
14th Argentine Symposium on Artificial Intelligence, ASAI 2013

On segmentation with Markovian models.

Ana Georgina Flesia1,2, Javier Gimenez1, Josef Baumgartner3, *

* AGF and JG are partially supported by Secyt-UNC and PICT 2008 00291. JG and 
JB acknowledge phd grants from Conicet.

1 FAMAF - Universidad Nacional de Córdoba, Medina Allende s/n , Ciudad 
Universitaria, X5000HUA Córdoba, Argentina.{jgimenez,flesia}@famaf.unc.edu.ar 

2 Conicet at Universidad Tecnólogica Nacional
3 FCEFyN - Universidad Nacional de Córdoba, Vólez Sarsfield 1611, X5016GCA 

Córdoba - Argentina. {jbaumgartner}@efn.uncor.edu

Abstract. This paper addresses the image modeling problem under the 
assumption that images can be represented by 2d order, hidden Markov 
random fields models. The modeling applications we have in mind com- 
prise pixelwise segmentation of gray-level images coming from the field 
of Oral Radiographic Differential Diagnosis. Segmentation is achieved 
by approximations to the solution of the maximum a posteriori equation 
(MAP) when the emission distribution is assumed the same in all models 
and the difference lays in the Neighborhood Markovian hypothesis made 
over the labeling random field. For two algorithms, 2d path-constrained 
Viterbi training and Potts-ICM we investigate goodness of fit by study- 
ing statistical complexity, computational gain, extent of automation, and 
rate of classification measured with kappa statistic. All code written is 
provided in a Matlab toolbox available for download from our website, 
following the Reproducible Research Paradigm.

1 Introduction

Bayesian approaches to image segmentation consists of embedding the problem 
into a probabilistic framework by modeling each pixel as a random variable, 
with a given likelihood, embedding the knowledge of the hidden labels on a 
prior distribution.

The Markov dependence of this prior is defined inside a neighborhood, that 
is, given all pixels in the neighborhood of a pixel, this pixel is statistically in- 
dependent of the pixels outside the neighborhood. The result is then obtained 
by maximizing a Bayesian criterion such as the maximum a posteriori (MAP), 
see Chen et. al (2012) for a complete review of the field [1]. Estimation over 
all possible combination of states values is unfeasible in most cases, so only ap- 
proximated solutions are available in the literature, which are dependent of the 
original model and the algorithmic choice of restrictions (not always very clear) 
that are made to deliver an approximation.

For Random Markov Fields, there are available iterative approximated so- 
lutions based on the use of the Gibbs distribution as a prior. In Gimenez et
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al. (2013) [2], a pseudo-likelihood estimator of the smoothness parameter of a 
second order Potts model was proposed and included on a fast version of Be- 
saj’s Iterated Conditioned Modes (ICM) segmentation algorithm. Comparisons 
with other classical smoothness estimators, like the one introduced on Frery et 
al (2009) [3], were also provided. Levada et al (2010) [4] also discuss MAP-MRF 
approximations combining suboptimal solutions based on several different order 
isotropic Potts priors.

The first analytic solution to a true anisotropic 2-D hidden Markov model 
(HMM) was introduced by Li et al.(2000) [5]. They studied a strictly-causal, 
nearest-neighbor, 2-D HMM, and show that exact decoding is not possible. They 
suggested a decoding approximation called Path Constrained Viterbi training, 
which was applied to blockwise segmentation of aireal images. Ma et al. (2009) [6] 
proposed a pseudo noncausal HMM by splitting the noncausal model into mul- 
tiple causal HMMs, each of which could be solved with PCVA in a distributed 
computing framework to deliver pixelwise segmentations. Other decoding ap
proximations are discussed in Sargin et al. (2008) [7] and references therein .

(a) (b)

Fig. 1. Neighborhood systems: (a) 2D order Causal Markov Mesh , (b) second order 
Potts Markov Field, (c) first order Potts model.

In this paper, we explore two specific Markov prior hypothesis for image 
segmentation, in the form of different neighborhood systems and probability 
relationships:

1. a diagonal six-pixel neighborhood for the anisotropic MRF
2. an eight-pixel neighborhood for the isotropic MRF

which are depicted in Figure 1. For the first neighborhood system we ensure 
assumptions of a 2d order Causal Markov Mesh model, that introduced an extra 
assumption in the neighborhood probabilities related to the notion of ”pixel’s 
past”. In the second neighborhood, we introduce a Gibbs distribution, in the 
form of the Potts model with a smoothness parameter 0. We keep the same 
Multivariate Gaussian model for the observations (conditional to the class) in 
order to ensure the same initial conditions. The MAP approximations imple- 
mented on each case were our own version of Jia Li’s Path Constrained Viterbi 
Training (PCVT) [5] for the anisotropic case and Frery’s ICM [3] for the isotropic 
case.

In Section 2 and 3 we discuss in detail the equations of our implementations. 
In Section 4 we introduce the design of our simulated experiments and the statis-
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tics used to evalúate goodness of fit. In the final section we discuss conclusions 
and prospects.

2 MAP-MRF rules

Many effective computational tools for practical problems in image processing 
and computer vision have been devised through Markov Random Fields (MRF) 
modeling. One of these practical problems is to label an image domain pixelwise 
with given L discrete labels L = {li,..., ¿L}, with the help of a priori modeling 
hypothesis like the Potts model.

Markov random fields provide convenient prior for modeling spatial interac- 
tions between pixels. Let P be a set of pixels in the image I of size n = z x w, 
L = {¿1,¿2,... ,¿L} a set of L labels, and for each site (i,j) e P is defined 
as a set d.j C P called the neighborhood of (i,j). The neighborhood system 
is a collection of sets d = {d.j : (i, j) e P} which satisfies: (a) (i, j) e d.j ,(b) 
(i',j') e dij (i,j) e , (c) P = U(.)j.)ep dij.

The labeling problem is to assign a label from the label set L to each site in 
the set of sites P. Thus a labeling is a mapping from P to L. We will denote a 
labeling by s = {s.j}. The set of all possible labeling Ln is denoted by S.

In this paper we will consider the final segmentation s = {sj } as realizations 
of a Markov random field. This means that for each possible realization (called 
configuration) s e S, it holds that p (s) > 0, p (s.j ¡sp-ipj)}) = p (s.j ¡saj . 
where P — {(i, j)} denotes set difference, and sdj denotes the labels of the sites 
in dij.

In general, the labeling field is not directly observable in the experiment . We 
have to estimate its realized configuration s based on an observation I, which is 
related to s by means of the likelihood function p (I|s, 0), where 0 represents the 
set of all model's parameters. The most popular way to estimate an MRF is to 
maximize a posteriori (MAP) estimation.

MAP estimation consists of maximizing the posterior probability p (s|I, 0). 
From the point of view of Bayes estimation, the MAP estimate minimizes the 
risk under the zero-one cost function. Using Bayes rule, the MAP estimate is

s* = argmaxp (s|I,0) = argmaxp (I|s, 0)p (s|0) (1)
sES sES

We assume that the pixel intensities Ij are random vectors from Rq, with 
Multivariate Gaussian emission probabilities given the state l e L:

p(x\l = (2n)q/1|^|1/2 exp{—2(x — ^e)Tr-1(x — /,y } (2)

with x e Rq, mean p,¿ and covariance matrix .

3 Gibbs prior

MRFs are generalizations of Markov processes that can be specified either by 
the joint distribution or by the local conditional distributions. However, local
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conditional distributions are subject to nontrivial consistency constraints, so the 
first approach is most commonly used. In this paper, we will consider two types of 
Markov random Fields as prior constraints for the labeling field, causal Markov 
Meshes, and Gibbs random fields.

Before defining Gibbs random fields (GRF) we need to define a clique. A 
set of sites is called a clique if each member of the set is a neighbor of all 
the other members. A Gibbs random field can be specified by the joint Gibbs 
distribution: p (s) = Z-1 exp (— 52c^c Vc (s)) , where C is the set of all cliques, 
Z is the normalizing constant, and {Vc : C & C} are real functions, called the 
clique potential functions. In this model, the conditional distribution of state 
label Sjj & L corresponding to pixel (i, j) & P given the evidence in the image is

p(síj\sij ') & dij)= p(sij |s¿/j, :(i',j') = (i,j)) <x exp I Vc (s)
\ ceC:(í,j)ec

(3) 
This Markovian assumption guarantees the existence of the joint distribution of 
the process.

3.1 Potts model

In this model, the potential functions Vc of (3) are defined as follows:

—p if sij si'j' ,C {(i,j), (i,j)}eC, (4)
0 in other case. ( ) 

where C is the clique set corresponding to the neighborhood’s system d. Thus, 
the distribution on the neighborhood in the Potts model becomes

p(sij |sjzjz : (i , j ) & dij) exp{PUij (sij )}

where Uj(sj) := #{(i',j') & dj : sj = Sj}, and P is the smoothness pa
rameter, sometimes called inverse temperature. Thus, the joint likelihood of the 
Markov random field is

p(s) <x exp{pUs},

where Us = #{C &C : C = {(i,j), (i',j')},sij = sj}.
The observed process, which is supposed to be emitted by the hidden Markov 

Field, is considered Multivariate Gaussian as in (2) with mean and covariance 
matrix which depends on the classes. Thus, given the observed pixel intensities 
I, the a posteriori distribution of the map of classes is

p(s\I, ff) <x exp{pUs + p(Ijj |sjj)}. (5)
ij

This distribution corresponds to a new Potts model in which the external field 
in a given pixel (i,j) is p(Ijj |sjj).
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The optimum segmentation s* is defined as a MAP solution (1), with 6 = 
(ft,pl,Pl) which is usually unfeasible. There are many approximated solutions 
provided in the literature, we will work with the version of Iterated Conditional 
Modes given by Frery et al (2009)[3].

Iterated Conditional Modes (ICM) is an iterative algorithm that rapidly con
verges to the local maximum of the function P(s|I, 6) closest to the initial seg
mentation provided by the user. Usually, the initial segmentation is provided by 
Maximum Likelihood. In each iteration ICM modifies the label of each pixel for 
the label that is most probable, given the neighborhood configuration.

Given observations I, ICM finds a suboptimal solution of (1), with the algo- 
rithm 1. The first term of (6) is equivalent to the ones used by the ML classifier.

Algorithm 1: Iterated Conditional Modes (ICM)
1) Maximum Likelihood segmentation of I.
2) Parameter estimation by pseudo-maximum likelihood with Brent's algorithm for 

the smoothness parameter of the second order isotropic Potts model.
3) Choose a pixel's visit scheme for the image.
4) For each pixel (i, j), change the label given in the previous iteration for the label 

í e L that maximizes

g(í) = lnp(Iij\£,¡P, M) + PUij (í) (6)

5) Iterate until convergence.

The second term is the contextual component scaled by the parameter ft. If 
ft > 0, ICM smooths out the initial segmentation,if ft < 0, ICM reduces clusters 
coherence. When ft = 0 the rule is reduced to the maximum likelihood, but when 
ft to the effect is reversed, the data does not have any importance in the final 
segmentation.

3.2 Causal prior

For pixel (i, j) we define the following causal relationship that represents the 
“past”, (i , j ) -< (i, j) if i < i or i = i and j' < j, and the set {sí,j-i, }
the neighborhood of (i, j) in the past. We assume a Causal 2D order Markov 
Mesh model stating that, for state Sj:

P(sijs.; : (i',j') (i,j)) = p(sij|sí,j-i,sí-i,j). (7)

The two pixels (i, j — 1) and (i — 1, j) can be understood as the “past” of pixel 
(i, j). We consider P(sij |si,j-1, si-i,j) to be independent of the current pixel so 
we can gather the transition probabilities in a matrix A where

a€i ,€2,€3 p(sij £i| si,j-1 £2, Si-i,j £3) V£i, £2, £3 (E L.
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The transition matrix A has one more dimension than the transition matrix 
of a 1d Markov Process due to two “past states” on the left and above the actual 
pixel. This yields at a new order of the image. Instead of lining up the pixels as 
we would have done in the one-dimensional case we are now moving from the 
top-left pixel to the bottom-right pixel. Thus, the initial probabilities for the 
2dMM depend only on the first state so,o and we can write

= p(so,o = l) Vl e L.

The word “hidden” that is usually added to the whole model (Gaussian observed 
process plus Markov Mesh labeling random field) comes from the fact that this 
Markov Mesh can not be observed, so it is considered hidden. It can be proved 
that this causal relationship implies a general Markov Field hypothesis with the 
diagonal neighborhood stated in the introduction, that is, the probability of a 
label given the whole labeling specification depends only on the values in the 
pixels depicted in Figure 1 (a).

If we enumerate each diagonal in the image, To,..., Tz+w-2, as one step in 
time, starting with the top-left pixel, see Figure 8,

To = (so,o); Ti = (si,o, so,i); T2 = (s2,o, si,i, so,2); ... ; Tz+w_2 = (sz-i,w-i);

the Markov Mesh assumption (along with the particular definition of the past) 
implies that

p(s) = p(To)p(Ti |To).. .p(Tz+w_2 |Tz+w-3,..., To)
= p(To)p(Ti|To) . . .p(Tz+w-2|Tz+w-3).

This means that each diagonal operates as an “isolating” element between neigh- 
boring diagonals, which suggest an extension of the 1d Viterbi algorithm to com
pute the most probable sequence of states given initial values. This is, to find 
the optimal combination of states s* that solves (1) given the whole 2D hidden 
Markov model, the labeling field and the observed Gaussian intensity process.

Let To = (so,o); T1 = (s1,o, so,1); ... be a path through the image where 
every diagonal marks one step. Each diagonal consists of up to min(w, z) states: 
To e L, T1 e L2, T2 e L3, ..., Tz+w_2 e L. This makes a total of Lmin(w,z) 

possible state combinations only considering the main diagonal. Therefore, the 
exact decoding of our problem is an NP-hard problem. To produce an approxi- 
mated solution we will work constraining the set of possible state combinations.

3.3 Path-Constrained Viterbi Training

The Viterbi training algorithm is an iterative algorithm that estimates all the 
parameters of a HMM, and finds the sequence of states that best explains the 
data, given the estimated parameters. The procedure starts with the setting of 
initial parameters, which can be done using prior information, educated guess 
or a non-contextual estimation. Using this initial step the algorithm follows the 
next steps until convergence
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Algorithm 2: Path-Constrained Viterbi Training (PCVT)
— Initialize segmentation s(0): Maximum Likelihood segmentation of I .
— Parameter estimation: Given sequence estimation of a)n)í t , //(.ll) and

y»(n)

— Decoding: Choosing the best N paths and Viterbi decoding using these paths.

First step Viterbi Training: Parameter estimation Let's suppose we have 
the initial sequence s(0) obtained from maximum likelihood classification, or 
the sequence s(n-1) obtained from Viterbi in the previous step. Our empirical 
estimations of the transition probabilities and distributions parameters are

z — 1 w — 1

i=1 j=1(n)

x (s(n—1) = p s(n—1) = p s(n—1) = ¿i X \si —1,j e1, si,j — 1 sij e3 J
a z—1w—1

Y Y x(.í—— 1 = 6)
i=1 j=1

(8)

z—1 w —1
yy x (sp1’=o i.i

„(n) = j=0 j=0________________  p(n’
z—1 w — 1 . £
Y Y x j = e) 
i=0 j=0

where x is the indicator function.

z—1w—1
Y Y x (sS_1) = (Iij — W)(Iij — Pe)T
i=0 j=0

z—1w—1
Y Y x (V’=0
i=0 j=0

(9)

Second step Viterbi training: Decoding There are several different approx- 
imations in the literature for iterative decoding. Sargin et al (2008)[7] proposed 
an algorithm that iteratively updates the posterior distribution on rows and 
columns, i.e. determining horizontal and vertical 1d forward-backward prob- 
abilities, combining them to approximate the values of p(sij|si,j—1, si—1,j) as 
product of horizontal and vertical probabilities. A more simplistic approach is 
to represent the dependency of the neighbors as the horizontal and vertical con- 
ditionals, a row and column wise constrained application of belief propagation. 
Such models deviate us from the original Makovian assumptions, so in this pa- 
per we will follow the so called Path Constrained Viterbi Training Algorithm, 
Li et al (2000)[5], Ma et al (2009)[6], which restricts the possibilities of diagonal 
strings of states to propose a labeling, and updates all parameters in a pseudo- 
Expectation Maximization way using such labeling until convergence. We will 
describe now the equations involved in the process.

— Choosing the best N paths for decoding Path Constrained Viterbi has 
been introduced by Li et al (2000) [5], but they did not give any particulars
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on how to choose these N sequences but the first one. Ma et al. (2009) [6] 
also worked with similar algorithms, keeping this crucial step also hidden as 
a part of their implementation.
In this paper, we propose the following selection. We firstly assume, as Li 
et al (2000) [5], that we can evaluate the likelihood of a given diagonal 
state sequence by simply multiplying the likelihoods of each pixel without 
considering statistical dependencies between pixels, i.e. we compute

p(sij = l|I¿j, 0) x p(Iij |s.j = l, 0)p(sij = l|0) (10)

where p(I¿j |sij, 0) is given by (2) and
z—1w—1

X(sij = l) 

p(sij = l|0) = i=o j=o-------------- Vl e L.
zw

Thus, the most likely state sequence sd,1 is the one that has in each entry 
the most likely state for the pixel’s observation on diagonal d e {0,1,..., z + 
w — 2} .
In our particular implementation, we will obtain the next N — 1 sequences 
considering only the sequences that result from changing only one state of 
sd,1. Such chains are ordered using (10) and the N — 1 with the largest 
likelihood are chosen.
In our Discussion section we will comment the incidence of the selection of 
this bag of N sequences in the convergence of our implementation.

— Viterbi decoding over the chosen N paths. We call each diagonal state 
sequence sd,k where d is the index for the diagonal with d = 0,1,..., z+w — 2 
and k = 1, 2,..., N indicates the state sequence. Hence the initial state 
probabilities nk for pixel (0,0) are

nk = p(To = so,k).

We denote ¿d(k) as the maximum probability for sequence k on diagonal d. 
Given the parameters of the PCVT we can write

^d(k) max p(so,ko , . . . , sd— 1,kd— i , sd,k , Io, . . . , Id10),
ko,ki,...,kd-i

with d = 0, ...,z + w — 2; k = 1,..., N. Furthermore we collect the pixels on 
diagonal d in a variable A(d) and define

(Id) = p(Iij |sd,k (i,j))
(i,j)EA(d)

where Id = (Ij : (i,j) e A(d)) and bSdk (Id) is the emission probability of 
sequence k on diagonal d under the assumption that each pixel is statisti- 
cally independent from its neighbors. Finally, we can calculate the transition 
probability from sequence k on diagonal d to sequence l on diagonal d + 1:

ad,k,i = p(Td+i = sd+i,i |Td = sd,k, 0) = n asd,k (i—1,j),Sd,k(i,j—1),Sd+1,l (i,j)
(i,j)EA(d+1)
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d = 0,..., z + w — 3; k,l = 1,..., N.

Now we are ready to initialize the Viterbi decoding Algorithm with the values

So(k) = p(T0 = so,fc), bSo,fc(Io) = bSo,fc(Io,o) Vk = 1, 2,..., N.

Then we start the recursion

3d+i(l) = max 3d(k)Cld,k,l
i<k<N

bsd+i,¡ (Id+i ) Vd = 0,1,..., z+w—3 Vl =1, 2,..., N.

After each step, we save the index of the most probable sequence on diagonal 
d that leads to sequence l on diagonal d + 1 in a variable called p:

Pd+i(l) = arg max {Sd(k')a,d,k,i} Vd = 0,1,..., z+w—3 Vl = 1, 2,..., N
i<k<N

When the algorithm reaches the last diagonal, we use the values saved in p 
to track back the most probable path through the image starting with the 
bottom-right pixel

S*+w-2  = arg™axr A+w-2(k)
i<k<N

sd = Pd+i(sd+i) Vd = z + w — 3, z + w — 4,..., 1

The final result s* contains the optimal path through the N sequences at 
each diagonal. Note that this is equal to knowing the complete hidden state 
map for the whole image.

4 Experimental Results: Image Classification

In this section we report some experiments on the algorithms described in this ar- 
ticle: Path Contrained Viterbi Training (PCVT) and Iterated Conditional Modes 
(ICM).For comparison purposes, we also provide the results when applying su- 
pervised (ML) or unsupervised (EM-ML) Maximum Likelihood Classification.

4.1 Multiclass high-quality bitewing X-ray image.

Digitalized X-ray images have some level of noise introduced by the scanner, 
but their main characteristic is the smoothness of the joint gray level histogram. 
Classes that are quite distinguishable to the naked eye do not form a distinctive 
mode in the joint histogram, making segmentation difficult. Image subtraction, 
image enhancement and filtering are common image processing research areas 
when working with digitalized or digital X-ray imagery. Caution has been ad- 
vised by dentists [8] about the abuse of enhancement algorithms in digital X-ray 
devises, that often introduce artifacts in the images by defect and by excess, 
leading to possible misdiagnosis.
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Fig. 2. Segmentation of inverse digitalized dental X-ray images. Panels (a) and (b) 
histograms of pixel intensities corresponding to molar image (c) and incisive image (g). 
PCVT segmentations are shown in panel (d) and (h), ML in panels (e) and (i) and 
ICM in panels (f) and (j).

Both images have a central tooth and partial views of its neighbor teeth, 
gums and background. We have set three classes for the first image and four for 
the second image to account for the differences between tooth enamel and dentin. 
Enamel is the thin, hard material that covers the dentin, or main body of the 
teeth, and protects it from harsh temperatures. We initialized both algorithms 
with supervised classification. In Figure 2 we can observe from the images that, in 
the first case, the teeth are correctly segmented, dentine is clearly differentiated 
from tooth nerve and enamel. The second image has a flat histogram, classes are 
mixed together and segmentation is more difficult. All algorithms perform badly 
in this case.

4.2 Simulated binary images and Kappa statistic

In this section we want to discuss the influence of the selection of the best 
N sequences for decoding in execution time and overall performance. We de-
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(a) (b) (c) (d)

(e)

Fig. 3. (a) Noisy UTN logo, (b)EM-ML segmentation, (c)EM-ICM segmentation, (d) 
EM-PCVT segmentation, (e) confidence intervals for kappa statistic, (f) Relative im- 
provement of PCVT related to ML vs number of sequences retained. Remaining noise 
is concentrated on the background for ICM and PCVT, while ML has misclassified 
pixels in both classes.

(f)

vised an unsupervised study with the 2-color logo of the Technological Uni- 
versity degraded with gaussian noise. For this image, the confidence intervals 
for Kappa show that PCVT and ICM are significantly different from ML, see 
panel (c) of Figure 3. The index Kappa is defined byK = P-°—pe where Po is the 
observed proportion of agreement and Pe is the expected proportion of agree- 
ment in the image, one computed over the estimated segmentation map B and 
the other computed over the ground truth map V. The OA overall accuracy 
statistic is the number of well classified pixels over the total number of pixels. 
When appropriate, we also report the Relative Improvement index related to the 
benchmark ML or EM-ML classification, defined as Relative Improvement = 
100 X (OAmethod — OAmL )/(100 — OAmL ).

Now we discuss the number of sequences N retained for decoding. Our per
sonal implementation allows the user to set the number of sequences involved 
in the search, being 250 the preset value. We made 16 experiments setting the 
number of path sequences allowed for decoding in a range from 1 to 250, as 
we can see in panel (f) of Figure 3. We also computed time until convergence, 
number of iterations until convergence and relative improvement of classifica- 
tion accuracy related to EM-ML segmentation. This study shows that allowing 
the most probable 20 sequences has the same relative improvement as working 
with the most probable 250, and the time of execution goes from 0.8 minutes 
to 59 minutes on an Intel I7 processor, 6Gb memory HP laptop. The number of 
iterations stabilizes when 50 or more sequences are allowed.
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5 Conclusión

In this paper we revisited two different Markovian models and its most notice- 
able estimation algorithms. The complexity of the algorithms is quit different, 
since Pott's ICM has only one parameter to set and PCVT has all transitions 
probabilities to estimate besides the Gaussian parameters. Nevertheless, in our 
initial study we found PCVT segmentations promising. ICM has a tendency to 
smooth out the initial ML segmentation. PCVT has the capability of moving out 
from the saddle point where ML lays in the space of all possible segmentations 
and deliver a different segmentation. This is important in the case of images 
with several mixed classes.

The PCVA code we made to carry out these experiments was written from 
scratch, on a Matlab 2013a platform. We used Matlab Statistical toolbox scripts 
for (EM-ML) and (ML). In the literature, initialization has also been made 
with non-parametric segmentation algorithms like k-means, while the means 
and variances for the Gaussian hypothesis on the observations were estimated 
over the labeled output. For the studied examples, we did not observe significant 
differences using k-means as initialization method. We implemented a version of 
ICM where parameter is estimated at each iteration by maximizing the current 
pseudo-likelihood with the Brent algorithm. We will continue working with more 
challenging types of images, introducing also other measures besides Kappa to 
study performance. All code written is provided in a Matlab toolbox available 
for download from our website, following the Reproducible Research Paradigm.
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