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Abstract. Roads are composed of various sorts of materials and with
the constant use they expose different kinds of cracks or potholes. The
aim of the current research is to present a novel automated classification
method to be applied on these faults, which can be located on rigid pave-
ment type. In order to collect proper representation of faults, a Kinect
device was used, leading to three-dimensional point cloud structures. Im-
ages descriptors were used in order to establish the type of pothole and
to get information regarding fault dimensions.

1 Introduction

The pavement of a street or highway is a structure composed of a set of layers
of materials processed on the ground, whose function is to distribute the load
of vehicles to the subsoil and allow the constant transit. The structure of the
pavement should provide a surface of acceptable quality for the circulation of
vehicles, adequate slip resistance, a lower level of noise, a waterproof, structural
strength and a long life cycle with low maintenance cost. However, cracks are
usual due to several factors. A fissure is a long, narrow opening in a slab of
material that can be a corner fissure, longitudinal (if it extends along a slab) or
transversal (if it extends perpendicular to the overturning of the slab material).
The repair method for this type of failure consists of sealing joints and fissures,
and repairing the entire thickness. On the other hand, a pothole is defined as
a cavity, generally rounded due to the loss of the pavement on a part of the
surface. The repair method for this type of failure depends on its deterioration,
and is special for each case. In Figure 1 both faults are shown.

Fig. 1. A pothole and a longitudinal fissure, common in roads.
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Due to the constant degradation of the different types of faults, these must
be detected and repaired as soon as possible. The task of registering defects and
depressions in the pavement has always been crucial to adopt a precise strategy
for the maintenance and repair of roadways. However, manual measurement is
a costly task both in time and resources. In this work we present an automated,
Al-based classification of pavement faults, mainly potholes and fissures, through
machine learning techniques using proper, accessible 3D models. There are pre-
vious works that apply different technologies for this purpose [2-12] but they
require special devices and a good degree of important human intervention. Our
interest is to formalize a process that is both accessible and cost-efficient. As a
consequence, we implement an assistive application for the detection and clas-
sification of faults in the pavement, which will be useful for cost estimates. Our
proposal make use of accessible domestic technologies, such as the 3D sensor of
videogame consoles, to obtain a model of pavement fault that us appropriate for
machine learning algorithms. A real implementation that offers an appropriate
visualization and automatic geo-location of faults is also presented.

The work is organized as follows. Section 2 introduces the problem of road
faults modelization. Section 2 explains the 3D sensors, the libraries to process the
data obtained by these sensors, the management of point clouds, the descriptors
that can be obtained from the analysis of these data and the machine learning
technique used to generate the classification model. In section 3 we describe a
prototype application for a vehicle that is used to collect the data through the
Kinect sensor. Finally, conclusions and future work are discussed.

2 Surface Recognition

As stated before, we are interested in the automated classification of faults.
This requires the use of adequate data structures representing real potholes and
fissures. Hence, surface recognition is the first part of the process towards intelli-
gent evaluation of faults. Ideally, the task of collecting data from real pavement
should be also be automated, by using an autonomous vehicle. However, the
construction of such a kind of vehicle is beyond the goals of our project. We are
interested in the use of accessible hardware towards a practical solution for city
governments and contractors.

In order to classify depressions then it is mandatory to get a proper mathe-
matical model using some surface measure device. Here 3D sensors are used to
analyse real world objects or environments and obtain their relevant physical
properties, such as colors or shape, which later can be used to produce three-
dimensional digital models. There are diverse, expensive sensors that may be
used to attain this purpose, but we are interested in the use of domestic, accessi-
ble resources. Hence, we use a Kinect Microsoft sensor that has the capabability
of generate Range Images, that keeps information regarding distance of each im-
age pixel to the device capture point. We have used this device to record faults in
a moving vehicle. The device should be mounted as shown in Figure 2, although
that structure was not built during this research proyect.
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The scanning process must produce 3D model representations. We use point
cloud structures, which are point sets on a coordinate systems (optionally with
RGB point information), being the most frecuently used the cartesian three-
dimensional system (X,Y,Z). These representations can be renderized, inspec-
tioned and converted to polygonal or triangular meshes.

Fig. 2. The Kinect device can be easily installed on a vehicle.

There are several drivers and libraries (OpenNI, Freenect, OpenKinect,Point
Cloud Library) that allow users to interact with the Microsoft Kinect sensor.
Point Cloud Library (PCL) is an independent, open-source, multiplatform (also
available in Windows, Linux, MacOS and AndroidOS), C++-written solution for
sensing, geometrical point cloud processing and storing in 2D or 3D dimensions.
The library PCL offers different standalone modules with algorithms that may
be combined into a pipeline to spot several types of objects. These algorithms
are meant to be applied on a wide range of tasks which is important for a correct
object detection, for instance outliers filtering (filter point with values out of a
certainrange), point cloud reading, storing, format conversion, decomposition (in
order to perform searches) and concatenation, perform segmentation on specific
parts of a complete point cloud capture, keypoint extraction and geometric de-
scriptors computation with the aim of identifying distinct sorts of objects. In
Figure 3 a point cloud of a real pavement fault is shown.

Fig. 3. Point cloud visualized with pcl_viewer tool from PCL. Full point cloud points
are depicted with violet whereas points from a pavement depression, which have been
isolated with classifier application, are with ligthblue and blue.
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The process of obtaining a proper 3D model for automated classification is
important and somehow difficult. Regarding the PCL pipeline for object recogni-
tion, it consists of a point cloud pre-processing phase with the goal of getting rid
of noise. Then an object segmentation step is performed which allow us to obtain
clusters which can be associated with potholes. Lasty, a descriptor generation
phase is executed with the goal of getting information about the object geom-
etry. PCL descriptors are divided in two classes: local and global. On the one
hand, local descriptors describe surface geometry around a point without taking
into account the complete geometry of the object the point belongs to. Hence
when the local descriptors computation is performed, it is necessary to previ-
ously filter keypoints which belongs the object under study. Local descriptors
applications include objects recognition and registration, which is a technique to
detect whether common areas in several point clouds exists. On the other hand,
global descriptors describe geometry of a whole point cluster which represents an
object. Therefore if there is a need to generate this type of descriptor it would
be compulsory to perform previously a pre-processing step in order to isolate
the cluster from the point cloud. Applications of this type of descriptors are the
object recognition and classification, position estimation and geometry surface
analysis (type of object, shape, etc.).

The process of collecting samples took several days. Also, during this phase
it was observed that some cracks does not possess significant depth to be mea-
sured by the Kinect device. Althoug this seems to be a drawback, those cracks
are not of real interest for evaluation costs of repair (at least not for the mo-
ment, because faults tend to increase in size as time goes by). Due to this fact
we decided to classify only those types of cracks which have enough depth to be
isolated and described by descriptors which make use the of geometrical informa-
tion regarding angles between normals of a surface. Because of this, descriptors
were selected taking into account processing hardware capabilities and normal
associated descriptor properties. These are the following:

— Global Radious-based Surface Descriptor (GRSD): This descriptor does not
use any sort of pre-processing, for instance normals, yet it consists in travers-
ing each of the point cloud points and for each select three random points
and compute three ratio functions: D2, D2 ratio, D3 and A3. Every function
produces histograms which describe the geometric relation among points
that are part of the main figure.

— Ensamble Shape of Functions (ESF): Global descriptor that is based on
Radio-based Surface Descriptor (RSD), which consists in geometrical surface
shape by calculating radial information through neighbour points. Therefore
this algorithm consist in setting up a formula using normals angle relation A,
the distance between them d and the surface radious r defined in d = 7 * a.
The latter formula is applied to every point p, that belongs to the point cloud,
what gives as a result a set of ratios which describes each of the spheres that
contains p with every one of the neighbours. Finally, only the minimal and
maximal ratios are selected to be included in the final descriptor for that
point.
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The outcome of these complex processes is a data structure properly rep-
resenting relevant pavement faults. There is, however, the need of determining
whether these faults are either potholes or fissures, as they require different treat-
ments. In the following section we discuss the use of machine learning techniques
to help this task.

3 SVM

Support Vector Machine is a technique used for supervised learning to solve
classification and regression problems based on hyperplanes. In this method the
p features associated with a certain amount of training samples are arranged in
a p-dimensional (being each sample a p dimensional vector) where each feature
represents the coordinates with regard to one specific sample. In this way the
SVM model generation is based on computing, testing and selecting from several
hyperplanes which separate input data in order to get the best. Thus, SVMs
allow researchers to divide data in sets with linear hyperplanes. Nonetheless,
there are situations in which input data cannot be linearly divided, causing
an unsatisfactory performance. The solution offered by SVMs to this problem
is the use of kernel decision functions which convert the feature input data
space to a higher dimension space being these quadratic, cubic, polynomial or
higher dimensions space with the goal of achieving the finding of a brand-new
hyperplane that separate samples with a better precision. Therefore there are a
diverse range of kernels employed to attain this objective, mainly Linear, RBF
and Polynomial.

As aresult of SVM being a classification binary algorithm, various techniques
have been developed to attain multiclass classification which allow researchers
to assign samples among two or more classes. Two of these methods are:

— One versus One (One-vs-One, OvO): Given N classes this algorithm per-
form the N(N — 1)/2 binary classifiers training getting each for every class
combination using the training dataset. Then during the prediction phase a
voting scheme where every classifier gives a result for the same input data
sample. Hence the class which has a greater amount of positive votes it is
the result of the prediction process.

— One versus Rest (One-vs-Rest, OvR, OvA): Given N classes N classifiers
are trained using the full training dataset, choosing as positive those classes
that belong to the classificator whilst the others are chosen as negatives.
Accordingly, by receiving an input sample every classifier generate a decimal
value which is a confidence score that indicates the probability of that sample
of belonging to that type of element. Consequently the class with the highest
score is considered the class in which the element is assigned.

In our current research project, an SVM implementation using C++ pro-
gramming language was implemented for constructing the classification model
(converting the data point cloud samples into SVM compatible format). Through-
out this process, it was necessary to assign a class to every type of sample (crack
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or pothole) using OvO technique and testing the same dataset with Linear and
RBF kernel.

3.1 Building a classification model

The process of construction of the classification model consisted in the following
steps:

1. Pavement surface samples collection: During this step an estimated amount
of 1000 samples were captured using the Kinect sensor, which sensed different
pavement streets in the city of Trelew.

2. Samples pre-processing phase: The main target of this phase is the prepara-
tion of the raw samples in order to improve quality. Several PCL algorithms
for discarding noise were studied. Consequently they were tested against sev-
eral samples. Next, the amount of point cloud points was reduced because
of the hardware limitations and high samples quantity. Thus, downsampling
techniques were implemented. Finally, it was necessary to obtain geometric
properties in order to describe with higher precision the sensed pavement
surface. Here, PCL normal computation algorithms were employed.

3. Sample segmentation: Algorithms for segmentation PCL were analyzed em-
ploying the samples previously captured with the aim of isolating point cloud
clusters which belong to the depressions on the pavement and the rest of the
street. As a consequence, Planar and Euclidean Segmentation algorithms
were selected and concatenated in the instructions pipeline.

4. Curvatures computing: A deeper comprehension of fault dimension is ob-
tained. The average curvature for clusters isolated earlier, which are thought
to be part of a pavement depression, were computed so that allowed us to get
curvatures minimum and maximum ranges, which let us get rid of those seg-
ments whose average curvature level was out of these ranges. Therefore this
helped to improve the classifier application ability to filter or keep clusters
based on alike geometry surface depressions.

5. Feature building: Lastly, diverse PCL surface description methods were stud-
ied and compared with regard to the size in bytes for each sample and amount
of samples to be processed, histogram shape associated with different types
of samples and sort of descriptor (local or global). Later it was investigated
whether PCL offered machine learning models support combined with de-
scriptors. Due to the fact the library had machine learning SVM support
(making use of libsvm tool) this method was chosen for the classification ap-
plication and each one of the point cloud samples were converted to libsvm
compatible format.

After faults were detected by the sensor and raw data was obtained, a com-
plex process of data preparation is triggered. Although it was an integral part of
the project, it is not, however, the intention of this paper to describe the process
in detail, other than the stages mentioned above. In the following section we
address the automatic classification of faults.
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4 Automatic classification

The first step toward the construction of the model was to assign 76 % of sam-
ples to training partition leaving the remaining for testing partition. Previously
mentioned descriptors were tested in several experiments with various types of
samples and as its precision was not enough it was decided to add depressions
properties (for example length, width, depth and volume) along with the descrip-
tors. Potholes properties were computed by PCL algorithms which are based on
the minimum and maximum Cartesian axis values (AABB, OBB y ”"boundary
cloud”). Thus statistical size depression values were compared as well as arith-
metical relationships among them (averages, arithmetical difference between size
and average sizes) with the goal of finding a way of make a difference among
different types of depressions.

By observing these values it was seen that the width-height difference in the
training dataset was similar for the same type of sample. Then a re-classification
sample step was performed. This consisted in establishing a limit value to distin-
guish cracks from potholes being the samples that have a |length —width| > 0.49
difference value considered as cracks whereas others were considered as pot-
holes, since cracks have considerably higher length than width. Thus the previous
formula utilized these values for computing the difference using PCL Oriented
Bounding Box (OBB) algorithm on X and Y axis.

Having observed the classification precision increased by reclassifying sample
training dataset the same technique was applied to the testing dataset which
allowed us to filter 806 out of 1000 samples (753 samples for training and 53 for
testing). Afterwards new tests were performed using the (now) reclassified sam-
ples, obtaining 89 % accuracy with Linear kernel and 71 % with RBF (gamma
0.0000002 and cost C 1500) employing a five iteration cross validation approx-
imation with GRSD descriptor. Next the length-width difference was re-tested,
but with ESF descriptor. Using the same parameters, the process obtained a 98
% precision score for Linear kernel and 54 % for RBF kernel.

A comparison of classification metrics concerning the selected descriptors
(using the original dataset partition with 50 samples ) was made, with the goal
of verifying the classification performance of ESF against others. These values
can be found in Figure 4 and 5.

In the following section we describe the use of a vehicle in the collecting

samples stage, as shown in Figure 2, and the embedded system for registering
faults and their position by geo-localization.
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Kernel Linear Kernel RBF
Tipo de muestra | Precision | Recall | F1-Score | Precision | Recall | F1-Score
Baches 1.0 1.0 1.0 0.0 0.0 0.0
Grietas 1.0 1.0 1.0 0.17 1.0 0.29
avg/total 1.0 1.0 1.0 0.03 0.17 0.05

Fig. 4. ESF descriptor metrics with Linear and RBF kernel.

Kernel Linear Kernel RBF
Tipo de muestra | Precision | Recall | F1-Score | Precision | Recall | F1-Score
Baches 0.83 1 0.91 0.00 0.00 0.00
Grietas 0.23 0.78 0.36 0.17 1.00 0.29
avg/total 0.80 0.53 0.58 0.03 0.17 0.05

Fig. 5. GRSD descriptor metrics with Linear and RBF kernel.

5 Application for a vehicle prototype

Ideally the sensing prototype device consists of a vehicle with a shell fixed in
its back part, as it is seen in Figure 2, which allows the operators to hold the
device from an appropriate high and take samples directly from above the pave-
ment surface. The sensor is connected to an electrical supply device as well as
a notebook in which the pavement depression measuring application is running.
This application is set up to work with a GPS device that provides the fault lo-
cation (latitude and longitude). Thus the pothole measuring process workflow is
to stop the vehicle when a pavement depression is spotted, then the application
user performs the measuring of it and the car moves to the following one and so
forth. This process allows the sensing and registration of big areas of a city in
acceptable time. The application main architecture is composed of the following
software modules:

— Kinect device: It is the main sensing device which let the application get
video and depth frames, which are compulsory to the point cloud file build-
ing. The frames are continuously read, rendered and visualized in real time
from the depression capture application screen.

— Geofencing module: Its purpose it is to compute and return GPS coordinates
in which a pavement depression is.

— APIClient: This component contains the main data exchange class between
capture and web application.

— Client capture application: It offers the functionality with respect to captur-
ing depression process and sending to the web application.
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5.1 Pothole classification application

The pothole classification application is developed in C+-+ and its operation
consists in reading configuration parameters from a .json file which holds infor-
mation regarding the built model and also a database file that keeps a previous
processed samples log.

5

1. Parameter reading

2. Sample reading from
input directory

! (1)

5. Processed results storing

3. sample classification

1. Downsampling (Voxel
Grid)

2. Segmentation (Planar

—

3. Clusters isolation

5. SVC classification
(Crack or Pothole)

4. Compute a descriptor for

ESF + between

each isolated cluster:

)

length-width (OBB

Fig. 6. (1) Classification application (2) Cropping pipeline.

Thus the general workflow starts reading input point cloud files (from a ear-
lier setted up directory) and applying the sample cropping pipeline in order to
get possible pavement depressions clusters. Then for each one build the custom
descriptor and use the previously trained machine learning model, which is read
from hard disk drive, to get the pavement depression type. As a result, every
isolated cluster are stored in point cloud format in an output directory together
with their computed width, length and depth. This process is pictured in Fig-
ure 6. In Figure 5.1 the general architecture is described, and in Figure 5.1 a
screenshot of the application is shown.

Microsoft Kinect

device

Geofencing

Module
(GPS)

APIClient
module

Web
application

 Client depression
capture
application

Fig. 7. General software modules from fault-capturing application.
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Aplicacion de captura de fallas

Captura de fallas

Fig. 8. Pavement depression measuring application interface (Left: RGB video view.
Left: Nigth vision view.).

6 Conclusions and future work

In this work we have described a system for the collection and intelligent classifi-
cation of potholes and cracks in pavement surfaces, using a low-cost commercial
device along with the open-source PCL algorithms connected in an easily con-
figurable pipeline. Moreover the estimated properties related to the pavement
depression (width, length, depth), which may be useful for performing a mate-
rial budget estimation in the repairing process, were successfully computed and
stored for each isolated cluster. The system successfully classified collected data
as potholes or cracks with a proper accuracy.

There exists other proposals on pavement depressions detection and anal-
ysis, which encompass researching and image processing with 3D videos and
images, the following investigations have been made [2-6]. Alternatively, stud-
ies have been performed utilizing vibration devices such as accelerometers in
[7-10]. Otherwise, studies in which the main focus is on specific road potholes
features with aim of getting to process three-dimensional points coordinates as
it is seen on [11,12]. However none of them uses domestic devices nor classifi-
cation algorithms based on machine learning. The use of automated learning is
interesting since pavement faults tend to observe similar qualities within a city,
as a consequence of climatic variations, used materials and quality of human
work.

Future work has several directions. A continuous capture is desirable since it
will make possible to avoid stopping the car. This requires a proper adaptation of
dynamic gathering of data, since it demands real-time algorithms for point-cloud
noise reduction. We are also interested in the estimation of materials and costs
of repairing pavement faults. Since there is a 3D model of every fault a close,
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reliable estimation can be produced. This can be done after processing a whole
street or neighbourhood, hence helping to anticipate financial requirements and
proper planning for e-governance. Even more, after long periods of time historic
data can be mined to eventually detect areas that require special solutions other
than normal patches to pavement. Finally, the addition of more than one type of
sensor can be helpful to allow classification of faults which does not have enough
depth to be fully captured by one sensing device.
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