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Abstract 

In a multi-project context within enterprise 
networks, reaching feasible solutions to the 
(re)scheduling problem represents a major 
challenge, mainly when scarce resources are shared 
among projects. Thus, the multi-project 
(re)scheduling must achieve the most efficient 
possible resource usage without increasing the 
prescribed project constraints, considering the 
Resource Leveling Problem (RLP), whose objective 
is to level the consumption of resources shared in 
order to minimize their idle times and to avoid over-
allocation conflicts. 

In this work, a multi-agent solution that allows 
solving the Resource Constrained Multi-project 
Scheduling Problem (RCMPSP) and the Resource 
Investment Problem (RIP) is extended to incorporate 
indicators on agents’ payoff functions to address the 
Resource Leveling Problem in a decentralized and 
autonomous way, through decoupled rules based on 
Trial-and-Error approach. The proposed agent-based 
simulation model is tested through a set of project 
instances that vary in their structure, parameters, 
number of resources shared, etc. Results obtained 
are assessed through different scheduling goals, such 
as project total duration, project total cost and 
leveling resource usage. Our results are far better 
compared to the ones obtained with alternative 
approaches. This proposal shows that the interacting 
agents that implement decoupled learning rules find 
a solution which can be understood as a Nash 
equilibrium. 
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Resumen 

En un contexto de múltiples proyectos dentro de 
redes empresariales, alcanzar soluciones factibles al 
problema de (re)scheduling representa un gran 
desafío, principalmente al compartir recursos 
escasos entre proyectos. Así, el (re)scheduling de 
múltiples proyectos debe lograr el uso de recursos 
más eficiente posible sin incrementar las 
restricciones de proyecto planteadas, considerando 
el Problema de Nivelación de Recursos, cuyo 
objetivo es nivelar el consumo de recursos 
compartidos para minimizar tiempos ociosos y evitar 
conflictos de sobre-asignaciones. 

En este trabajo, una solución multi-agente para 
resolver el Problema de Scheduling de Múltiples 
Proyectos con Restricción de Recursos y el 
Problema de Inversión de Recursos es extendida 
para incorporar indicadores en las funciones de 
recompensa de los agentes para abordar el Problema 
de Nivelación de Recursos de manera autónoma y 
descentralizada a través de reglas desacopladas 
basadas en el enfoque de Aprendizaje por prueba y 
error. El Modelo de Simulación basado en agentes 
propuesto es verificado mediante un conjunto de 
instancias de proyecto que varían en estructura, 
parámetros, número de recursos compartidos, etc. 
Los resultados obtenidos se evalúan mediante 
diferentes objetivos de scheduling, como duración 
total del proyecto, costo total del proyecto y 
nivelación en el uso de recursos. Nuestros resultados 
presentan mejoras en comparación a los obtenidos 
en enfoques alternativos. Esta propuesta muestra que 
los agentes interactuantes que implementan reglas de 
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aprendizaje desacopladas encuentran una solución 
que puede entenderse como un equilibrio de Nash. 

Palabras claves: Nivelación de Recursos, 
Organización Fractal Orientada a Proyectos, 
(Re)scheduling de múltiples proyectos, Simulación 
basada en agentes, Sistema Multi-agente. 

1. Introduction 

Multi-Project (re)scheduling is considered as an 
NP-hard problem, thus becoming a difficult task for 
project leaders when many tasks and resources are 
involved which prevents the application of 
optimization-based methods to find a repaired 
schedule [1]. Thus, in a multi-project context within 
enterprise networks, there are conflicting constraints 
and interrelationships among projects that cause an 
increase of the complexity, making project 
(re)scheduling a difficult problem to be addressed 
under real-time pressure and selfish behavior of 
concerned agents [2]. Particularly, the unplanned 
events impact on due dates and achievement of 
milestones, premature budget consumption, and 
resources usage, which in turn affect timing and 
quality of delivered goals of different projects 
because of inefficient responses to such events. 

In particular, the consumption and allocation of 
limited and shared resources in a multi-project 
context leads to conflicts in the joint schedule, 
affecting the related project constraints such as time, 
cost, quality, etc., and causing the need to project 
(re)schedule. The conflicts associated with 
consumption and resource allocations are related to 
different project scheduling problems such as the 
Resource Constrained Project Scheduling Problem 
(RCPSP), the Resource Investment Problem (RIP) 
and the Resource Leveling Problem (RLP), among 
others. The RCPSP aims to minimize the total 
project makespan; the RIP has as objective the 
minimization of the total project cost; and the RLP 
aims to achieve the most efficient resource 
consumption without increasing the prescribed 
makespan while avoiding over-allocation of 
resources [3, 4]. 

Thus, to achieve the multi-project (re)scheduling 
problem, considering the RCPSP, RIP and RLP 
problems simultaneously, requires techniques and 
tools that allow decision-making in an autonomous, 
efficient and decentralized way, providing metrics 
and indicators that support the decision-making 
process when unplanned events affect the initial 
schedule for multiple projects. Therefore, the 
Project-oriented Fractal Company Model developed 
in [5] was considered as a basis to implement a 
Multi-agent Simulation Model to aid solving the 
multi-project (re)scheduling problem. This Agent-
based Model is composed of autonomous and selfish 

agents with different roles that incorporate in their 
decision-making behavior a decoupled learning rule 
that makes room for learning by trial-and-Error [6]. 

The objective of this work is to integrate new 
indicators to be considered by the interacting agents 
that composed the Agent-based Simulation Model 
published in [6]. As a result, a Multi-agent solution 
to that aims to level the use of resources by multiple 
projects, avoiding over-allocation problems is found. 
A standard and representative set of multi-project 
problem instances [7] that vary in their structure, 
parameters and number of shared resources is used 
to test the presented Multi-agent Model solution 
against other solutions to the multi-project 
(re)scheduling problem through performance 
measures that allow evaluating the emergent 
solution, including the resource leveling. Results 
obtained are encouraging and demonstrate the 
applicability of agent-based simulation to achieve a 
trade-off among the presented project scheduling 
problems (RCPSP, RIP and RLP) resulting from 
restrictions due to resource sharing by several 
projects, and strategic interactions among the 
interacting agents. Particularly, this work focalizes 
on the impact of considering resource leveling 
indicators in the solution found, i.e., in the process 
of (re)scheduling to obtain feasible schedules when 
the interacting agents lead to a Nash equilibrium. 

2. Related Work 

In recent years, the use of tools based on artificial 
intelligence techniques to deal with multi-project 
(re)scheduling problems considering multiple 
objectives simultaneously has increased. Mainly, 
these tools are needed to solve scheduling problems 
in contexts with the unrestricted amount of projects, 
tasks, and resources involved, and in which it is 
required to achieve a trade-off among conflicting 
objectives, such as cost, time, efficient use of 
resources, etc. The most used artificial intelligence 
techniques for this purpose are genetic algorithms 
and agent-based systems. 

The proposals presented in [8, 9] use genetic 
algorithms to solve the multi-project (re)scheduling 
problem considering multiple objectives. Shahsavar 
et al. [8] consider three scheduling objectives, which 
are: (1) minimization of project duration; (2) 
minimization of project total cost; and (3) 
minimization of the variability of resource use in the 
different periods of project execution. In [9], distinct 
unplanned events, including the need to perform 
new tasks, the incorporation of new employees or 
the unavailability of resources, are considered. 
These events can affect the multiple objectives 
raised during the (re) scheduling process, defined as 
cost, duration, robustness, and stability of the 
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solution found. Both papers evaluate the 
performance of the genetic algorithms proposed 
using metrics based on project constraints such as 
cost, duration, and use of resources, among others. 
However, these approaches may have low efficiency 
rates because they seek a solution in a large 
combinatorial space of constraints, where the 
solution obtained may be a local optimum. 
Additionally, the difficulty of such approaches is 
found in the selection of parameters and evaluation 
functions for a particular application of the proposed 
approach. 

Several works related to the multi-project 
scheduling problem have been presented using the 
agent-based approach [10, 11, 12, 13] where an 
initial schedule is obtained from the interaction 
among relevant entities in the problem domain. 
Adhau et. al. [10, 11] proposed a multi-agent system 
for the multi-project schedule, establishing the 
allocation of projects to resources through auction 
mechanisms. The authors consider a central and 
coordinator agent for the resolution of conflicts and 
communication among agents, which can cause a 
performance decrease in the algorithm execution 
when the number of resources that negotiate 
increases. Similarly, [12] presents an agent-based 
approach for project scheduling that solves the 
Resource-Constrained Project Scheduling Problem 
using a learning algorithm for modeling the strategy 
used to find a solution. In [13], the project planning 
process that carries out an organization at the 
strategic level is modeled using a Multi-agent 
System (MAS), where the interacting agents decide 
which projects to plan and which to reject, using 
metrics based on costs of such projects. These 
proposals do not present results that address 
explicitly the Resource Leveling Problem. 
Furthermore, many of existing proposals are based 
on the assumption that the project schedule will be 
implemented as initially defined. This situation is 
not representative of the project management 
environment where typically 80% of initial project 
schedules are affected by unplanned events during 
their execution, thus compromising deadlines, costs 
and estimated resource usage [14]. 

3. Problem definition 

In this section, the multi-project (re)scheduling 
problem based on a project-oriented fractal model 
for enterprise networking is defined as follows: 

• A set of I projects to be (re)scheduled within a 
project-oriented fractal organization, whose 
managers (agents) must respond to unplanned 
events and disturbances. These projects are 
interdependent and run to a certain extent in 
parallel. Additionally, each project has 

properties such as deadline, budget, estimated 
start and finish time, resource requirements, 
dependence and precedence relationships, 
among others. Some of these properties are 
considered as domain constraints. Each project 
i is considered as a fractal unit and it consists 
of a recursive structure, where a project can be 
composed of sub-projects, and these sub-
projects can be composed of other sub-projects, 
and so on and so forth. For this reason, the 
recursive decomposition of a project continues 
until its minimum expression, i.e., a task that is 
also considered as a project. Each fractal unit 
or project is composed of a project manager 
and a managed object, where each managed 
object can be an end (e.g., a project, a sub-
project, a phase) or a mean (a resource). Each 
project manager carries out functions such as: 
negotiation, (re)scheduling and has learning 
capabilities. 

• A set R of links of delegation and client-server 
type. The delegation relationships are the result 
of recursive structure and client-server 
relationships are the result of negotiations, 
which are auction-based interactions among 
fractal units that manage projects or resources, 
where each manager of a project demands 
resources for fulfilling its scheduled work, 
whereas the managers of resources sell their 
specific capabilities and skilled workforce to 
different projects. The establishment of client-
server and delegation relationships among end-
managers (projects) and mean-managers 
(resources) provides the flexibility for 
rescheduling tasks at different abstraction 
levels, following the Project-oriented Fractal 
approach [5]. 

• A set of K renewable and available resources to 
processing the projects. Each resource has a list 
of allowed projects that can process. 

• A set of E unplanned events that may affect the 
execution of the initial schedule. In this work, 
the types of events are related to variations in 
the availability of resources. 

 
The scheduling of different goals considered in 

this work are related to three project scheduling 
problems that should be traded off in a multi-project 
context: Resource Constrained Project Scheduling 
Problem, Resource Investment Problem and 
Resource leveling problem, which are related to the 
project time, the project total cost and the leveling of 
project resources, respectively. These goals are: 

(1) Minimize the total duration of the project set I. 
(2) Minimize the total cost of the project set I. 
(3) Balance the resource utilization in each period 
(solution stability) of project set I. 
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The relationship that exists between each of the 
stated objectives and scheduling problems 
mentioned is defined below. 

Resource Constrained Project Scheduling 
Problem. The first goal in addressing the 
rescheduling of multiple projects is related to the 
Resource Constrained Project Scheduling Problem 
(RCPSP), which seeks to obtain, for each project, a 
schedule that have the shortest possible total project 
duration (TPD), subject to limited amounts of the 
resources available, precedence/synchronization 
relationships among projects/tasks, and project due 
date constraints [11, 12]. This objective is defined as 
follows for any project i: 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝑚𝑚𝑚𝑚𝑚𝑚 {𝑓𝑓𝑓𝑓𝑖𝑖}} (Eq. 1) 

where, the term fti is defined as the finalization time 
of latest task in the project i schedule. 

Resource Investment Problem. The second 
scheduling goal considered in this work aims to 
obtain solutions that present the lowest possible total 
cost (TC), giving rise to solutions to rescheduling of 
multiple projects corresponding to the Resource 
Investment problem (RIP) [8]. In this context, the 
objective is defined as follows: 

𝑇𝑇𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖
𝑛𝑛,𝑞𝑞
𝑖𝑖=1,𝑘𝑘=1  (Eq. 2) 

where ralik is the cost of each resource allocation 
that forms part of the schedule for project i. 

Resource Leveling Problem. The third scheduling 
goal is related to the problem named Resource 
leveling problem (RLP) [8], and it aims to find 
solutions (schedules) that balance the use of each 
resource and reduces its idle time during all project 
execution (stability), since an inadequate leveling of 
resources usually leads to increasing execution time 
and cost to complete a given project. When the use 
of resources is leveled, the final schedule must have 
a resource profile where variations between periods 
are minimized and the use of resources is as 
balanced as possible [4]. The definition of RLP 
implies the consideration of a set of properties 
related to objects managed by concerned agents: 

• Each end-managed object (project i) requires 
reqik units of mean-managed object (resource 
k) per period. 

• Each mean-managed object (resource k) has a 
limited maximum availability, a processing 
capacity and a resource processing cost for 
each period. 

• Each mean-managed object (resource k) is 
defined as local or global resource. 

 

Thus, for a given resource, the goal related to 
RLP, named as Use Resource Variability (URV) is 
framed as an optimization problem as follows: 

𝑈𝑈𝑈𝑈𝑈𝑈 = 𝑚𝑚𝑚𝑚𝑚𝑚∑ ∑ �𝑢𝑢𝑢𝑢𝑘𝑘,𝑡𝑡−𝑢𝑢𝑢𝑢𝑘𝑘,𝑡𝑡−1
𝑚𝑚𝑚𝑚𝑘𝑘

�𝑇𝑇
𝑡𝑡=1

𝑞𝑞
𝑘𝑘=1  (Eq. 3) 

Subject to. 
𝑢𝑢𝑢𝑢𝑘𝑘,𝑡𝑡 ≤  𝑚𝑚𝑚𝑚𝑘𝑘,𝑡𝑡 (Eq. 4) 

where (𝑢𝑢𝑢𝑢𝑘𝑘,𝑡𝑡) and (𝑚𝑚𝑚𝑚𝑘𝑘,𝑡𝑡) represent, respectively, 
the amounts of resource usage and maximum 
availability of resource for each period t. This goal 
allows measuring the adaptability of the solution 
found to the changes in the project environment and 
permits resource leveling while complying with the 
availability constraints to avoid over-allocations 
(according Eq. (4)), minimizing variations in 
resource usage between time periods [4, 8]. In this 
work, the goal related to RLP specified in [6] is 
redefined to consider the maximum availability of 
resources in each period of time t. Therefore, a goal 
that allows measuring the variation in the use of 
resources between periods is obtained, leading to a 
schedule without over-allocations. 

4. Multi-agent based Methodologies 

4.1. Agent-based Modeling and Simulation 

In this proposal, the developed simulation model 
seeks to imitate the sequence of strategic interactions 
in the Project-oriented Fractal Organization when 
responding to events while addressing the multi-
project (re)scheduling problem in a decentralized 
and distributed way. Thus, the multi-project 
(re)scheduling problem is modeled as a non-
cooperative, repetitive and interdependent game 
[15], involving N players (agents) and M stages 
(repeated iterations), where each of the agents 
pursues its specific goals in a selfish manner. 
Furthermore, the simulation model is a key tool to 
evaluate emergent scheduling behaviors from 
established client-server and delegation relationships 
among strategically interacting agents. 

The proposed agent-based model is composed of 
two kinds of agents, Project and Resource agents. 
Each agent class has different goals. A Project agent 
(PA) manages a project, a sub-project or a task, aims 
at minimizing its duration, total cost, and variations 
in the use of resources between periods. On the other 
hand, a Resource agent (RA) manages a resource 
aiming to maximize its profits while avoiding over-
allocation conflicts. These individual goals (micro-
level) lead to global and emergent behaviors (macro-
level) which are aligned with the scheduling 
objectives defined in Section 2. These entities do not 
have complete knowledge about the other agents’ 
strategies and payoffs, and there are also constraints 
related to the exchange of information of strategic 
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value. The defining properties for project and 
resource agents are described in Table 1 and Table 2 
respectively. 

The above defined agent types for interacting 
managers used in both defining an initial scheduling 
and during (re)scheduling, where the latter is called 
for when an unplanned event occurs. The 
interactions of these agents in the proposed game, 
through decentralized mechanisms, provide an easier 
way to obtain a schedule flexibly adapted to the 
unplanned events mentioned above, where their 
decisions depend only on the negotiations that they 
carry out. To respond to abnormal disturbances, the 
agents must incorporate learning capabilities for 
(re)scheduling when choosing alternative courses of 
action and gain experience from the situations that 
may arise. In the next section, learning by trial-and-
error [16] using decoupled rules are incorporated to 
solve the multi-project (re)scheduling problem, 
selecting at each strategic interaction among agents 
those actions that present a greater benefit to achieve 
agent’s goals, according to their payoff functions. 
More importantly, the resulting repaired schedule 
corresponds to near Nash equilibrium for all 
concerned agents. 

Table 1. Project agent properties 
Property Description 
pId Project ID 
pLevel Project level 
pGoal Project goal 
estST Estimated project start time 
estFT Estimated project finish time 
deadline Project latest finish time 
PRi Set of precedence relationships between other 

projects and project i 
DRi Set of dependence relationships between other 

projects and project i 
reqik Requirements of resource k for project i 
P_ui Payoff function for project agent i defined as: 

minTPDi + TCi + URVi 
 

Table 2. Resource agent properties 
Property Description 
rId Resource ID 
𝑚𝑚𝑚𝑚𝑘𝑘 Maximum availability 
𝑢𝑢𝑢𝑢𝑘𝑘,𝑡𝑡 Resource usage for each period 
𝑝𝑝𝑝𝑝𝑘𝑘,𝑡𝑡 Processing Capacity (%) for each period 
rType Resource type: local or global 
R_uk Payoff function for resource agent k defined 

as:𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1  

 
4.2. Learning by Trial-and-Error 

One of the distributed learning techniques having as 
its main characteristic resorting to uncoupled 
learning rules for each individual agents is the 
proposal of Young [16]. In learning by trial-and-
error, interacting agents respond to changes in their 
own rewards, which are affected, indirectly, by other 
agents’ actions. Uncoupled learning rules can be 
implemented in environments where the agents 

cannot observe what the other agents might be 
doing. That is why this learning method has great 
potential for distributed optimization problems and 
complex adaptive systems involving many 
autonomous agents interacting strategically. 

In this work, the trial-and-error learning rule is 
incorporated in each agent to obtain the best course 
of action to be followed through a simple 
implementation at each decision stage in the 
repeated game (presented in the previous sub-
section) to solve the multi-project (re)scheduling 
problem and to obtain a feasible schedule. Each 
interacting agent’s state (zi) is made up of a type of 
mood mi (the four possible moods are content, 
discontent, hopeful and watchful), a reference action 
(āi) and a reference reward (ūi). The mood is a 
characteristic that defines the agents’ reaction to its 
experience with the environment. According to his 
mood and the obtained reward, each agent decides 
which is the next action to be applied. The parameter 
Ɛ defines the rate of exploration to be used in the 
next game stage, where Ɛ ∈ (0,1). Thus, an agent 
will explore with probability Ɛ and will not explore 
with probability 1 - Ɛ. [16]. In Table 3, state 
variables for the implementation of decoupled 
learning rules in each agent are shown. 

Table 3. Agents’ state variables related to Learning by 
trial-and-error rules. 

Agents’ State variables Description 
zi = (mi, āi, ūi) Reference state of agent. 
zi = (mi, ai, ui) Current state of agent.  
Ɛ The exploration/exploitation 

rate of each agent 
 

At the end of each game stage, once all the agents 
define their actions to follow, they simultaneously 
collect the stage payoffs according to the selected 
actions and agents’ state transitions occur. Project 
agents select the actions that minimize the time, 
cost, and variations in the use of resources for the 
processing of its managed object, whereas resource 
agents select the actions that maximize their profits 
without exceeding their maximum availability for 
each period, according to their payoff functions, sub-
section 4.1. The transitions between the different 
states that an agent can experiment during the 
simulation of the agent-based model are depicted in 
Fig. 1. The transitions “a” to “k” depends on agents’ 
actions and payoffs only, while transitions “l” and 
“m” depends on a probability function called 
response function, which is monotonically 
increasing in ui and monotonically decreasing in ūi 
for project agents, and conversely for resource 
agents. These transitions in every possible mood are 
depicted as follows: 

• Content: If at stage m agent i is “content” at 
the next stage (m + 1) it may choose its 
reference action āi with probability (1 - Ɛ) and 
experiments a new action ai with probability 

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-129-



 

Ɛ. If the agent i decides to experiment, it 
evaluates the utility ui associated with ai as 
follows: if ui < ūi, the agent’s state remains (c, 
āi, ūi); otherwise, with probability Ɛ its state 
change to (c, ai, ui(ai)), where a new action 
and utility benchmark are set out. 

• Hopeful-Watchful: If the agent i perceives an 
increment or a decrement in its utility 
following its reference action (āi), then the 
mood become “hopeful” or “watchful” 
according to rules f to k defined in Fig. 1. 

• Discontent: If player i is “discontent” it 
experiments a new action ai. Thus, 
considering the probability response function, 
the mood turns out “content”, and its new 
state is (c, ai, ui(ai)). Otherwise, the state of 
the ith agent remains (d, āi, ūi). 

 
 

Id  Initial State Transition conditions Resulting 
state 

a (c, āi, ūi) ai≠ āi , ui(a) ≤ ūi (c, āi, ūi) 
b  ai≠ āi , ui(a) > ūi (c, ai, ui(a)) 
c  ai= āi , ui(a) < ūi (w, āi, ūi) 
d  ai= āi , ui(a) = ūi (c, āi, ūi) 
e  ai= āi , ui(a) > ūi (h, āi, ūi) 
f (w, āi, ūi) ai= āi , ui(a) < ūi (d, āi, ūi) 
g  ai= āi , ui(a) = ūi (c, āi, ūi) 
h  ai= āi , ui(a) > ūi (h, āi, ūi) 
i (h, āi, ūi) ai= āi , ui(a) < ūi (w, āi, ūi) 
j  ai= āi , ui(a) = ūi (c, āi, ūi) 
k  ai= āi , ui(a) > ūi (c, āi, ui(a)) 
l (d, āi, ūi) prob φ (ui(a), ūi) (c, āi, ui(a)) 

m  prob 1-φ (ui(a), ūi) (d, āi, ūi) 

Fig. 1.State transitions experienced by agents using 
decoupled learning rules [16]. 

Fig. 2 shows illustrative project agents’ state 
transition examples at different stages (s and s+1) of 
the proposed non-cooperative game applying the 
learning trial-and-Error rules depicted in Fig.1. The 
example shows three project agents and three 
resource agents that participate in the game, where 
the state of each project agent is shown below it, 
denoted by zi = (mi, āi, ūi). The different moods of 
project agents are represented by different colors: 

blue, red, yellow and green for content, discontent, 
watchful and hopeful mood, respectively. 

 
Fig. 2. State transitions experienced by agents using 

decoupled learning rules. 

For simplicity of Fig. 2, the resource agents’ state 
transitions are not shown. The result of the actions 
taken by the agents are the assignments project-
resource, which are designated as 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 ,𝑘𝑘, where the 
sub-index i and k represents the project agent and 
the resource agent, respectively. 

In Fig. 2, two state transitions are depicted. The 
state transition T1 is described for the project agent 
𝑃𝑃𝑃𝑃1.1.2, which has the state 𝑧𝑧1.1.2= (h, 𝑟𝑟𝑟𝑟𝑟𝑟1.1.2,5, 325) 
in the stage s. During the stage s + 1, the agent 
selects its reference action 𝑟𝑟𝑟𝑟𝑟𝑟1.1.2,5 (exploitation 
strategy). This action implementation causes the 
state transition T1, where the new state of 𝑃𝑃𝑃𝑃1.1.2 
switch to 𝑧𝑧1.1.2= (c, 𝑟𝑟𝑟𝑟𝑟𝑟1.1.2,5, 325), with content 
mood and payoff equal to the reward obtained in the 
previous stage (state transition “j”, Fig. 1). The 
second state transition rule considered is named T2, 
which is specified for the project agent 𝑃𝑃𝑃𝑃1.1.3 that 
selects one action that differ from its benchmark 
action during stage s + 1. The agent’s state changing 
from 𝑧𝑧1.1.3= (d, 𝑟𝑟𝑟𝑟𝑟𝑟1.1.3,5, 260) to 𝑧𝑧1.1.3= (c, 𝑟𝑟𝑟𝑟𝑟𝑟1.1.3,6, 
150), after the evaluation of response function that is 
calculated in terms of the obtained and the reference 
payoff (state transition “l”, Fig. 1). 

5. Implementation 

The Multi-agent model was implemented in 
Netlogo, a multi-agent simulation environment for 
agent-based modeling that allows generating 
emergent behaviors resulting from on-going 
interactions among autonomous, learning agents 
[17]. As a consequence of the initial concurrent 

w 

d 

h 

c 

c 

e 

f 

g 

h 

i 

k 

l 

m 
a–b-d 

(c, āi, ūi) (d, āi, ūi) 

(w, āi, ūi) (h, āi, ūi) 

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-130-



 

projects scheduling received as input to the multi-
agent model, the global (re)schedule of such projects 
is obtained in an autonomic and decentralized 
manner, so as to accomplish the scheduling goals 
defined in Section 3. The multi-agent model 
presented in this work, named as Multi-agent model 
for a Project-oriented Fractal Organization (MAS-
MPR), is based on the prototype presented in [18]. 
This prototype has been extended to incorporate new 
goals based on additional project constraints such 
cost and resource leveling (since only the project 
duration was considered in [18]), and to eliminate 
assumptions defined during the initial 
implementation, such as that a resource can only 
process one task at a time. 

In the virtual simulated world implemented using 
Netlogo, each estimated project schedule is 
graphically depicted by means of a Gantt diagram, 
on which changes will be made according to each 
agent action during interactions (Fig. 3). At each 
stage, agent decisions define the multi-project 
schedule, which is recorded as the output of such 
stage. 

 
Fig. 3. Example of a project schedule obtained of MAS-

MPR simulation as result of one stage. 

5.1. Evaluation metrics 

The simulated response and performance using 
MAS-MPR can be assessed through domain 
indicators (project total duration and cost, leveling 
resources) based on obtained agent’s payoffs after 
simulation execution, which can be used by project 
leaders to assess the multi-project (re)scheduling 
problem generated by unplanned events, thus 
providing a tool to find an optimal decentralized 
solution in which all agents have no incentives to 
deviate, hence is a Nash equilibrium [19]. 

The scheduling efficiency for each project in the 
solution generated by the MAS-MPR is evaluated 
using a performance measure defined as the Average 
Project Delay (APD) [10], which in this work is 
calculated as follows: 

APD = 1
𝑀𝑀
∑ (𝑓𝑓𝑓𝑓𝑖𝑖𝑀𝑀
𝑖𝑖=1 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖)  (Eq. 5) 

 
where fti is the finalization time of the latest task in 
the generated schedule for project i, eddi is the 
estimated due date for project i (considered as the 
critical path for the project), and M represents the 
number of game stages played. 

In addition, resource leveling is accounted for the 
solution generated by the MAS-MPR through a 
metric that determines the average usage of the 
different shared or global resources during the 
execution of the multiple projects. This indicator is 
defined as Average Usage Global Resource 
Variability (AUGRV) and calculated as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1
𝑀𝑀
∑ �

∑ �
𝑢𝑢𝑢𝑢𝑘𝑘,𝑡𝑡−𝑢𝑢𝑢𝑢𝑘𝑘,𝑡𝑡−1

𝑚𝑚𝑚𝑚𝑘𝑘
�𝑇𝑇

𝑡𝑡=1

𝑇𝑇
�𝐿𝐿

𝑘𝑘=1  (Eq. 6) 

where (𝑢𝑢𝑢𝑢𝑘𝑘,𝑡𝑡 − 𝑢𝑢𝑢𝑢𝑘𝑘,𝑡𝑡−1) and (𝑚𝑚𝑚𝑚𝑘𝑘,𝑡𝑡) represent, 
respectively, the variation of resource usage at two 
consecutive periods (t and t-1) and maximum 
resource availability for each period; T represents 
the project total duration and M represents the 
number of game stages played. 

Finally, a specific metric is proposed to evaluate 
the social welfare of the agents that make up the 
MAS-MPR in a given stage s (equilibrium of the 
Model), considering that a state of equilibrium is one 
in which all the players are content and select their 
benchmark actions, bringing the system to a Nash 
equilibrium [19]. This metric is defined as: 

𝐸𝐸𝐸𝐸𝑠𝑠 = 1
𝑃𝑃𝑃𝑃
∑ �𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠,𝑝𝑝𝑝𝑝

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠,𝑝𝑝𝑝𝑝
�𝑃𝑃𝑃𝑃

𝑝𝑝𝑝𝑝=1   (Eq. 7) 

where PG represents the set of all games played, 
nContentAgents is the number of content agents at 
the end of stage s in the game pg, and nTotalAgents 
represents the total number of agents in the MAS-
MPR during the stage s of game pg. 

The metrics defined in Eq. (5) and Eq. (6) are 
calculated at the end of the simulation of each game, 
while the metric defined in Eq. (7) is obtained 
considering all games played. 

6. Computational Results 

This section presents and discusses results obtained 
through different simulations of the Multi-agent 
model for a Project-oriented Fractal Organization 
(MAS-MPR) developed to solve the multi-project 
(re)scheduling problem in enterprise networking, 
considering the RLP. These results allow assessing 
the response and performance of the MAS-MPR. 

Instances of multi-project problems with different 
features are used to test the proposed multi-agent 
system (Table 4). These problem instances are 
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available in http://www.mpsplib.com. To adapt the 
problem instances to the simulation problem, 
different complexity levels (L1, L2, L3) are defined 
for each problem, describing the number of project 
agents (managing either a project, sub-project or 
task) that interact at each level of the fractal 
hierarchy. Then, four resource agents are available 
for each project, divided into shared (G) and local 
(L). The number of global resources can vary from 1 
to 4. The maximum availability and processing 
capacity of resources remains unchanged throughout 
the simulation run of each problem instance. In the 
scheduling phase of the MAS-MPR simulation, 10 
games per problem instance were considered, and 10 
stages for each game are defined. Thus, the overall 
number of experiments performed in this work is 
400. The simulations were executed on a computer 
Intel Core I5 (2.5GHz, 8GB RAM). 

The APD values (Eq. (5)) obtained through the 
MAS-MPR simulation are shown in Fig. 4, together 
with the values for the different proposals presented 
in [6, 10, 11]. The project leader can analyze the 
solutions provided by MAS-MPR, and assess each 
problem instance to obtain the best solution, i.e., the 
schedule with the minimum APD value. 

Table 4.Multi-project problem instances 
Set of Instances L1 L2 L3 N. resources 
    G       L 
MPJ30_a2 1 2 30 1;2;3 1;2;3 
MPJ30_a5 1 5 30 1;2;3 1;2;3 
MPJ30_a10 1 5 30 2;3    1;2 
MPJ30_a20 1 5 30 2       2 

 

 

Fig. 4. Results of APD obtained by different proposals. 

The obtained results in Fig. 4 vividly demonstrate 
the advantages of incorporating decoupled learning 
to the interacting agents in the resolution of the 
multi-project (re)scheduling problems, comparing 
against the results obtained in other proposals. From 
Fig. 4 it can be seen that the MAS-MPR obtains 
better results for the four subsets of presented 
problems. These results correspond to the objective 
evaluation defined as minimization of the project 
total duration, considering the most efficient 

resource consumption without increasing the 
prescribed makespan, and avoiding resource over-
allocation conflicts. Particularly, some results 
obtained in this work show higher APD values than 
those presented in the previous version of MAS-
MPR [6]. This is because the analyzed sub-sets of 
problems present a high consumption of resources 
shared by period and when redefining the goal 
related to the RLP problem (Eq. (3)), considering the 
maximum availability of global resources per period 
to avoid over-allocations, schedules with greater 
total duration of the project are obtained. 

The results obtained after the evaluation of the 
metric defined as AUGRV for the four problem sub-
sets are given in Fig. 5. As shown in this figure, the 
variability in the use of resources shared (global) 
during the multi-project execution between periods 
(t and t + 1) is less than 12 % in all the problems 
considered, which highlights that the solutions 
obtained by MAS-MPR present an efficient use of 
shared resources, considering that the average use of 
global resources is over 60% for all simulated 
examples, avoiding resource idle time. 

 

Fig. 5. Results of AUGRV metric for the simulated 
problem instances. 

The last proposed metric calculates the average 
number of agents having a “content” mood in each 
stage for different executions of MAS-MPR for each 
problem subset (Fig. 6). This reflects that most of 
the agents that make up the MAS-MPR are content 
during the different game stages and select their 
benchmark actions, bringing the strategic interaction 
game to a near Nash equilibrium. 

Additionally, the MAS-MPR provides other 
results to evaluate the different solutions obtained. 
In Fig. 7, the project total duration and costs after a 
repeated game simulation, as well as the average 
utilization of global resources by game stages are 
shown. To facilitate calculating the costs of the 
resulting project schedule, different processing costs 
were assigned to the shared resources. Thus, the 
project leader can choose the solution that is closest 
to the estimated duration and cost, and one that 
presents an efficient use of resources shared. For 
example, the global schedule obtained after a 
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simulation of one problem instance with two 
projects, in the stage 7 presents the minimum project 
duration (Fig. 7(a)), whereas in the stage 6 presents 
the lowest project cost (Fig. 7(b)). 

In addition, it can be observed in Fig. 7(c) that the 
average usage of global resources is almost constant 
in each game stage, not presenting great variations, 
which means that the MAS-MPR is able to obtain 
schedules with an efficient resource usage, avoiding 
over-allocation conflicts. Thus, the project leader 
can analyze these three variables calculated in each 
stage, namely time, cost, and global resources 
average usage and then choose the generated 
schedule that fulfills better project goals while 
complying with all related constraints. 

7. Conclude Remarks 

Multi-project (re)scheduling is considered a critical 
problem for organizations, mainly in those that share 
resources and execute inter-dependent projects. In 
ideal situations, these resources are unlimited and 
available as required. In contrast, resources are 
generally available in limited quantity and the 
project leader needs to level out the use and 
consumption of shared resources, since an efficient 
use of them is essential to achieve the success of 
achieving multiple goals. To this aim, it is necessary 
to consider the Resource Leveling Problem (RLP) 
whose specific concern is to achieve the most 
efficient resource consumption possible, without 
compromising the other project constraints and 
objectives. In this work, a new objective to be 
considered by the interacting agents that allow to 
level the use of shared resources by multiple projects 
and to avoid over-allocation problems has been 
incorporated into the Agent-Based Model presented 
in [6]. Thus, the proposed MAS-MPR, which is 
defined as a non-cooperative and multi-stage game, 
allows achieving a trade-off among the presented 
project scheduling problems caused by the 
restrictions of resources shared, obtaining emergent 
and feasible schedules through learning by trial-and-
error, leading to a Nash equilibrium. This 
equilibrium is considered as the solution to the 
proposed game, where the interacting agents do not 
need to know the structure of the game, nor the 
actions or strategies of the other agents, or even that 
they are participating in such game. 

The fractal feature of the MAS-MPR gives more 
flexibility and adaptability to response to unplanned 
events, allowing the emergence of solutions to the 
multi-project (re)scheduling problem in a distributed 
and decentralized way without limiting the number 
of resources or levels in the project hierarchy 
(projects, sub-projects, tasks) of the considered 
problem instances. Thus, the MAS-MPR allows 
learning to be incorporated in all agents in the same 
way, through simple and decoupled rules, regardless 
of the fractal level in which they interact. 

 

Fig. 6. Results of ES metric for the simulated problem 
instances. 

 
(a) Project Total duration 

 
(b) Project Total Cost 

 
(c) Global Resources Average Use 

Fig. 7. Project Scheduling goals in a simulated 
game of MAS-MPR 
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The results obtained through Agent-based 
simulation in the Netlogo language show indicators 
that permit the analysis of the project total duration, 
cost, leveling resources, etc., and provided a quality 
evaluation of the generated schedule. These results 
highlight that the proposal, even incorporating new 
restrictions related to the RLP, obtains better 
solutions than other competing approaches. 

Current research work is about incorporating the 
MAS-MPR in project management tools with a user-
friendly interface supporting the decision-making 
process and allowing training activities for project 
leaders that favor seeking a solution to solve the 
project (re)scheduling problem in the framework of 
game theory and multi-agent learning. Furthermore, 
the agents’ payoff functions will be defined as 
weighting functions, so that the project leader will 
define the importance of the project constraints that 
are considered in these functions, such as time, cost, 
resource leveling. 

Acknowledgements 

Financial support for this research study was granted 
by “Planificación automática en sistemas cognitivos 
de producción integrando aprendizaje por refuerzos 
con abstracciones lógicas y relacionales” PID 
25/OR01 and “Evaluación dinámica de la calidad de 
procesos y productos para la toma de decisiones 
tempranas en industrias de base tecnológica” PID 
UTN3581 of Universidad Tecnológica Nacional. 

Competing interests  

The authors have declared that no competing 
interests exist. 

References 

[1] M. Garey, D. Johnson, Computers and 
Intractability: A Guide to the Theory of NP 
Completeness, New York, USA: W. H. 
Freeman, 1979. 

[2] Project Management Institute, Guía de los 
Fundamentos para la Dirección de Proyectos 
(Guía del PMBOK), 5ª ed., Project Management 
Institute, Pensilvania, USA, 2013. 

[3] J.L. Ponz-Tienda, V. Yepes, E. Pellicer and J. 
Moreno-Flores, “The Resource Leveling 
Problem with multiple resources using an 
adaptive genetic algorithm”, Automation in 
Construction, vol. 29, pp. 161–172, 2013. 

[4] M. Vanhoucke, Integrated Project Management 
Sourcebook – A Technical Guide to Project 
Scheduling, Risk and Control, Springer, 2016. 

[5] M.Canavesio and E. Martinez, “Enterprise 
modeling of a project-oriented fractal company 
for SMEs networking”, Computers in Industry, 
vol. 54, pp. 794–813, 2007. 

[6] L. Tosselli, V. Bogado and E. Martínez, “An 
agent-based simulation model using decoupled 
learning rules to (re)schedule multiple projects”, 
in XXIII Congreso Argentino de Ciencias de la 
Computación, pp. 33-42, 2017. 

[7] J. Homberger, “A (µ, λ)-coordination 
mechanism for agent-based multi-project 
scheduling”, OR Spectrum, vol. 34, pp. 107-
132, 2009. 

[8] A. Shahsavar, A. Najafi and S.T.A. Niaki, 
“Three self-adaptive multi-objective 
evolutionary algorithms for a triple-objective 
project scheduling problem”, Computers & 
Industrial Engineering, Elsevier, vol. 87, pp. 4-
15, 2015. 

[9] X. Shen, L. Minku, R. Bahsoon and X. Yao. 
“Dynamic Software Project Scheduling through 
a Proactive-Rescheduling Method”, IEEE 
Transactions on Software Engineering, vol. 
42,no. 7, pp. 658–686, 2016. 

[10] S. Adhau, M. Mittal and A. Mittal, “A multi-
agent system for distributed multi-project 
scheduling: An auction-based negotiation 
approach”, Eng. Applications of Artificial 
Intelligence, vol. 25, pp. 1738–1751, 2012. 

[11] S. Adhau, M. Mittal and A. Mittal, “A multi-
agent system for decentralized multi-project 
scheduling with resource transfers”, Int. J. Prod. 
Economics, vol. 146, pp. 646–661, 2013. 

[12]  T. Wauters, K. Verbeeck, G. Vanden Berghe 
and P. De Causmaecker “A Multi-Agent 
Learning for the Multi-Mode Resource-
Constrained Project Scheduling Problem”, Proc. 
of 8th Int. Conf. on Autonomous Agents and 
Multiagent Systems, pp. 1-8, 2009. 

[13] J. Araúzo, J. Pajares and A. López-Paredes, 
“Simulating the dynamic scheduling of Project 
portfolios”, Simulation Modelling Practice and 
Theory, vol. 18, pp. 1428-1441, 2010. 

[14] Chaos Report. Standish Group. Available at 
https://www.infoq.com/articles/standish-chaos-
2015.Accessed on 2017-07-07. 

[15] Y. Shoham and K. Leyton-Brown, Multiagent 
Systems-Algorithmic, Game-Theoretic, and 
Logical Foundations, Cambridge University 
Press, 2009. 

[16] H.P. Young, “Learning by trial and error”, 
Games and Economic Behavior, vol. 65, pp. 
626-643, 2009. 

[17] S. Railsback and V. Grimm, Agent-Based and 
Individual-Based Modeling: A practical 
Introduction, Princeton University Press, 2012. 

[18] L. Tosselli, V. Bogado and E. Martínez, “Un 
Enfoque de Sistemas Multiagente para la 
Gestión Ágil de Riesgos en la Compañía Fractal 
Mediante la (Re) Planificación de Proyectos”, in 
Conaiisi 2015, Bs. As., Argentina, 2015. 

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-134-



[19] S. Bary, R. Pradelski and H.P. Young, 
“Learning efficient Nash equilibria in 
distributed systems”, Games and Economic 
Behavior, vol. 75, pp. 882-897, 2012. 

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-135-




