
White-Box Testing Framework for
Object-Oriented Programming based on

Message Sequence Specification

Juan Ignacio Rodŕıguez Silva1, Mart́ın Larrea1,2,3
1Departamento de Ciencias e Ingenieŕıa de la Computación, Universidad

Nacional del Sur (DCIC-UNS)
2Instituto de Ciencias e Ingenieŕıa de la Computación (UNS-CONICET)
3Laboratorio de I+D en Visualización y Computación Gráfica, (UNS-CIC

Prov. de Buenos Aires)
nachorodriguez12@hotmail.com, mll@cs.uns.edu.ar

Abstract. Software is a crucial element in the functionality of devices
and industry. Likewise, the operation of an enterprise or organization de-
pends largely on the reliability of the software systems used for support-
ing the business process or particular tasks. The quality of software has
become the most important factor in determining the success of products
or enterprises. In order to accomplish a quality software product several
methodologies, techniques, and frameworks have been developed, each
of them tailored to specific areas or characteristics of the software under
review. This paper presents a white-box testing framework for Object-
Oriented Programming based on Message Sequence Specification. In the
context of an object-oriented program, our framework can be used to
test the correct order in which the methods of a class are invoked by its
clients. The implementation of the framework is based on aspect-oriented
programming.

Keywords: Software Verification Validation, White-Box Testing, Object-
Oriented Programming, Message Sequence Specification, Aspect-Oriented
Programming

1 Introduction

Verification and Validation (V&V) is the process of checking that a software
system meets its specifications and fulfills its intended purpose. The software
engineering community has acknowledged the importance of V&V process to
ensure the quality of its software products. The V&V process, also known as
software testing or just testing, is composed of V&V techniques. There are many
different V&V techniques which are applicable at different stages of the devel-
opment lifecycle. The two main categories of testing techniques are white-box
and black-box. In the first one, the testing is driven by the knowledge and infor-
mation provided by the implementation or source code. While in the second one
the specification of the software, module, or function is used to test the object
under review.

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

532

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301087734?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In 1994, Kirani and Tsai ([4]) presented a technique called Message Sequence
Specification that, in the context of an object-oriented program, describes the
correct order in which the methods of a class should be invoked by its clients. The
method sequence specification associated with an object specifies all sequences
of messages that the object can receive while still providing correct behavior.
Daniels and Tsai [5] used the idea of Message Sequence Specification as a testing
tool but without implementing a framework to support this technique.

We developed a framework for testing object-oriented programs based on
Message Sequence Specification. Our framework can be used to test the correct
order in which the methods of a class are invoked by its clients. The implemen-
tation of the framework was done using aspect-oriented programming, which
allows to test the source code without the need to change any line of code in the
program itself and even allows to run the tests while the user is using it.

In the remaining parts of this article, we first provide background V&V in
general and them move on to review the concepts of Message Sequence Specifi-
cation in the software development process. We continue with the presentation
of aspect programming, a key part of our framework. Then, we describe our
proposed framework. We later introduce an example of the use of such frame-
work. We conclude with a brief discussion on limitations and advantages of our
approach and the future work.

2 Background Review

2.1 Background on Verification & Validation

Software testing is involved in each stage of software life cycle, but how we
test and what we test on each stage of software development is different, the
nature and the goals of what is being tested are different. Based on [1], there
are 8 types of testing in the life cycle: Unit testing is a code based testing
which is performed by developers, this testing is mainly done to test each and
individual units separately. The Unit testing can be done for small units of code,
generally no larger than a class. Integration testing validates that two or more
units work together properly, and inclines to focus on the interfaces specified
in the low-level design. System testing reveals that the system works end-to-
end in a production-like location to provide the business functions specified in
the high-level design. Acceptance testing is conducted by business owners; the
purpose of acceptance testing is to test whether the system does, in fact, meet
their business requirements. Regression Testing is the testing of software after
changes have been made to ensure that those changes did not introduce any new
errors into the system. Alpha Testing is usually applied at the developer’s site,
with the presence of the developer. Beta Testing is done at the customer’s site
with no developer in site. Functional Testing is done for a finished application,
its goal is to verify that the system provides all the required behavior.

In the context of V&V, black-box testing is often used for validation (i.e.
are we building the right software?) and white-box testing is often used for

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

533

verification (i.e. are we building the software right?). In black-box testing, the
test cases are based on the information from the specification. The software
testers do not consider the internal source code of the test object. The focus
of these tests is solely on the outputs generated in response to selected inputs
and execution conditions. The software tester sees the software as a black box,
where information is input to the box, and the box sends something back out.
This can be done purely based on the requirement specification knowledge; the
tester knows what to expect from the black box to send out and tests to make
sure that the box sends out what it’s supposed to send out.

Oppositely, white-box testing, also called structural testing, designs test cases
based on the information derived from the source code. White-box testing is con-
cern with the internal mechanism of a system, it mainly focuses on the control
flow or data flow of the program. White-box and black-box testing are consid-
ered to complement each other. In order to test software correctly, it is essential
to generate test cases from the specification and source code. This means that
we must use white-box and black-box techniques on the software under devel-
opment.

Each test technique, both white-box and black-box, must describe a test
model and, at least, one coverage criteria. Test models describe how to generate
test cases, it can be a graph, a table or a set of numbers. Coverage criteria are
used to steer and stop the test generation process ([2]), they are usually boolean
conditions. They have widely accepted means of assessing the quality of a test
([3]).

The same testing technique that we classified as white or black box, can be
arranged as static or dynamic techniques. Static testing are those techniques
where the code is not executed, it can be analyzed manually or by a set of
tools. This type of testing checks the code, requirement documents, and design
documents. Dynamic testing is done when the code is executed. Dynamic testing
is performed when the code being executed is input with a value, the result or
the output of the code is checked and compared with the expected output.

2.2 Background on Message Sequence Specification

In 1994, Kirani and Tsai ([4]) presented a technique called Message Sequence
Specification that, in the context of an object-oriented program, describes the
correct order in which the methods of a class should be invoked by its clients. The
method sequence specification associated with an object specifies all sequences
of messages that the object can receive while still providing correct behavior.

Their strategy used regular expressions to model the constraints over the
correct order of the invocation of the methods i.e. the regular expression is the
test model. Method names were used as the alphabet of a grammar which was
then used to statically verify the program’s implementation for improper method
sequences. A runtime verification system identifies incorrect method invocations
by checking for sequence consistency with respect to the sequencing constraints.

If a class C has a method M1, this is noted as CM1
. Sequence relationships

between two methods were classified into three categories, sequential, optional,

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

534

and repeated. If the method M1 of C should be invoked before the method M2

of the same class, then this relationship is sequential and is represented as
CM1
•CM2

If one, and only one of the methods M1 and M2 can be invoked then this
relationship is optional and is represented as

CM1 |CM2

Finally, if the method M1 can be invoked many times in a row then this is a
repeated relationship and is represented as

(CM1
)∗

For example, if a class X has three methods create, process and close, a
possible sequencing constraint based on Message Sequence Specification could
look like

Xcreate•(Xprocess)
∗•Xclose

If class X is part of a larger system S, then we could statically check the
source code of S to see if all calls to X’s methods follow the defined grammar. If
a static analysis is not enough, we could implement a runtime verification system
that tracks all calls to X’s methods and checks dynamically the sequence of calls
against the grammar.

This technique can also be used to test the robustness of a system. Continuing
with the class X as an example, we can use the defined grammar to create method
sequences that are not a derivation from the grammar, i.e. incorrect sequences
methods. These new sequences can be used to test how the class handles a
misuse. For example, how does the class X respond to the following sequence of
calls:

Xcreate•Xclose•Xprocess

Testing with the sequences generated by the grammar and with those that
were not are two variations presented in [5], a work that extended the research
done in [4].

2.3 Background in Aspect Oriented Programming

Aspect Oriented Programming [6] (AOP) is a programming paradigm that aims
to increase modularity by allowing the separation of cross-cutting concerns. It
does so by adding additional behavior to existing code without modifying the
code itself, instead separately specifying which code is modified via a “pointcut”
specification, such as “log all function calls when the function’s name begins
with set”. This allows behaviors that are not central to the business logic (such
as logging or testing) to be added to a program without cluttering the code, core
to the functionality.

AOP entails breaking down program logic into distinct parts (so-called con-
cerns). Nearly all programming paradigms support some level of grouping and
encapsulation of concerns into separate, independent entities by providing ab-
stractions (e.g., functions, procedures, modules, classes, methods) that can be
used for implementing, abstracting and composing these concerns. Some con-
cerns cut across multiple abstractions in a program, and defy these forms of
implementation. These concerns are called cross-cutting concerns or horizontal

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

535

concerns. Logging exemplifies a crosscutting concern because a logging strategy
necessarily affects every logged part of the system. Logging thereby crosscuts all
logged classes and methods.

See for example Listing 1.1, a simple Java class for a bank account. If we need
to log all the events in the account one way to do it is as the listing shows. The
main disadvantages of this approach is that we are mixing the logic of the bank
account class with the requirement of logging its events. By using AspectJ we can
create an aspect, as in Listing 1.3 while the bank account class remains simpler
1.2. With this two classes, every time there is a call to deposit or withdraw the
jre will execute the methods in the AspectJ aspect.

Listing 1.1. Classic example

public class Account {
protected int amount ;

public Account ()
{ this . amount = 0 ; }

public void depos i t (int amount
{ this . amount += amount ;

Log . put (” depo s i t f o r ” + amount) ;
}

public void whitdraw (int amount)
{ this . amount −= amount ;

Log . put (”whitdraw f o r ” + amount) ;
} }

Listing 1.2. Clear code

public class Account {
protected int amount ;

public Account ()
{ this . amount = 0 ; }

public void depos i t (int amount
{ this . amount += amount ;
}

public void whitdraw (int amount)
{ this . amount −= amount ;
} }

Listing 1.3. AspectJ code

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

536

public aspect AspectLogic {

be f o r e (int amount) :
c a l l (void Account . depo s i t (int))
&& args (amount) {

Log . put (” depo s i t f o r ” + amount) ;
}

be f o r e (int amount) :
c a l l (void Account . whitdraw (int))
&& args (amount) {

Log . put (”whitdraw f o r ” + amount) ;
} }

By using AspectJ we can add checks to a source code with out the need to
change the code itself. This is a very appealing feature in the context of software
verification and validation. For more on AOP we recommend the book [6].

3 Previous Work on Testing with Message Sequence
Specification

The technique presented in 1994 by Kirani and Tsai ([4]) was follow in 1999 by
Daniels and Tsai in [5]. Also in 1999, Tsai et al. presented [8] where Message
Sequence Specification was used to create template scenarios than later were
used to create test cases. In 2003, Tsai used the technique [7] as a verification
mechanism to the UDDI servers in the context of Web Services. In 2014, [9]
introduced a Java-based tool for monitoring sequences of method calls, similar
to our goal in this work they used annotations instead of AOP.

4 Our Proposal

Our goal in this work is to present a testing framework for object-oriented source
code based on Message Sequence Specification by using AOP. AOP will allow
us to create our test cases without the need to modify the source code, and
those test cases will run automatically with each run of the program under test.
The use of message sequence specification will allow the developer of each class
to describe a grammar that will represent the correct behavior of such class.
The framework will take these grammars, run the program and check that the
methods are used according to the developer specification. We wanted to provide
an easy to use framework, with an easy to read and understand representation
of the methods correct usage. More particularly, we wanted a framework that
the developer can use, without the need for a testing specialist.

The first thing the developer must do to use the framework is to create the
regular expression associated with its class. This is the correct behavior or order
in which the methods of the class should be called. In order to express this

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

537

grammar in a simple way, the developer is encouraged to use simple symbols
that represent the methods. This means that it is not required to use the actual
names of the methods in the grammar. But, in order to keep the grammar easy
to read, at some point the developer must create a map between actual methods
name and their short version.

Lets use Listing 1.4 as an example. Again we have a Bank Account class, but
a bit more complex. In this case, the correct order to use the Account is: first the
account must be created and then it must be verified. The first money movement
in the account must be a deposit, after that we can deposit or withdraw money.
Finally, the account must be closed.

Listing 1.4. Classic example

public class Account {
protected int amount ;
protected boolean v e r i f y ;

public Account ()
{ this . amount = 0 ;
this . v e r i f y = fa l se ; }

public void v e r i f y ()
{ this . v e r i f y = true ; }

public void depos i t (int amount)
{ i f (this . i s V e r i f y ()) this . amount += amount ; }

public void whitdraw (int amount)
{ i f (this . i s V e r i f y ()) this . amount −= amount ; }

public void c l o s e ()
{ this . amount = 0 ;
this . v e r i f y = fa l se ; }

public boolean i s V e r i f y ()
{ return this . v e r i f y ; } }

Based on Message Sequence Specification, the grammar for the correct use
of this class is as follows:

create•verify•deposit•(deposit|withdraw)∗•close
or as a more simpler expression, as:

c•v•d•(d|w)∗•x

As shown the names that we used in the grammar not necessarily have to
be the actual methods name. This can be used to enhance the readability of the
grammar, but in order to use this as it is, we need to map those name to the
actual methods. For this goal, the framework offers a Map < String, String >

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

538

map; variable where the mapping is store. Before we can tell the framework about
our grammar for the Bank Account class, we must first input the mapping as
shown in the Listing 1.5. We then can introduce the grammar to the framework
(Listing 1.6). With this two steps completed, it is now possible to execute the
main program and let the framework check, at runtime, in which order are the
methods of the Bank Account class being called.

Listing 1.5. Classic example

map . put (”bank . Account.< i n i t >” , ”c”) ;
map . put (”bank . Account . v e r i f y ” , ”v”) ;
map . put (”bank . Account . depo s i t ” , ”d”) ;
map . put (”bank . Account . withdraw” , ”w”) ;
map . put (”bank . Account . c l o s e ” , ”x”) ;

Listing 1.6. Classic example

Pattern regex = Pattern . compi le (”cvd (d |w)∗x”) ;
Matcher matcher = regex . matcher (””) ;

Once the main program is running, our framework will keep a log of how the
methods in the grammar are called. If a method call doesn’t follow the grammar
form, the framework will issue an alert in the console output. A trace of all the
call will be output to the console as well.

The usefulness of this framework can be emphasized in the following section,
where we use our development to find an error in a real case, an application
developed in our laboratory.

5 Case Study. Rock.AR, a software solution for point
counting

Point counting is the standard method to establish the modal proportion of
minerals in coarse-grained igneous, metamorphic, and sedimentary rock sam-
ples. This requires observations to be made at regular positions on the sample,
namely grid intersections. At each position, the domain expert decides to which
mineral the respective grid point and its local neighborhood belongs. By count-
ing the number of points found for each mineral, it is possible to calculate the
percentages that these values represent of the total counted points. These per-
centages represent the approximate relative proportions of the minerals in a
rock, which is a 2D section of a 3D sample. Rock.AR ([11]) is a visualization
tool with a user-friendly interface that provides a semiautomatic point-counting
method. It increases the efficiency of the point-counting task by reducing the
user cognitive workload. This tool automates the creation of the grid used to
define the point positions. This grid is overlaid on a predetermined image of
a sample, allowing the count of minerals identified at the intersections of the
grid lines. This method significantly reduces the time required to conduct point
counting, it does not require an expensive ad hoc device to perform the job, and

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

539

it improves the consistency of counts. Among the methods available in the main
class of this application, there are three of interest for us. Those are LoadSam-
ple(), MoveSelectedCell() and AddNewRockType(). In this program, the correct
used of these methods is: First it must be at least one call to LoadSample(), then
before a new rock type can be added, a point (also known as a cell) must be
selected. We can create a grammar from this as such:

(LoadSample•LoadSample∗

•(MoveSelectedCell•MoveSelectedCell∗•AddNewRockType∗)∗)∗

or in a more simpler way:
(l•l∗•(m•m∗•a∗)∗)∗

A particular observation of this grammar is that, as defined by the developer,
before adding a new mineral type at least one cell must be selected, and before
that a sample must be load. Using our framework, we created this grammar and
we enter it into the framework. After this we ran the program several times and
used Rock.AR for a while. In the third run of the program, the test framework
detect an error and output the sequence of calls that didn’t follow the grammar.
The sequence was: :

l•m•m•a•l•l•a
The last three call on the sequence are the interesting ones. According to these,
it was possible to call the method AddNewRockType() without having to call
MoveSelectedCell() first. Using this information we discover that when the user
load a second sample in the programm, there were two variables that were not
initialized. Because of this, it was possible to call AddNewRockType() right af-
ter LoadSample() something that was not allow in the grammar. Before the use
of our testing framework there was no evidence of the error found. The error
does not generate any exception in execution, this is because since the variables
were already initialized their old values were taken and the program continued
its execution.

6 Conclusions & Future Work

In a world where technology is part of every person’s daily life, software is a
crucial element. The quality of software has become the most important factor
and the developer need tools to assist them in their work in order to achieve
such high quality. In this work, we presented a framework for white-box testing.
Our framework combines Message Sequence Specification with Aspect Oriented
Programming in order to achieve a tool to test the correct order in which methods
in a class are being called. As we stated earlier, our goal was to create an easy to
use framework for testing. A framework that the developer could use on its own
code and a framework that will not interfere with the code under review. The
intention of this framework is to find a particular type of error, which occurs
when the order in which the methods of a class are called is relevant. As it was
demonstrated in the case of study, the framework allows to detect errors that
otherwise would be difficult to determine.

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

540

As for future work, a more expressive framework is under consideration. For
the moment, we can only describe the order in which the methods are being
called but not any information on how are they call or the state of the class
instance. It would be useful to say that a method x must be called after method
y if the value of an attribute is equal to 0.

Acknowledgment

This work was partially supported by the following research projects: PGI 24/N037
and PGI 24/ZN29 from the Secretaŕıa General de Ciencia y Tecnoloǵıa, Univer-
sidad Nacional del Sur, Argentina.

References

1. Jorgensen, Paul C. Software testing: a craftsman’s approach. CRC Press, 2013.
2. Weileder, Stephan. Test models and coverage criteria for automatic model-based

test generation with UML state machines. Diss. Humboldt University of Berlin,
2010.

3. Friske, Mario, Bernd-Holger Schlingloff, and Stephan Weileder. ”Composition of
Model-based Test Coverage Criteria.” MBEES. 2008.

4. Kirani, Shekhar H., and W. T. Tsai. Specification and verification of object-oriented
programs. Diss. University of Minnesota, 1994.

5. Daniels, F. J., and K-C. Tai. ”Measuring the effectiveness of method test sequences
derived from sequencing constraints.” Technology of Object-Oriented Languages
and Systems, 1999. TOOLS 30 Proceedings. IEEE, 1999.

6. Laddad, Ramnivas. AspectJ in action: practical aspect-oriented programming.
Dreamtech Press, 2003.

7. Tsai, W. T., Paul, R., Cao, Z., Yu, L., Saimi, A. (2003, January). Verification of web
services using an enhanced UDDI server. In Object-Oriented Real-Time Dependable
Systems, 2003.(WORDS 2003). Proceedings of the Eighth International Workshop
on (pp. 131-138). IEEE.

8. Tsai, W. T., Tu, Y., Shao, W., Ebner, E. (1999). Testing extensible design patterns
in object-oriented frameworks through scenario templates. In Computer Software
and Applications Conference, 1999. COMPSAC’99. Proceedings. The Twenty-Third
Annual International (pp. 166-171). IEEE.

9. Nobakht, B., de Boer, F. S., Bonsangue, M. M., de Gouw, S., Jaghoori, M. M.
(2014). Monitoring method call sequences using annotations. Science of Computer
Programming, 94, 362-378.

10. Bai, X., Lu, H., Zhang, Y., Zhang, R., Hu, L., Ye, H. (2011, July). Interface-
Based automated testing for open software architecture. In Computer Software and
Applications Conference Workshops (COMPSACW), 2011 IEEE 35th Annual (pp.
149-154). IEEE.

11. Larrea, M. L., Castro, S. M., Bjerg, E. A. (2014). A software solution for point
counting. Petrographic thin section analysis as a case study. Arabian Journal of
Geosciences, 7(8), 2981-2989.

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

541

	White-Box Testing Framework

