
VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

H-RADIC: The Fault Tolerance Framework for 
Virtual Clusters on Multi-Cloud Environments

Ambrosio Royo, Jorge Villamayor, Marcela Castro-León, Dolores Rexachs and Emilio Luque
CAOS -  Computer Architecture and Operating Systems, Universitat Autónoma de Barcelona, Bellaterra 

(Cerdanyola del Valles), Barcelona 08193, Spain 
pabloambrosio.royo@e-campus.uab.cat, 

{jorgeluis.villamayor,marcela.castro,dolores.rexachs,emilio.luque}@uab.cat

Abstract

Even though the cloud platform promises to be 
reliable, several availability incidents prove that they 
are not. How can we be sure that a parallel application 
finishes the execution even if a site is affected by a 
failure? This paper presents H-RADIC, an approach 
based on RADIC architecture, that executes a parallel 
application in at least 3 different virtual clusters or 
sites. The execution state of each site is saved 
periodically in another site and it is recovered in case 
of failure. The paper details the configuration of the 
architecture and the experiments results using 3 
virtual clusters running NAS parallel applications 
protected with DMTCP, a very well-known 
distributed multi-threaded checkpoint tool. Our 
experiments show that the execution time was 
increased between a 5% to 36% without failures and 
27% to 66% in case of failures.

Keywords: Cloud, Fault-Tolerance, High-
Performance Computing, RADIC.

1. Introduction

We know that there aren’t any computers small or big 
safe from failures, we have seen big cloud providers 
fail, Windows Azure had availability problems for the 
Olympic Games in 2012 [1], Amazon Web Services 
had been affected from the extreme weather [2] and 
by human errors [3], also Google Cloud Platform was 
attacked by a low-level software [4] or even Oracle 
Cloud’s wide network error issue that was fixed by 
restarting the network [5].

Since communication with a cloud can be lost due 
to a wide range of possible errors, also causes loss of 
computational resources, power consumption and

money; different authors have worked to prevent 
failures when there are parallel applications with 
message passing running on cloud environments; in 
the work of Villamayor et. al [6] where they propose 
Resilience as a Service (RaaS), a Fault Tolerant (FT) 
framework for High Performance Computing (HPC) 
applications running in a cloud, and Gomez et. al [7] 
propose a multi-cloud FT framework that was capable 
to continue working if any of the cloud sites fail and 
delivered the results on the due date. We have studied 
the previous work and took advantage of the elasticity 
(easy provisioning of “hardware”) of cloud 
computing.

We propose to take the Redundant Array of 
Distributed Independent Controllers (RADIC) 
architecture and hierarchically scale it up to be 
applied to a fully automated, elastic FT framework for 
virtual clusters running on different cloud 
environments. Capable to protect applications 
running in private or public clouds from fatal fails 
like: loss of nodes during execution and loss of 
communication between clouds.

The next section presents some related state of the 
art work and the description of the RADIC 
architecture. In section 3, we will describe an overall 
detail of the H-RADIC architecture, fallowed up by 
section 4, a summary of the experiments done from 
the implementation of the H-RADIC architecture, 
after that section 5 with the conclusions, finishing 
with future work in section 6.

2. Background

In Japan, Bautista-Gomez et. al [8] proposed a low- 
overhead high-frequency multi-level checkpoint 
technique, that implement a three level checkpoint 
scheme that compensates for the overhead of the FT

7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301084268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:pabloambrosio.royo@e-campus.uab.cat


VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

by dedicating a thread of execution per node.
Another group of IEEE members [9] in the USA, 

set up an online two-level checkpoint model for HPC, 
one level deals with logical problems such as 
transient memory errors and the other one deals with 
hardware crashes like node fails, contributing with an 
online solution that determines the optimal 
checkpoint patterns and doesn’t required the 
knowledge of the job length in advance.

Egwutuoaha et. al [10], from Australia, approached 
the problem by not relaying on spare node prior of a 
fail, aiming to reduce the time and cost of the 
execution on the cloud.

And of course, the work of Gomez et. al [7] and 
Villamayor et. al [6], that we mention in the 
introduction.

2.1. RADIC Architecture

The RADIC architecture is transparent and automatic, 
therefore the application doesn’t have to be modified 
to apply it and there is no need of human intervention, 
also it is elastic since it has the ability to add new 
nodes whenever one crashes [11]. It consists on 
implementing FT for message passing applications, 
by intercepting and masking error which detect and 
manage errors instead of ending the application. 
Taking advantage of the hardware redundancy, 
RADIC needs at least three physical nodes to work so 
the application doesn’t have to stop and start again. It 
works with two distributed software RADIC 
components [12]: Observers and Protectors; there is a 
protector running in each node and one observer for 
every process running in the application, as shown in 
Fig. 1. Additionally, a table named RadicTable is 
used to store the relation between nodes, observers 
and protectors which is updated by the RADIC 
Components.

Observer: When the application is launched, a 
software instance is created and attached to every 
processor used in the program, its job is to perform 
checkpoints and intercept the messages of its 
processor and send it to the Protector to store it.

Protector: It’s in charge to request the observers to 
perform checkpoints and store the checkpoint files in 
its own Stable Storage (SS), and also to verify that the 
node that it’s protecting is working and, in the case, 
that it fails launch the latest checkpoint.

F j N o d c (N) Processor (P) Protector <T> |__ |Observer (O) [ j^ JSubk Storage (SS)

[^ App lication  Application Messages *— Checkpoint *••• Heartbeat Watchdog protocol

Fig. 1 - RADIC Architecture

RADIC defines four functions Protection, Detection, 

Recovery and Error Masking.

Protection: Observer O3 is in charge of monitor 
Process P3, then O3 gets a Protector Ta  located in a 
different node Na . At some point Ta  will ask O3 to get 
the state of it process and send it to Ta  to be stored in 
Ta 's Stable Storage (SS), this is called a checkpoint; 
checkpoints will be done periodically to keep on 
saving the state of the processes during a fault free 
execution. The moment that every T has its 
neighbor’s checkpoint, the RADIC protection will be 
in place.

Detection: Node Nb  faults when the process P3 
cannot communicate with another process P2 in the 
same node, that’s when O3 sends the error message to 
TA. Also, a node faults when there is no 
communication between nodes, that is, each protector 
(TA) is in charge of detecting a possible failure in the 
neighbor Node (Nb ). Each protector keeps a 
heartbeat/watchdog protocol with its neighbors 
Protectors, in this way a fault detection mechanism is 
implemented; in one hand, the Protector Tb  is 
periodically sending heartbeats to TC, and in the other 
hand, Tb  is the watchdog of Ta , so if Tb  loses 
communication with both neighbor protectors, Tb  
will destroy itself because it has been left alone, if Ta  
and Tc  can’t see Tb , then Ta  will launch the recovery 
and error masking functions. Based on this function, 
RADIC needs at least 3 nodes to work properly.

Recovery: Protector TA restarts/rolls-back the 
processes running in Nb , using the data saved in the 
SS from the last checkpoint, if the system has a spare 
node, the processes will be restarted in it, otherwise 
the processes are restarted in the node (Na ) that has 
the checkpoint.

Error Masking: After the recovery function, when 
the processes have been restarted, the Observers that 
got the error message hide the communication error 
caused from the node failure. The Protector Ta  sends 
a message to the affected Observers (O0-1 and O4-5) 
with the new address where the processes have been 
recovered, also updates the RadicTable so 
communications are done as usual.

RADIC has been originally designed to protect a 
parallel application with message passing, recently it 
has been leveraged to work in cloud environments. In 
our work we scale up the architecture to be used for 
parallel application protection, running in several 
virtual clusters on multiple cloud environments.

3. H-RADIC Architecture

We propose a new protection level of RADIC, the 
Hierarchical RADIC (H-RADIC) architecture, an 
automated and elastic FT framework that protect a 
parallel application running in virtual clusters on
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Fig. 2 - H-RADIC Architecture

cloud; requires at least three virtual clusters, each one 
of them protected with the RADIC architecture and 
located in different geographical sites so they don’t 
share any of the physical resources, this will allow to 
identify nodes faults within and between the clusters.

The architecture works for parallel applications 
with a Message Passing Interface (MPI), that is, 
besides the regular RADIC architecture designed to 
protect from node fails, H-RADIC will protect 
applications from crashing in the event of multiple 
fails; when the virtual nodes fail, the physical nodes 
that the virtual are mounted on fail and/or whenever 
there is loss of communication. H-RADIC will 
perform a diagnostic and then management of the 
error.

Additionally to all the RADIC components, H- 
RADIC has an extra software component, the 
proTector of the Cluster (TC); on every cluster, a 
main node will be defined (controller Node - cN) to 
create the TC's, which will be in charge of the 
communications between clusters, as it’s shown Fig. 
2.

3.1. H-RADIC functions

The H-RADIC architecture implements the RADIC 
functions in each cluster, that is, whenever there is a 
fault, the architecture tries to recover from it by 
applying the RADIC functions. H-RADIC functions 
will process the failures when the RADIC functions 
can’t process them.

To guaranty the completion of the execution, H- 
RADIC transported the RADIC functions to be apply 
into programs running in multi-clusters environments 
and depict its functionality in the following functions:

Protection'. Only while the execution is running 
fault free, checkpoints will be periodically done. 
Once that the Protectors (T) have the checkpoint of 
each of the process, the Cluster Protector (TCy ) will 
be in charge of collecting the updates in the Stable

Storage (SS) of every T in the Cluster (Cy ). Then, 
TCy  must send it to the assigned Cluster Protector 
TCx  located in a different cloud to store the Cluster 
Checkpoint (multilevel checkpoint) at the Cluster SS. 
When every TC has a checkpoint of its neighbor C, 
the H-RADIC protection will be activated.

Detection: This function works the same way as the 
RADIC detection function; TCx  is in charge of 
identifying a possible failure in the neighbor Cluster 
Cy , using a heartbeat/watchdog protocol. If Cy  does 
not answer, TCx  asks TCz  to verify if there is an error 
with Cy , if TCz  confirms that there is no 
communication with Cy , Recovery and Error 
Masking functions are triggered.

Recovery: Cloud Protector TCk  restarts/rolls-back 
the process running in Cl , using the data saved in the 
cluster SS from the last checkpoint, then TCk  checks 
if there is a spare cluster to lunch the checkpoint in it, 
otherwise creates new nodes in Ck  to restart all the 
processes previously running in the failed Cl , then 
updates the RADIC Tables.

Error Masking: After the recovery function, when 
the processes have been restarted, the Cluster 
Protector hides the communication errors caused by 
the cloud failure, the Cluster Protector TCk  sends a 
message to the affected Protectors with the new 
address where the processes have been recovered, 
updating the H-RADIC Table and broadcasting this 
update to every TC in the architecture, then 
communications will be done as usual.

3.1.1. H-RADIC Recovery function’ options

After a fault is detected, the recovery function has 
two options to restart a checkpoint; the first one 
checks if there are spare clusters available in another 
cloud, viewed in Fig. 3, the second one checks if there 
are spare nodes in the same cloud, as shown in Fig. 4, 
then the checkpoint files are sent to the nodes that are 
in the spare cluster.
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Fig. 3 - H-RADIC Recovery function - spare nodes/cluster 
in another cloud.

Fig. 4 - H-RADIC Recovery function - spare nodes/cluster 
in the same cloud.

The main difference between the two restart options 
is the way to store the checkpoints. In the case that 
there is a spare cluster available in other cloud (Fig. 
3), H-RADIC will be working as usual, but if there 
are no spare nodes available in a third cloud, the 
checkpoint will be restarted in the spare nodes of the 
cloud that has the checkpoint. After the restart, the 
two clusters (X and Y ’ in Fig. 4) will send their 
checkpoints to Cluster Z and vice versa.

When the execution is working like the previous 
situation and if a new failure rises in one of the clouds, 
the three clusters will be together in one cloud, as 
shown in Fig. 5, and henceforth, all the checkpoints 
will be stored in one cloud storage.

Although this situation will leave the execution 
exposed to the same vulnerabilities, that lead us to 
develop this type architecture. Such vulnerabilities 
like failures in the cloud controller, the storage and 
the physical computer that the virtual nodes are 
mounted on. This vulnerability will now allow us to 
be able to guaranty availability.

Fig. 5 - H-RADIC Recovery function - spare nodes/cluster

in the same cloud and not more clouds left.

4. Experiments

To test the architecture, we mounted 3 clusters 
running on CentOS. Each one of them has a different 
NAS Parallel Benchmark [13] program compiled 
with an implementation of MPI named: MPICH [14]. 
H-RADIC will performing the checkpoints for this 
experiments in a coordinated approach, using the 
open source software package: Distributed Multi­
Threaded Checkpointing (DMTCP) [15]. Each 
cluster has 3 nodes and every node have 8 processors, 
24 processors per cluster.

The DMTCP allows to work with the checkpoints 
at an application layer of the OSI model, making it 
perfect for virtualized environments. Also, whenever 
a checkpoint is done, it automatically compresses it 
using gzip.

4.1. Pseudocode of H-RADIC

Before running the programs, they have to be 
compiled with the MPI implementation and also the 
inventory of nodes have to be depicted in the H- 
RADIC Table (Table 1); it’s been established that 
each cluster will have a Cluster Protector, this will be 
the previous row in the table, and it's expressed as 
(cluster-1), if the program is in cluster Y, the cluster 
protector will be cluster X. If the cluster it’s in the 
first row (cluster X), then cluster protector will be the 
las row in the table (cluster Z), to complete a full loop.

Table 1 - H-RADIC TABLE

Cluster Nodes Controller
Node

1 clusterX A, B, C A
2 clusterY D, E, F E
3 clusterZ G, H, I G

All the logic described in the H-RADIC functions can 
be summarized in Algorithm 1.

Algorithm 1 - H-RADIC pseudocode 
// FUNCTIONS

2: function protection (program, cluster,
ckPTime){

3: Send the program to the controllerNode in
cluster

4: launch dmtcpCoordinator with the program
and ckPTime

5: call detection(cluster, ckPTime)
6: while
7: perform checkPoint every ckPTime

seconds
8: send checkPoint to (cluster-1)
9: if program ends

10



VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

10: broadcast succesfull end to all HRADIC
Tables

11: break while
12 }
13:
14: function detection (cluster, ckPTime){
15: // Goes to the HRADIC Table and takes the

next cluster in the table to protect 
16: establish watchdog protocol between cluster

and (cluster+1)
17: while
18: get heartbeat from (cluster+1)
19: send heartbeat to (cluster-1)
20: if heartbeat/watchdogProtocol fails
21: ask (cluster+2) to establish connection

with (cluster+1)
22: if the connection is established
23: nothing happens
24: else if (cluster+2) can't see (cluster+1)
25: recovery(cluster+1, ckPTime)
26: }
27:
28: function recovery (cluster+1, ckPTime){
29: search for spareCluster in other clouds or in

the local cloud
30: inizialize Nodes in spareCluster = Nodes in

(cluster+1)
31: send checkPoint files to nodes in

spareCluster
32: call errorMasking(spareCluster, cluster+1)
33: // Call the protection fuction again, but this

time run the checkpoint instead of the original 
program 

34: call
protection(checkPoint,spareCluster,ckPTime) 

35: }
36:
37: function errorMasking (spareCluster, 

cluster+1){
38: remove (cluster+1) info. in the HRADIC

Table
39: add spareCluster info. in the HRADIC Table
40: broadcast the update to all HRADIC Tables in

all the clusters 
41: }
42:
43: // MAIN
44: // Launch all the protection functions in parallel
45: executeprotection(bt.C.16, clusterX, 60)
46: executeprotection(lu.C.16, clusterY, 80)
47: executeprotection(cg.C.16, clusterZ, 70)

4.2. Results

The experiment is measuring the time that it takes 
the application to finish its execution, in the following 
cases: 1) the application without applying H-RADIC 
but performing checkpoints, 2) the application with 
H-RADIC and without errors or failures and, 3) the 
application with H-RADIC and an induced error. 
Then by taking the increase percentage of time in 2) 
and 3), we got Fig. 6.

Fig. 6 - H-RADIC percentage of time overhead.

4.2.1. Overhead Breakdown

For the calculation of the overhead, we measured 
different time variables (as shown in Table 2): the 
first percentage shown in Fig. 6 is the application 
running with checkpoints as Eq (1), this time is 
considered the point of departure from where we are 
calculating the overhead.

TCkpt = P + (ckpt ■ n) (Eq. 1)

In order to establish the RADIC and H-RADIC 
protection, all the checkpoints needed to be copied to 
the protector nodes and the cluster protector node 
respectively. This process is done at the background 
Eq (2) while the application keeps on executing. This 
process is represented in Fig. 2, by the checkpoint’s 
and cluster checkpoint’s lines. Since moving the files 
take some computational resources, it affects the 
program execution time, although its not directly in 
the critical path.

bkgrd = chkpSize ■ pro tect (Eq. 2)

The Running Time percentage with H-RADIC without 
failure in Fig. 6 is the time that the application took 
to execute considering the RADIC and H-RADIC 
protection in Eq (3).

Calculating the optimal checkpoint interval is a 
controversial subject; for these experiments, all the 
programs were executed several times, this was done 
to identify the average time that each node needed to 
perform a checkpoint and move it to the different 
nodes and also to the cluster protector.

Th - r a d ic  = Tckpt + bkgrd  (Eq. 3)

Finally, the third experiment, the Running Time 
percentage with H-RADIC with failure in Fig. 6 is the 
time that took the framework to restart the execution 
in a spare cluster Eq (4), considering the time to move
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the checkpoint files and the time to restart the 
execution.

T'h - r a d i c  & Failure — Th - r a d i c  + move  + resta rt 
(Eq. 4)

Table 2 - Time's variables description.

Variable Description
Tc k p t Execution time with checkpoints
p Program execution time

ckpt Time to create a checkpoint
n Number of checkpoints per execution

Th -R AD IC
Execution time with H-RADIC 
without failures

ckptSize Checkpoint size in MB

protect Time to move the ckpt to establish H- 
RADIC protection.

bkgrd Unpredictable time impact on p
TH -R A D IC Execution time with H-RADIC with

& F a ilu re failure
move Time to move the checkpoint files to 

the spare cluster
restart Time to restart the application

In general, we can appreciate that the overhead 
caused by implementing H-RADIC and having 0 
failures, does not really increase the program 
execution time, however if a failure rises, we can see 
the overhead percentage from as low as 22% to as 
high as 66% in time. This bottleneck is mainly due 
because of the time taken to move the checkpoint to 
the nodes in the spare cluster, since the time to restart 
the application once that the checkpoints where in the 
spare cluster is negligible.

5. Conclusion

The proposal in this paper is based on the RADIC 
architecture, that is capable of assure a successful 
execution of the application even when failures occur. 
We analyzed every component of the framework and 
identified the improvement areas.

By translating every RADIC concept to H-RADIC 
and taking them to a virtual multi-clusters level, we 
develop a FT framework capable of overcome fatal 
fails like the loss of a full site. The H-RADIC 
architecture fully implements RADIC and the new 
benefits from H-RADIC and it allows us to guarantee 
the completion of the execution in the event of errors 
like, loss of nodes, loss of communication between 
sites or general fails in several sites. It’s a solution 
that can be implemented in virtual and non-virtual 
environments.

Considering that a traditional FT system, that 
consist on having one or two copies of a full site in 
another one, waiting for the main site to fail, with H- 
RADIC, by distributing the work load in different

sites, the need of resources is way less that the ones 
needed for the traditional FT system.

Finally, the experiments show us that the overhead 
in most of the programs is reasonable and proves the 
theory behind the concept.

6. Future Work

Test the architecture implementing semi coordinated 
and no-coordinated checkpoints, to run a single 
program in several virtual clusters at the same time.

Develop the architecture in a way that if the 
performance is decreasing, it can request more 
resources live to the cloud provider, to assure 
competition before the due date.

Implement a mechanism that accelerates the 
transfer rate, by improving I/O, use incremental 
checkpoints and/or compress [16] the checkpoints 
even more.
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