
VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

H-RADIC: The Fault Tolerance Framework for
Virtual Clusters on Multi-Cloud Environments

Ambrosio Royo, Jorge Villamayor, Marcela Castro-León, Dolores Rexachs and Emilio Luque
CAOS - Computer Architecture and Operating Systems, Universitat Autónoma de Barcelona, Bellaterra

(Cerdanyola del Valles), Barcelona 08193, Spain
pabloambrosio.royo@e-campus.uab.cat,

{jorgeluis.villamayor,marcela.castro,dolores.rexachs,emilio.luque}@uab.cat

Abstract

Even though the cloud platform promises to be
reliable, several availability incidents prove that they
are not. How can we be sure that a parallel application
finishes the execution even if a site is affected by a
failure? This paper presents H-RADIC, an approach
based on RADIC architecture, that executes a parallel
application in at least 3 different virtual clusters or
sites. The execution state of each site is saved
periodically in another site and it is recovered in case
of failure. The paper details the configuration of the
architecture and the experiments results using 3
virtual clusters running NAS parallel applications
protected with DMTCP, a very well-known
distributed multi-threaded checkpoint tool. Our
experiments show that the execution time was
increased between a 5% to 36% without failures and
27% to 66% in case of failures.

Keywords: Cloud, Fault-Tolerance, High-
Performance Computing, RADIC.

1. Introduction

We know that there aren’t any computers small or big
safe from failures, we have seen big cloud providers
fail, Windows Azure had availability problems for the
Olympic Games in 2012 [1], Amazon Web Services
had been affected from the extreme weather [2] and
by human errors [3], also Google Cloud Platform was
attacked by a low-level software [4] or even Oracle
Cloud’s wide network error issue that was fixed by
restarting the network [5].

Since communication with a cloud can be lost due
to a wide range of possible errors, also causes loss of
computational resources, power consumption and

money; different authors have worked to prevent
failures when there are parallel applications with
message passing running on cloud environments; in
the work of Villamayor et. al [6] where they propose
Resilience as a Service (RaaS), a Fault Tolerant (FT)
framework for High Performance Computing (HPC)
applications running in a cloud, and Gomez et. al [7]
propose a multi-cloud FT framework that was capable
to continue working if any of the cloud sites fail and
delivered the results on the due date. We have studied
the previous work and took advantage of the elasticity
(easy provisioning of “hardware”) of cloud
computing.

We propose to take the Redundant Array of
Distributed Independent Controllers (RADIC)
architecture and hierarchically scale it up to be
applied to a fully automated, elastic FT framework for
virtual clusters running on different cloud
environments. Capable to protect applications
running in private or public clouds from fatal fails
like: loss of nodes during execution and loss of
communication between clouds.

The next section presents some related state of the
art work and the description of the RADIC
architecture. In section 3, we will describe an overall
detail of the H-RADIC architecture, fallowed up by
section 4, a summary of the experiments done from
the implementation of the H-RADIC architecture,
after that section 5 with the conclusions, finishing
with future work in section 6.

2. Background

In Japan, Bautista-Gomez et. al [8] proposed a low-
overhead high-frequency multi-level checkpoint
technique, that implement a three level checkpoint
scheme that compensates for the overhead of the FT

7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301084268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:pabloambrosio.royo@e-campus.uab.cat

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

by dedicating a thread of execution per node.
Another group of IEEE members [9] in the USA,

set up an online two-level checkpoint model for HPC,
one level deals with logical problems such as
transient memory errors and the other one deals with
hardware crashes like node fails, contributing with an
online solution that determines the optimal
checkpoint patterns and doesn’t required the
knowledge of the job length in advance.

Egwutuoaha et. al [10], from Australia, approached
the problem by not relaying on spare node prior of a
fail, aiming to reduce the time and cost of the
execution on the cloud.

And of course, the work of Gomez et. al [7] and
Villamayor et. al [6], that we mention in the
introduction.

2.1. RADIC Architecture

The RADIC architecture is transparent and automatic,
therefore the application doesn’t have to be modified
to apply it and there is no need of human intervention,
also it is elastic since it has the ability to add new
nodes whenever one crashes [11]. It consists on
implementing FT for message passing applications,
by intercepting and masking error which detect and
manage errors instead of ending the application.
Taking advantage of the hardware redundancy,
RADIC needs at least three physical nodes to work so
the application doesn’t have to stop and start again. It
works with two distributed software RADIC
components [12]: Observers and Protectors; there is a
protector running in each node and one observer for
every process running in the application, as shown in
Fig. 1. Additionally, a table named RadicTable is
used to store the relation between nodes, observers
and protectors which is updated by the RADIC
Components.

Observer: When the application is launched, a
software instance is created and attached to every
processor used in the program, its job is to perform
checkpoints and intercept the messages of its
processor and send it to the Protector to store it.

Protector: It’s in charge to request the observers to
perform checkpoints and store the checkpoint files in
its own Stable Storage (SS), and also to verify that the
node that it’s protecting is working and, in the case,
that it fails launch the latest checkpoint.

F j N o d c (N) Processor (P) Protector <T> |__ |Observer (O) [j^ JSubk Storage (SS)

[^ App lication Application Messages *— Checkpoint *••• Heartbeat Watchdog protocol

Fig. 1 - RADIC Architecture

RADIC defines four functions Protection, Detection,

Recovery and Error Masking.

Protection: Observer O3 is in charge of monitor
Process P3, then O3 gets a Protector Ta located in a
different node Na . At some point Ta will ask O3 to get
the state of it process and send it to Ta to be stored in
Ta 's Stable Storage (SS), this is called a checkpoint;
checkpoints will be done periodically to keep on
saving the state of the processes during a fault free
execution. The moment that every T has its
neighbor’s checkpoint, the RADIC protection will be
in place.

Detection: Node Nb faults when the process P3
cannot communicate with another process P2 in the
same node, that’s when O3 sends the error message to
TA. Also, a node faults when there is no
communication between nodes, that is, each protector
(TA) is in charge of detecting a possible failure in the
neighbor Node (Nb). Each protector keeps a
heartbeat/watchdog protocol with its neighbors
Protectors, in this way a fault detection mechanism is
implemented; in one hand, the Protector Tb is
periodically sending heartbeats to TC, and in the other
hand, Tb is the watchdog of Ta , so if Tb loses
communication with both neighbor protectors, Tb
will destroy itself because it has been left alone, if Ta
and Tc can’t see Tb , then Ta will launch the recovery
and error masking functions. Based on this function,
RADIC needs at least 3 nodes to work properly.

Recovery: Protector TA restarts/rolls-back the
processes running in Nb , using the data saved in the
SS from the last checkpoint, if the system has a spare
node, the processes will be restarted in it, otherwise
the processes are restarted in the node (Na) that has
the checkpoint.

Error Masking: After the recovery function, when
the processes have been restarted, the Observers that
got the error message hide the communication error
caused from the node failure. The Protector Ta sends
a message to the affected Observers (O0-1 and O4-5)
with the new address where the processes have been
recovered, also updates the RadicTable so
communications are done as usual.

RADIC has been originally designed to protect a
parallel application with message passing, recently it
has been leveraged to work in cloud environments. In
our work we scale up the architecture to be used for
parallel application protection, running in several
virtual clusters on multiple cloud environments.

3. H-RADIC Architecture

We propose a new protection level of RADIC, the
Hierarchical RADIC (H-RADIC) architecture, an
automated and elastic FT framework that protect a
parallel application running in virtual clusters on

8

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

| ■j Controller Node (cN) P I Node (N) (^P ro cesso r (P) I___ I Observer (O)

C T C)QCluster Protector Cloud ApplicationProtector (T) «-r+App. Messages

Stable Storage (SS) (Qciuster Stable Storage *— Checkpoint •>— Cluster Checkpoint

Heart beatAVatch dog protocol <-----Cloud Heart beat/Watch dog protocol
Fig. 2 - H-RADIC Architecture

cloud; requires at least three virtual clusters, each one
of them protected with the RADIC architecture and
located in different geographical sites so they don’t
share any of the physical resources, this will allow to
identify nodes faults within and between the clusters.

The architecture works for parallel applications
with a Message Passing Interface (MPI), that is,
besides the regular RADIC architecture designed to
protect from node fails, H-RADIC will protect
applications from crashing in the event of multiple
fails; when the virtual nodes fail, the physical nodes
that the virtual are mounted on fail and/or whenever
there is loss of communication. H-RADIC will
perform a diagnostic and then management of the
error.

Additionally to all the RADIC components, H-
RADIC has an extra software component, the
proTector of the Cluster (TC); on every cluster, a
main node will be defined (controller Node - cN) to
create the TC's, which will be in charge of the
communications between clusters, as it’s shown Fig.
2.

3.1. H-RADIC functions

The H-RADIC architecture implements the RADIC
functions in each cluster, that is, whenever there is a
fault, the architecture tries to recover from it by
applying the RADIC functions. H-RADIC functions
will process the failures when the RADIC functions
can’t process them.

To guaranty the completion of the execution, H-
RADIC transported the RADIC functions to be apply
into programs running in multi-clusters environments
and depict its functionality in the following functions:

Protection'. Only while the execution is running
fault free, checkpoints will be periodically done.
Once that the Protectors (T) have the checkpoint of
each of the process, the Cluster Protector (TCy) will
be in charge of collecting the updates in the Stable

Storage (SS) of every T in the Cluster (Cy). Then,
TCy must send it to the assigned Cluster Protector
TCx located in a different cloud to store the Cluster
Checkpoint (multilevel checkpoint) at the Cluster SS.
When every TC has a checkpoint of its neighbor C,
the H-RADIC protection will be activated.

Detection: This function works the same way as the
RADIC detection function; TCx is in charge of
identifying a possible failure in the neighbor Cluster
Cy , using a heartbeat/watchdog protocol. If Cy does
not answer, TCx asks TCz to verify if there is an error
with Cy , if TCz confirms that there is no
communication with Cy , Recovery and Error
Masking functions are triggered.

Recovery: Cloud Protector TCk restarts/rolls-back
the process running in Cl , using the data saved in the
cluster SS from the last checkpoint, then TCk checks
if there is a spare cluster to lunch the checkpoint in it,
otherwise creates new nodes in Ck to restart all the
processes previously running in the failed Cl , then
updates the RADIC Tables.

Error Masking: After the recovery function, when
the processes have been restarted, the Cluster
Protector hides the communication errors caused by
the cloud failure, the Cluster Protector TCk sends a
message to the affected Protectors with the new
address where the processes have been recovered,
updating the H-RADIC Table and broadcasting this
update to every TC in the architecture, then
communications will be done as usual.

3.1.1. H-RADIC Recovery function’ options

After a fault is detected, the recovery function has
two options to restart a checkpoint; the first one
checks if there are spare clusters available in another
cloud, viewed in Fig. 3, the second one checks if there
are spare nodes in the same cloud, as shown in Fig. 4,
then the checkpoint files are sent to the nodes that are
in the spare cluster.

9

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

Fig. 3 - H-RADIC Recovery function - spare nodes/cluster
in another cloud.

Fig. 4 - H-RADIC Recovery function - spare nodes/cluster
in the same cloud.

The main difference between the two restart options
is the way to store the checkpoints. In the case that
there is a spare cluster available in other cloud (Fig.
3), H-RADIC will be working as usual, but if there
are no spare nodes available in a third cloud, the
checkpoint will be restarted in the spare nodes of the
cloud that has the checkpoint. After the restart, the
two clusters (X and Y ’ in Fig. 4) will send their
checkpoints to Cluster Z and vice versa.

When the execution is working like the previous
situation and if a new failure rises in one of the clouds,
the three clusters will be together in one cloud, as
shown in Fig. 5, and henceforth, all the checkpoints
will be stored in one cloud storage.

Although this situation will leave the execution
exposed to the same vulnerabilities, that lead us to
develop this type architecture. Such vulnerabilities
like failures in the cloud controller, the storage and
the physical computer that the virtual nodes are
mounted on. This vulnerability will now allow us to
be able to guaranty availability.

Fig. 5 - H-RADIC Recovery function - spare nodes/cluster

in the same cloud and not more clouds left.

4. Experiments

To test the architecture, we mounted 3 clusters
running on CentOS. Each one of them has a different
NAS Parallel Benchmark [13] program compiled
with an implementation of MPI named: MPICH [14].
H-RADIC will performing the checkpoints for this
experiments in a coordinated approach, using the
open source software package: Distributed Multi­
Threaded Checkpointing (DMTCP) [15]. Each
cluster has 3 nodes and every node have 8 processors,
24 processors per cluster.

The DMTCP allows to work with the checkpoints
at an application layer of the OSI model, making it
perfect for virtualized environments. Also, whenever
a checkpoint is done, it automatically compresses it
using gzip.

4.1. Pseudocode of H-RADIC

Before running the programs, they have to be
compiled with the MPI implementation and also the
inventory of nodes have to be depicted in the H-
RADIC Table (Table 1); it’s been established that
each cluster will have a Cluster Protector, this will be
the previous row in the table, and it's expressed as
(cluster-1), if the program is in cluster Y, the cluster
protector will be cluster X. If the cluster it’s in the
first row (cluster X), then cluster protector will be the
las row in the table (cluster Z), to complete a full loop.

Table 1 - H-RADIC TABLE

Cluster Nodes Controller
Node

1 clusterX A, B, C A
2 clusterY D, E, F E
3 clusterZ G, H, I G

All the logic described in the H-RADIC functions can
be summarized in Algorithm 1.

Algorithm 1 - H-RADIC pseudocode
// FUNCTIONS

2: function protection (program, cluster,
ckPTime){

3: Send the program to the controllerNode in
cluster

4: launch dmtcpCoordinator with the program
and ckPTime

5: call detection(cluster, ckPTime)
6: while
7: perform checkPoint every ckPTime

seconds
8: send checkPoint to (cluster-1)
9: if program ends

10

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

10: broadcast succesfull end to all HRADIC
Tables

11: break while
12 }
13:
14: function detection (cluster, ckPTime){
15: // Goes to the HRADIC Table and takes the

next cluster in the table to protect
16: establish watchdog protocol between cluster

and (cluster+1)
17: while
18: get heartbeat from (cluster+1)
19: send heartbeat to (cluster-1)
20: if heartbeat/watchdogProtocol fails
21: ask (cluster+2) to establish connection

with (cluster+1)
22: if the connection is established
23: nothing happens
24: else if (cluster+2) can't see (cluster+1)
25: recovery(cluster+1, ckPTime)
26: }
27:
28: function recovery (cluster+1, ckPTime){
29: search for spareCluster in other clouds or in

the local cloud
30: inizialize Nodes in spareCluster = Nodes in

(cluster+1)
31: send checkPoint files to nodes in

spareCluster
32: call errorMasking(spareCluster, cluster+1)
33: // Call the protection fuction again, but this

time run the checkpoint instead of the original
program

34: call
protection(checkPoint,spareCluster,ckPTime)

35: }
36:
37: function errorMasking (spareCluster,

cluster+1){
38: remove (cluster+1) info. in the HRADIC

Table
39: add spareCluster info. in the HRADIC Table
40: broadcast the update to all HRADIC Tables in

all the clusters
41: }
42:
43: // MAIN
44: // Launch all the protection functions in parallel
45: executeprotection(bt.C.16, clusterX, 60)
46: executeprotection(lu.C.16, clusterY, 80)
47: executeprotection(cg.C.16, clusterZ, 70)

4.2. Results

The experiment is measuring the time that it takes
the application to finish its execution, in the following
cases: 1) the application without applying H-RADIC
but performing checkpoints, 2) the application with
H-RADIC and without errors or failures and, 3) the
application with H-RADIC and an induced error.
Then by taking the increase percentage of time in 2)
and 3), we got Fig. 6.

Fig. 6 - H-RADIC percentage of time overhead.

4.2.1. Overhead Breakdown

For the calculation of the overhead, we measured
different time variables (as shown in Table 2): the
first percentage shown in Fig. 6 is the application
running with checkpoints as Eq (1), this time is
considered the point of departure from where we are
calculating the overhead.

TCkpt = P + (ckpt ■ n) (Eq. 1)

In order to establish the RADIC and H-RADIC
protection, all the checkpoints needed to be copied to
the protector nodes and the cluster protector node
respectively. This process is done at the background
Eq (2) while the application keeps on executing. This
process is represented in Fig. 2, by the checkpoint’s
and cluster checkpoint’s lines. Since moving the files
take some computational resources, it affects the
program execution time, although its not directly in
the critical path.

bkgrd = chkpSize ■ pro tect (Eq. 2)

The Running Time percentage with H-RADIC without
failure in Fig. 6 is the time that the application took
to execute considering the RADIC and H-RADIC
protection in Eq (3).

Calculating the optimal checkpoint interval is a
controversial subject; for these experiments, all the
programs were executed several times, this was done
to identify the average time that each node needed to
perform a checkpoint and move it to the different
nodes and also to the cluster protector.

Th - r a d ic = Tckpt + bkgrd (Eq. 3)

Finally, the third experiment, the Running Time
percentage with H-RADIC with failure in Fig. 6 is the
time that took the framework to restart the execution
in a spare cluster Eq (4), considering the time to move

11

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

the checkpoint files and the time to restart the
execution.

T'h - r a d i c & Failure — Th - r a d i c + move + resta rt
(Eq. 4)

Table 2 - Time's variables description.

Variable Description
Tc k p t Execution time with checkpoints
p Program execution time

ckpt Time to create a checkpoint
n Number of checkpoints per execution

Th -R AD IC
Execution time with H-RADIC
without failures

ckptSize Checkpoint size in MB

protect Time to move the ckpt to establish H-
RADIC protection.

bkgrd Unpredictable time impact on p
TH -R A D IC Execution time with H-RADIC with

& F a ilu re failure
move Time to move the checkpoint files to

the spare cluster
restart Time to restart the application

In general, we can appreciate that the overhead
caused by implementing H-RADIC and having 0
failures, does not really increase the program
execution time, however if a failure rises, we can see
the overhead percentage from as low as 22% to as
high as 66% in time. This bottleneck is mainly due
because of the time taken to move the checkpoint to
the nodes in the spare cluster, since the time to restart
the application once that the checkpoints where in the
spare cluster is negligible.

5. Conclusion

The proposal in this paper is based on the RADIC
architecture, that is capable of assure a successful
execution of the application even when failures occur.
We analyzed every component of the framework and
identified the improvement areas.

By translating every RADIC concept to H-RADIC
and taking them to a virtual multi-clusters level, we
develop a FT framework capable of overcome fatal
fails like the loss of a full site. The H-RADIC
architecture fully implements RADIC and the new
benefits from H-RADIC and it allows us to guarantee
the completion of the execution in the event of errors
like, loss of nodes, loss of communication between
sites or general fails in several sites. It’s a solution
that can be implemented in virtual and non-virtual
environments.

Considering that a traditional FT system, that
consist on having one or two copies of a full site in
another one, waiting for the main site to fail, with H-
RADIC, by distributing the work load in different

sites, the need of resources is way less that the ones
needed for the traditional FT system.

Finally, the experiments show us that the overhead
in most of the programs is reasonable and proves the
theory behind the concept.

6. Future Work

Test the architecture implementing semi coordinated
and no-coordinated checkpoints, to run a single
program in several virtual clusters at the same time.

Develop the architecture in a way that if the
performance is decreasing, it can request more
resources live to the cloud provider, to assure
competition before the due date.

Implement a mechanism that accelerates the
transfer rate, by improving I/O, use incremental
checkpoints and/or compress [16] the checkpoints
even more.

Acknowledgements

The first author acknowledges the support from the
National Science and Technology Council of Mexico
(Consejo Nacional de Ciencia y Tecnología,
CONACYT) that sponsored through a scholarship,
and special thanks to all the team at CAOS and the
UAB.

References

[1] B. Darrow, “Windows Azure outage hits
Europe,” 26-Jul-2012. [Online]. Available:
https://gigaom.com/2012/07/26/windows-azure-
outage-hits-europe/. [Accessed: 30-Mar-2018].

[2] O. Malik, “Severe storms cause Amazon Web
Services outage,” 29-Jun-2012. [Online].
Available:
https://gigaom.com/2012/06/29/some-of-
amazon-web-services-are-down-again/.
[Accessed: 30-Mar-2018].

[3] “Summary of the Amazon S3 Service Disruption
in the Northern Virginia (US-EAST-1) Region,”
Amazon Web Services, Inc. [Online]. Available:
https://aws.amazon.com/message/41926/.
[Accessed: 31-Mar-2018].

[4] “Google Cloud Status Dashboard.” [Online].
Available:
https://status.cloud.google.com/incident/storage
/17002. [Accessed: 31-Mar-2018].

[5] J. Hult, “Oracle Cloud - unplanned outage -
November 7, 2017,” JonathanHult.com, 17-
Nov-2017. .

[6] J. Villamayor, D. Rexachs, and E. Luque, “RaaS:
Resiliance as a Service - Fault Tolerance for
High Performance Computing in Clouds,” p.
Accepted, Mar. 2015.

12

https://gigaom.com/2012/07/26/windows-azure-outage-hits-europe/
https://gigaom.com/2012/07/26/windows-azure-outage-hits-europe/
https://gigaom.com/2012/06/29/some-of-amazon-web-services-are-down-again/
https://gigaom.com/2012/06/29/some-of-amazon-web-services-are-down-again/
https://aws.amazon.com/message/41926/
https://status.cloud.google.com/incident/storage

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

[7] A. Gómez, L. M. Carril, R. Valin, J. C. Mouriño,
and C. Cotelo, “Fault-tolerant virtual cluster
experiments on federated sites using BonFIRE,”
Future Gener. Comput. Syst., vol. 34, pp. 17-25,
May 2014.

[8] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F.
Cappello, N. Maruyama, and S. Matsuoka, “FTI:
High Performance Fault Tolerance Interface for
Hybrid Systems,” in Proceedings o f 2011
International Conference for High Performance
Computing, Networking, Storage and Analysis,
New York, NY, USA, 2011, p. 32:1-32:32.

[9] S. Di, Y. Robert, F. Vivien, and F. Cappello,
“Toward an Optimal Online Checkpoint
Solution under a Two-Level HPC Checkpoint
Model,” IEEE Trans. ParallelDistrib. Syst., vol.
28, no. 1, pp. 244-259, Jan. 2017.

[10] I. P. Egwutuoha, S. Chen, D. Levy, B. Selic, and
R. Calvo, “Cost-oriented proactive fault
tolerance approach to high performance
computing (HPC) in the cloud,” Int. J. Parallel
Emergent Distrib. Syst., vol. 29, no. 4, pp. 363­
378, Jul. 2014.

[11] L. Fialho, G. Santos, A. Duarte, D. Rexachs, and
E. Luque, “Challenges and Issues of the
Integration of RADIC into Open MPI,” in Recent

Advances in Parallel Virtual Machine and
Message Passing Interface, Springer, Berlin,
Heidelberg, 2009, pp. 73-83.

[12] M. Castro-León, H. Meyer, D. Rexachs, and E.
Luque, “Fault tolerance at system level based on
RADIC architecture,” J. Parallel Distrib.
Comput., vol. 86, pp. 98-111, Dec. 2015.

[13] “NAS Parallel Benchmarks,” NASA Advanced
Supercomputing Division. [Online]. Available:
https ://www .nas.nasa. gov/pub lications/npb. html
. [Accessed: 23-May-2018].

[14] “MPICH | High-Performance Portable MPI,”
MPICH. [Online]. Available:
https://www.mpich.org/. [Accessed: 02-Jun-
2018].

[15] J. Ansel, K. Arya, and G. Cooperman, “DMTCP:
Transparent checkpointing for cluster
computations and the desktop,” in 2009 IEEE
International Symposium on Parallel
Distributed Processing, 2009, pp. 1-12.

[16] D. Tao, S. Di, X. Liang, Z. Chen, and F.
Cappello, “Improving Performance of Iterative
Methods by Lossy Checkponting,”
ArXiv180411268 Cs, Apr. 2018.

13

https://www.mpich.org/

