can be reduced by controlling the robot’s velocity. The simulation
results shown in Section 4 show that the robot reaches every target describing a
smooth trajectory. If the method is aimed to be used for long-distance navigation,
another information sources should be added, such as a GPS or an IMU unit to
compensate the odometry errors.
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