

- ORIGINAL ARTICLE -

Burst Error Analysis Introduced in Multiple Traffic of
Protocols TCP Reno, Cubic, Westwood and Vegas on a

Model of Hybrid Topology
Análisis de Error de Ráfaga Introducidos en un Tráfico Múltiple de los Protocolos TCP

Reno, Cubic, Westwood y Vegas en un Modelo de Topología Híbrida

Diego R. Rodríguez Herlein1, Carlos A. Talay1, Claudia N. González1, Franco A. Trinidad1,
Luz Almada1 and Luis A. Marrone2

1UARG, Universidad Nacional de la Patagonia Austral,Rio Gallegos, Santa Cruz, 9400, Argentina
{dherlein, ctalay, cgonzalez}@uarg.unpa.edu.ar, talejandro.franco@gmail.com, mluzalmada@gmail.com

2L.I.N.T.I., Universidad Nacional de La Plata,La Plata, Buenos Aires1900, Argentina
lmarrone@linti.unlp.edu.ar

Abstract

This paper explores the behavior shown by the
protocols TCP Reno, Cubic, Vegas and Westwood
in presence of errors in bursts occurred in multiple
traffic over a hybrid topology. The development is
based on the analysis of case studies, where it starts
with a mixed topology of two wired and two
wireless nodes, with two flows of the same variant
of the TCP protocol, subsequently increasing the
number of nodes until reaching 8 wired nodes
behaving as senders and 8 wireless nodes as
receivers. In all cases only one of these flows suffers
a burst error and through the tests we analyze how
the flow recovers from the burst. For this study,
behavioral tests were carried out using the NS-2
network simulator, on a hybrid topology (wired and
wireless), also incorporating burst errors of different
lengths, typical of wireless links.

Keywords: TCP, burst errors, NS-2

Resumen

Este artículo explora el comportamiento mostrado
por los protocolos TCP Reno, Cubic, Vegas y
Westwood en presencia de errores en ráfagas
ocurridas en el tráfico múltiple sobre una topología
híbrida. El desarrollo se basa en el análisis de
estudios de caso, comenzando con una topología
mixta de dos nodos cableados y dos inalámbricos,
con dos flujos de una misma variante del protocolo
TCP, aumentando el número de nodos hasta alcanzar
8 nodos cableados emisores y 8 nodos inalámbricos
receptores. En todos los casos, solo uno de estos
flujos sufre un error de ráfaga y, a través de las
pruebas, analizamos cómo se recupera el flujo de la
ráfaga. Para este estudio, las pruebas de

comportamiento se llevaron a cabo utilizando el
simulador de red NS-2, en una topología híbrida
(cableada e inalámbrica), que también incorporó
errores de ráfaga de diferentes longitudes, típicos de
los enlaces inalámbricos.

Palabras claves: TCP, Errores en ráfaga, NS-2

1. Introduction

TCP (Transmission Control Protocol) [1] has been
widely used in data networks since its development
to the present. Although it was not part of the initial
development, congestion control was one of the
aggregates that significantly improved its
performance. By means of modifications that try to
adapt it to different working conditions, this protocol
has accompanied the technological innovations that
have been developed in the area of
telecommunications and that use both wired and
wireless media. TCP is characterized by being
reliable, performing flow control and possessing a
data congestion control mechanism. It also controls
the sequence of segments delivery, by means of the
verification of ordered reception of
segmentssequence numbered in origin and verified
in the receiver. This protocol offers a service
oriented to connection, which bases its reliable
delivery in a procedure known as ARQ (Automatic
Repeat reQuest), in its different variants, which
guarantees the integrity of the data. Through the
ARQ procedure and the use of selective ACKs
(acknowledgments), it is achieved that a whole set of
segments can be confirmed with one ACK. This
technique is known as delayed-ACK [2] and allows
achieving a significant increase in efficiency in the
operation of the network.

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-32-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301088912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:cgonzalez%7d@uarg.unpa.edu.ar

At the level of congestion control, TCP regulates
traffic over the data flow. To achieve this, the
protocol verifies if there is a loss of segments or if a
reception of duplicate ACKs occurs. Analyzing the
result of this verification, the protocol determines
the occurrence of packet loss and therefore whether
or not there is congestion in the network [3]. By
enhancing this method, two variants have been
developed to address congestion control problems.
One of them is based on a reactive control of the
problem, assuming that there is congestion in the
links due to the loss of segments. On the other hand
we have the other variant, which tries to perform a
proactive congestion control, where it is developed a
strategy to prevent traffic from reaching a situation
of congestion; both are not mutually exclusive [4].

At present, transmission technologies point to the
quality of the data flow, which make it possible to
have a low error rate. In this scenario, the congestion
control techniques of the network have been based
mainly on the detection of lost segments. Therefore,
under these conditions, the reactive protocols
understand that there is congestion in the network
and they activate their congestion control
algorithms. However, there are situations in which
that loss may have another origin than congestion
and therefore should not trigger its mechanisms.

The growing expansion in the use of wireless
networks created the need to modify the TCP
protocol, originally designed for wired networks
where congestion is the main cause of segment loss.
TCP does not react adequately to segment losses
unrelated to congestion: if there is a loss due to
interference, then there are no overflows in the
buffer and TCP decision to reduce the congestion
window is incorrect, drastically reducing the
performance. Instead, there must be a recovery from
that loss and continue with the same rate as if
nothing had happened.

Thinking about this situation, it is proposed by
configuring a simple model and using the simulation
tool NS-2 [5], to analyze the response of 4 TCP
agents with the introduction of burst errors in a data
transmission, without depending on any explicit
notification of the network, preserving the host-to-
host principle of TCP.

2. Theoretical framework

When the sending rate of all the TCPs sharing the
same network exceeds its capacity, the effective load
transported will tend to zero as the load increases.
This effect was known as collapse of congestion
[6].The original TCP standard lacks a means to
adjust the transmission speed according to the state
of the network. To solve this problem, several
solutions have been proposed that share the same

idea, that is, the introduction of a mechanism that
limits the sending rate along with the flow control
driven by the receiver. To this end, the concept of a
congestion window was introduced, whose purpose
is to estimate the amount of data that the network
can accept for delivery without congestion.

One of the first host-to-host solutions [7] to solve
the problem was TCP Tahoe [8]. The solution is
based on the original TCP specification (RFC 793)
and includes a series of algorithms to improve the
detection of packet loss. The RTO (Retransmission
Timeout) was originally defined as the only loss
detection mechanism. Since the TCP receivers
respond immediately to all the segment data out of
order with a duplicate ACK, the loss can be detected
by the Fast Retransmit algorithm [9], almost within
the RTT (Round-trip time) interval, that is, that
duplicate ACKs can be considered a reliable loss
indicator. With this new indicator, the sender can
retransmit lost data without waiting for the
corresponding RTO event.

However, the most important incorporation was
the mechanisms of Slow Start and Congestion
Avoidance [10]. These provide two slightly
distributed host-to-host mechanisms that allow the
TCP sender to detect the available network resources
and adjust the transmission speed.

In the Slow Start algorithm, the reception of an
ACK segment increments the congestion window in
one segment for each segment validated by the
ACK(multiplicative increase policy). If a segment
loss is detected, it is assumed that the network is
under congestion, then the congestion window is
reset to the initial value (eg. 1) to guarantee the
release of network resources.

The Congestion Avoidance algorithm is aimed at
improving the efficiency of TCP in networks with
limited resources. This is a much more conservative
algorithm, which increases the congestion window
in only one segment if all the data segments have
been delivered successfully during the last RTT. In
contrast, the value of the congestion window is
reduced by half (multiplicative reduction policy).
TCP Tahoe includes both algorithms as distinct
operational phases, which combines rapid discovery
of network resources and long-term efficiency.

2.1 TCP Reno

Reducing the congestion window to a segment, as a
reaction to a loss, can lead to significant
performance degradation.

A completely different state of congestion can be
inferred from a loss detected by RTO timer timeout,
to that detected by the arrival of duplicate ACKs.
The presence of each ACK, including duplicates,
indicates the successful delivery of a data packet.
The sender is observing the ability of the network to

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-33-

deliver some data. Therefore, the state of the
network can be considered slightly congested, and
the reaction to the loss event may be more
optimistic. TCP Reno achieves an optimistic
reaction when using the Fast Recovery algorithm
[11].

Fast Recovery halves the congestion window,
and polls the network until the error is recovered and
an unduplicated ACK is received.Compared to TCP
Tahoe, the performance is substantially higher
because the recovery period is reduced and data
transfers are allowed during it.

2.2 TCP Cubic

This congestion control algorithm was designed to
solve the problem in networks with High-BDP. TCP
CUBIC [12] uses the approach to define the size of
the congestion window as a cubic function of the
time elapsed (Δ) since the last congestion event, also
the size of the congestion window (wmax) just
before the last detection of recorded loss and of a
Beta coefficient that is a multiplicative decrease
coefficient in FastRecovery.

w = C (∆ − �beta2 − wmax
C

3)3 + wmax (Eq. 1)

Where, C is a predefined constant.The function
has a very fast growth when the current window is
far from the estimated target (size of the window
before the previous loss), and it is very conservative
when it is close.

2.3 TCP Vegas

Reno and Cubic share the same reactive method: it
detects that the network is congested only if
segments are lost. Reactive algorithms increase
transmission rates to the extent that segment losses
occur due to congestion, to find the capacity of the
network.

Another approach, proactive method, is to
quantify the level of congestion before a loss event
occurs using a delay estimate of the segments.

Brakmo and Peterson proposed the Vegas
algorithm as a proactive method to replace the
reactive algorithm of Congestion Avoidance [13]

The key component is to estimate the use of the
buffers by analyzing the RTT values. The minimum
RTT value observed during the lifetime of the
connection is considered a reference measurement
that indicates a network status without congestion.
In this way, a higher value of RTT is due to a greater
length of the queue in the transmission path. The
objective is to detect congestion at its early stage and
avoid it by reducing its transmission rate, preventing

the segment loss occurrence.
The technique consists of calculating the

difference between the expected flow and the current
data flow, in order to determine the remaining
bandwidth in the network. The expected rate is a
theoretical rate of a TCP flow in a network state
without congestion. This speed can occur if all
transmitted data segments are successfully
recognized within the minimum RTT. The expected
rate is directly proportional to the size of the
congestion window with a proportionality
coefficient of 1/RTTmin. The current rate can be
expressed as the ratio between the current
congestion window and the current RTT value.

TCP Vegas incorporates the measure of the
difference between the current rate and the expected
rate in the Congestion Avoidance phase to control
the size of the congestion window. There is always a
point where the current rate is equal to the expected
rate, and all attempts to send at a faster rate will fail.

The concept of VegasTCP congestion control is
that if the connection is congested, then the current
flow rate is lower than the expected rate and the
difference between them will indicate the degree of
congestion, allowing adjusting the size of the
congestion window. If this difference is greater than
the predefined threshold Beta, the congestion
window is reduced by one, if the difference is
strictly less than a second Alpha threshold the size of
the congestion window is increased by 1. If the
difference is between Alpha and Beta, the system is
considered to be in a stationary state and no
modifications are applied to the congestion window,
to avoid oscillations. In this way, Vegas uses these
two thresholds, Alpha and Beta, to control the
adjustment size of the congestion window [14].

In Slow Start mode, the size of the congestion
window is doubled each time an RTT is completed.
TCP Vegas modifies this algorithm so that it is able
to detect and avoid congestion. While this allows
window growth during this phase, it maintains its
size while calculating the current and expected
throughput. When the current throughput falls below
the expected throughput by a certain amount
(defined by a Gamma threshold), TCP Vegas
changes to the Congestion Avoidance algorithm,
where the window size is now adjusted in the
following way [15]:

Calculation of the Expected data flow (F.
Expected): size of the congestion window (cwnd)
and the minimum measured value of RTT (Base
RTT).

𝐹𝐹.𝐸𝐸𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

(Eq. 2)

Calculation of the current Data Flow (F.
Current), size of the congestion window (cwnd) and
RTT last measured value of RTT.

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-34-

𝐹𝐹.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑅𝑅𝑅𝑅𝑅𝑅

(Eq. 3)

Then TCP Vegas compares the current
performance with the expected performance and
calculates the difference as diff (difference):

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐹𝐹. 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸−𝐹𝐹. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑅𝑅𝑅𝑅𝑅𝑅

(Eq. 4)

Based on these calculations, TCP Vegas adjusts
the size of the congestion window in the following
way:

cwnd+1 ; if diff < α
cwnd = cwnd ; if α ≤ diff ≤ β (Eq. 5)

cwnd-1 ; if diff > β

If segments are not lost in the network, Vegas
controls the congestion window through an additive
increase policy and additive reduction (AIAD) [16].
Reactions to segment losses are defined by any of
the standard congestion control algorithms (for
example those of Reno).

2.4 TCP Westwood

TCP Westwood replaces the congestion control
actions used by TCP Reno, with a heuristic
procedure to set the size of the congestion window
to an optimal value. As an optimum, the heuristic
considers a value that corresponds to a data transfer
rate observed in the recent past. If a random error
occurs, the optimal value will be that in which the
sending TCP continues with the same sending rate.
In the event that the loss of the segment is due to
congestion, the rate at which data is received at the
receiver is the rate at which the network can
transport data. If the sender continues the
transmission at a rate equal to that observed by the
receiver, the number of newly transmitted segments
will be equal to the number of segments delivered
and, thus, the queues will not grow and additional
congestion will be avoided.

The proposed solution is for the issuer to
estimate the current delivery rate based on the
existing notification mechanism (ACK).

If it is assumed that an ACK segment is generated
immediately after receiving a data segment and that
the ACKs are uniformly delayed in the return route,
the ACK rate observed by the issuer will be equal to
the data delivery rate observed by the receiver. The
calculation of the bandwidth is maintained in the
long term even if the receiver loses or delays some
ACK; that is, a decrease in the ACK rate will be
compensated for by an increase in the amount of
recognized data.

To reduce the effects of fluctuation, Westwood
calculates the bandwidth in two levels. At the first
level, the estimate is calculated immediately after
receiving an ACK segment by the amount of data

recognized by the ACK and the time elapsed since
the reception of the last ACK Δ.

𝑏𝑏 = 𝑑𝑑
Δ
 (Eq. 5)

In the second level, the calculated instantaneous
values are averaged with a special discrete-time
filter:

𝐵𝐵 = 𝛼𝛼(𝛥𝛥).𝐵𝐵−1 + �1 − 𝛼𝛼(𝛥𝛥)�. (𝑏𝑏+𝑏𝑏
−1

2
) (Eq. 6)

Where, α (Δ) is the average coefficient, as a
function of Δ, b and b-1 are current and previous
samples of the bandwidth estimate and B-1 is the
previously calculated average value of the estimate.

3. The model used for the study and
parameterization

To model and generate the data of the present work,
the NS-2 (Network Simulator 2), simulator of
networks of discrete events in its version ns-2.35
(released Nov. 4 2011) was used and the following
topology was implemented:

TCP 1

TCP 2

TCP n

NODE 1

NODE 2

NODE 3

NODE 4 NODE 5

NODE j NODE j+1

Fig.1 Schematic of the topology for the tests

As shown in Figure 1, nodes 1 and 2 are linked
by a wired link that was configured as duplex, with a
bandwidth of 2 Mb / s, propagation delay 2 ms. and
DropTail queue service policy. The link between
nodes 2 and 3 is wireless and was configured as
TwoRayGround propagation mode, the WirelessPhy
physical layer, MAC 802.11, the OmniAntenna
antenna and the wireless node without mobility.

The selection of this model is an approximation
to a Wireless scenario with a fixed node (node 1), a
base station (node 2) and a mobile node (node 3),
with practical simplification, that the wireless link
does not present disconnections and it only has
errors in the form of bursts. In principle the model
consisted of more wireless nodes, but because the
present work was based on the study of errors in the

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-35-

form of bursts in hybrid media, it was not considered
for the moment to increase the complexity
considering a larger number of mobile nodes.

Node 1 was configured as a sender and in it a
TCP agent, on the other hand node 3 was configured
as a receiver. This link was associated with an FTP
traffic (file transfer protocol) as the only traffic.

Independent simulations were carried out on the
implementations of the different variants of TCP.
For each of them, simulations were generated for the
different lengths of errors in bursts, with lengths
ranging from a test without errors (0), to tests with
bursts of error of 5, 10, 15 and 20 segments of 1K
length. The TCP Agents that were used were Reno,
Cubic, Vegas, and Westwood, as they are designated
and implemented in this version of NS-2 (see 2.35),
without any modification. In the case of TCP Vegas,
for Alpha and Beta, values that have been
implemented in NS-2, Alpha= 1 and Beta= 3 are
used by default.

The data transmission begins 5 seconds after the
simulation starts and is conditioned to the
transmission of 3,000 segments of 1,000 bytes each,
regardless of the length of the error burst. These
bursts always started after the first 999 segments
were transmitted and the test concluded upon
completion of transmitting the 3,000 segments of
FTP traffic.

Based on what was analyzed in the paper
presented at the CACIC 2017 [17], a new trial was
proposed modifying the topology of the network and
making the model more complex by adding a wired
node and a wireless node in order to add a new TCP
flow of the same variant, between the new nodes.
The new nodes and links have the same
characteristics as the original nodes and links and
the new TCP flow is an FTP that has no errors and
transmits the number of segments necessary to be
transmitting until the end of the simulation.

This procedure was repeated successively in
different simulations for each of the variants of TCP,
for each of the lengths of errors in stipulated bursts
adding two nodes and a TCP flow until arriving at
the 8 simultaneous FTP transferences, where only
the first presents errors in burst.

An AWK script was used on the trace file to
obtain instantaneous and average Throughput, in all
cases of the first TCP flow. These data were
processed, turned over to a spreadsheet and
generated the graphs presented here.

4. Results obtained

With this test, based on a bunch of simulations, it is
intended to determine the throughput behavior of the
four proposed protocols in the presence of burst
errors of different segment lengths.

These simulations and results are based on the
work “Considerations on the behavior TCP protocol
in its variants Vegas, Reno, Cubic and Westwood
before errors in burst generated in a hybrid
topology” published in the XXIII Argentine
Congress of Computer Science (CACIC 2017, La
Plata, Argentina) and presented at the XII Workshop
on Architectures, Networks and Operative Systems
(WARSO) in October2017.

Below are the graphs of the simulations obtained
throughput vs. time and sequence number vs. time,
superimposing the results for the case of having 1, 2,
4, and 8 nodes, with their corresponding established
individual traffics as explained above, for the same
variant of the TCP protocol. The graphs have been
grouped taking into account the base case of a
simulation without errors and a posteriori tests for a
progression of burst errors that vary according to 5,
10, 15 and 20 lost segments.

4.1 Tests with TCP Reno

Fig. 2 Throughput vs. Time – without errors

Fig. 3 Sequence Nº vs. Time – without errors

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-36-

Fig. 4 Throughput vs. Time – 5 errors

Fig. 5 Sequence Nº vs. Time – 5 errors

Fig. 6 Throughput vs. Time – 10 errors

Fig. 7 Sequence Nº vs. Time – 10 errors

Fig. 8 Throughput vs. Time – 15errors

Fig. 9 Sequence Nº vs. Time – 15 errors

Fig. 10 Throughput vs. Time – 20 errors

Fig. 11 Sequence Nº vs. Time – 20 errors

In the tests carried out for TCP Reno, the traffic of 4
and 8 flows are affected from the 15 burst errors.
The increase of time in the transmission sequence
responds to a typical sequence analysis with a
"stretch" of time. In particular, there is little

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-37-

difference between the delay in the transmission
suffered when we use 4 and 8 simultaneous traffics.

4.2 Tests with TCP Cubic

Fig. 12 Throughput vs. Time – without errors

Fig. 13 Sequence Nº vs. Time – without errors

Fig. 14 Throughput vs. Time – 5 errors

Fig. 15 Sequence Nº vs. Time – 5 errors

Fig. 16 Throughput vs. Time – 10errors

Fig. 17 Sequence Nº vs. Time – 10 errors

Fig. 18 Throughput vs. Time – 15errors

Fig. 19 Sequence Nº vs. Time – 15 errors

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-38-

Fig. 20 Throughput vs. Time – 20 errors

Fig. 21 Sequence Nº vs. Time – 20 errors

TCP CUBIC presents an early sensitivity to burst
errors. For the trials of 10 burst errors, CUBIC
already shows symptoms of being affected; this can
be seen in the graph of packet sequence and
throughput vs. time. In both cases, for T= 45 the
transmission is delayed for approximately 15
seconds, recovering after that time the data
transmission. For larger burst error values, the delay
in recovering the transmission is noticeably higher.

4.3 Tests with TCP Westwood

Fig. 22 Throughput vs. Time – no errors

Fig. 23 Sequence Nº vs. Time – no errors

Fig. 24 Throughput vs. Time – 5 errors

Fig. 25 Sequence Nº vs. Time – 5 errors

Fig. 26 Throughput vs. Time – 10 errors

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-39-

Fig. 27 Sequence Nº vs. Time – 10 errors

Fig. 28 Throughput vs. Time – 15 errors

Fig. 29 Sequence Nº vs. Time – 15 errors

Fig. 30 Throughput vs. Time – 20 errors

Fig. 31 Sequence Nº vs. Time – 20 errors

As we can see, Westwood has a great sensitivity to
burst errors from the 15 packets and 8 simultaneous
traffics. In that test and posteriors of 20 packets of
error in burst, particularly the sequence of packages
presents a remarkable "stretching" which indicates
that the transfer of data is suspended for a while
until resuming the sending of data.

4.4 Tests with TCP Vegas(Alpha=1;Beta=3)

Fig. 32 Throughput vs. Time – without errors

Fig. 33 Sequence Nº vs. Time – without errors

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-40-

Fig. 34 Throughput vs. Time – 5 errors

Fig. 35 Sequence Nº vs. Time – 5 errors

Fig. 36 Throughput vs. Time – 10 errors

Fig. 37 Sequence Nº vs. Time – 10 errors

Fig. 38 Throughput vs. Time – 15 errors

Fig. 39 Sequence Nº vs. Time – 15 errors

Fig. 40 Throughput vs. Time – 20 errors

Fig. 41 Sequence Nº vs. Time – 20 errors

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-41-

4.5 Tests with TCP Vegas (Alpha=4;Beta=8)

Fig. 42 Throughput vs. Time – without errors

Fig. 43 Sequence Nº vs. Time – without errors

Fig. 44 Throughput vs. Time – 5 errors

Fig. 45 Sequence Nº vs. Time – 5 errors

Fig. 46 Throughput vs. Time – 10 errors

Fig. 47 Sequence Nº vs. Time – 15 errors

Fig. 48 Throughput vs. Time – 15 errors

Fig. 49 Sequence Nº vs. Time – 15 errors

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-42-

Fig. 50 Throughput vs. Time – 20 errors

Fig. 51 Sequence Nº vs. Time – 20 errors

As we can see, although TCP Vegas is affected in a
similar way for all tests of different flows (1, 2, 4
and 8) equally for alpha= 1, beta= 3 and alpha= 4
beta= 8, in this last case the transmission sequence
offers correspondence between different traffic
values. Particularly the case of Vegas (alpha= 4,
beta= 8) is the protocol least sensitive to burst errors
with a shorter recovery time than all previous tests.

5. Conclusions

As observed in the results, as the size of the burst
and the traffic increases, the recovery time in the
transmission of data for the flow where the burst
error is generated, increases. This effect is verified
in both the throughput vs. time as well as the
sequence number vs. time graphics. In particular, we
can note that on the tests performed, this effect
becomes more noticeable from a burst size of 15
segments, accentuated when we perform tests by
increasing the amount of flows in a common path,
which implies greater competition for the
bandwidth.

Of the protocols analyzed, TCP Vegas is the one
that shows particular characteristics. In the first test
sequence, the default parameters were maintained
using NS-2 with alpha= 1 and beta= 2, figures 32 to
41. On this set, the graphs representing the sequence
number vs. time of the flow where the burst error is
found (figures 35, 37, 39 and 41), we see that at
times when the traffic is in a set of 4 simultaneous
data streams, the transmission times are greater than

when it is in a set of 8 simultaneous data streams. In
all cases, the trend is reversed and at the end of the
test, the traffic that is in a set of 4 simultaneous
flows ends before the transmission of the 3,000
segments that the traffic that is in a set of 8 flows.
This generates that at any given moment the celestial
and red curves cross.

This effect does not occur when the tests are
carried out with parameters of alpha= 4 and beta= 8,
in all cases, the greater the number of data flows
considered, the greater the transmission times of the
data traffic with burst errors.

6. Future research lines

For future work, it is proposed to study other
variants of the TCP protocol in similar conditions to
try to determine a behavior in the response to these
conditions.

Competing interests

The authors have declared that no competing
interests exist.

References

[1] Postel J., “RFC 793: Transmission Control
Protocol”.September 1981.

[2] David Clark, “RFC 813: Window and
Acknowledgment Strategy in TCP”. July 1982

[3] M. Handley, J. Padhye and S. Floyd, “TCP
Congestion Window Validation”. RFC 2861,
June 2000.

[4] A. Afanasyev, N. Tilley, P. Reiher, and L.
Kleinrock, “Host-to-Host Congestion Control
for TCP”. IEEE Communications Surveys
Tutorials, vol. 12, no. 3, 3rd quarter 2010, pp.
304- 340.

[5] Teerawat, Issariyakul & Ekram Hossain,
“Introduction to Network Simulator NS2”.
Springer, 2009

[6] J. Nagle, “RFC896—Congestion control in
IP/TCP internetworks”. 1984

[7] A. Afanasyev, N. Tilley, P. Reiher, and L.
Kleinrock,“Host-to-Host Congestion Control for
TCP”. IEEE Communications Surveys &
Tutorials, Volume 12 Issue, page 304-342.3,
July 2010

[8] V. Jacobson, “Congestion avoidance and
control”. ACM SIGCOMM, pp. 314–329, 1988.

[9] R. Braden, “RFC1122—Requirements for
Internet Hosts – Communication Layers”. 1989.

[10] W. Stevens, “RFC2001—TCP Slow Start,
Congestion Avoidance, Fast Retransmit”. 1997.

[11] V. Jacobson, “Modified TCP congestion
avoidance algorithm”. Technical report, April
1990.

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-43-

[12] I. Rhee and L. Xu, “CUBIC: a new TCP-
friendly high-speed TCP variant”. SIGOPS
Operating Systems Review, vol. 42, no. 5, pp.
64–74, July 2008.

[13] L. Brakmo and L. Peterson, “TCP Vegas: end to
end congestion avoidance on a global Internet”.
IEEE Journal Selection Areas Communications,
vol. 13, no. 8, pp. 1465–1480, October 1995

[14] Tsang, E. C. M., Chang, R .K. C., “A
Simulation Study on the Throughput Fairness of
TCP Vegas”, in Proceeding of 9th IEEE
International Conference on Networks, pp. 469-
474, Bangkok, Thailand, 2001

[15] Ghassan A. A., Mahamod I. &Kasmiran J.,
“Influence of Parameters Variation of TCP-
Vegas in Performance of Congestion Window
over Large Bandwidth-Delay Networks”, in
17th Asia-Pacific Conference on
Communications (APCC), pp. 434-438, Sabah,
Malaysia, 2011.

[16] S. Mascolo, C. Casetti, M. Gerla, M. Y.
Sanadidi, and R. Wang, “TCP Westwood:
Bandwidth estimation for enhanced transport
over wireless links”. In Proc. ACM
MOBICOM, pp. 287–297, 2001.

[17] D. R. Rodríguez Herlein, C. A. Talay, C. N.
González, L. A. Marrone, F. A. Trinidad,

“Consideraciones sobre el comportamiento del
protocolo TCP en sus variantes Vegas, Reno,
Cubic y Westwood ante errores en ráfaga en una
topología híbrida”, en XXIII Congreso
Argentino de Ciencias de la Computación, pp.
874-883, La Plata, Oct. 2017

Citation: D.R. Rodríguez Herlein, C.A.
Talay, C.N. González, F.A. Trinidad, L.
Almada and L.A. Marrone. “Burst Error
Analysis Introduced in Multiple Traffic of
Protocols TCP Reno, Cubic, Westwood and
Vegas on a Model of Hybrid Topology”,
Journal of Computer Science &
Technology, vol. 19, no. 1, pp. 32–44,
2019.

DOI: 10.24215/16666038.19.e04

Received: December 19, 2017 Accepted:
October 16, 2018.

Copyright: This article is distributed under
the terms of the Creative Commons License

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-44-

