INTERNATIONAL MICROBIOLOGY (2015) 18:91-97 doi:10.2436/20.1501.01.238 ISSN (print): 1139-6709. e-ISSN: 1618-1095 www.im.microbios.org

Antagonism of entomopathogenic fungi by *Bacillus* spp. associated with the integument of cicadellids and delphacids

Andrea Toledo, 1* Silvina López, 2 Mónica Aulicino, 3 Ana María de Remes Lenicov, 4 Pedro Balatti 1

¹Plant Pathology Research Center, Faculty of Agricultural Sciences and Forestry, National University of La Plata, La Plata, Buenos Aires, Argentina. ²Institute of Plant Physiology, Faculty of Agricultural Sciences and Forestry, National University of La Plata-CONICET, La Plata, Buenos Aires, Argentina. ³Institute of Phytotechnology Santa Catalina, Faculty of Agricultural Sciences and Forestry, National University of La Plata, Lavallol, Buenos Aires, Argentina. ⁴Entomology Division, Faculty of Natural Sciences and Museum, National University of La Plata, La Plata, Buenos Aires, Argentina

Received 11 March 2015 · Accepted 12 June 2015

Summary. Entomopathogenic fungi are potential tools to biocontrol cicadellids and delphacids, two groups of insects that cause extensive damage to agricultural crops. However, bacteria living on the host cuticle may inhibit fungal growth. In the present work, following the molecular characterization of 10 strains of *Bacillus* isolated from the integument of cicadellids and delphacids, we selected isolates of the fungi *Beauveria bassiana* and *Metarhizium anisopliae* that are resistant to the antimicrobials secreted by these bacterial strains. The antagonistic activity of the 10 bacterial isolates belonging to the genus *Bacillus* (i.e., *B. amyloliquefaciens*, *B. pumilus*, and *B. subtilis*) against 41 isolates of *Bea. bassiana* and 20 isolates of *M. anisopliae* was investigated in vitro on tryptic soy agar using the central disk test. With this approach, isolates of *Bea. bassiana* and *M. anisopliae* resistant to antagonistic bacteria were identified that can be further developed as biological control agents. [Int Microbiol 2015; 18(2):91-97]

Keywords: Bacillus spp. · antagonism · entomopathogenic fungi · Cicadellidae · Delphacidae

Introduction

Cicadellids and delphacids (Hemiptera: Auchenorrhyncha) include a large number of species, many of which cause extensive damage to agricultural crops. These insects are

widely distributed and can be found anywhere between the southern United States and temperate areas of Argentina [29,48]. They not only cause mechanical damage to crop plants during feeding and oviposition, but are also vectors of phloem-associated plant pathogens, mainly viruses and bacterial phytoplasmas [21].

Within the cicadellids, *Dalbulus maidis* (DeLong & Wolcott, 1923) is the main vector of maize pathogens on the American continent, mostly in tropical areas of South and Central America but also in those of the Caribbean. In tropical America, *D. maidis* is a vector of Maize Rayado Fino Virus (MRFV), Corn Stunt Spiroplasma (CSS), and Maize

*Corresponding author: A. Toledo Centro de Investigaciones de Fitopatología Facultad de Ciencias Agrarias y Forestales Universidad Nacional de La Plata La Plata, Buenos Aires, Argentina. Tel. +54-2214236758. Fax +54-2214252346

E-mail: andytoledo75@yahoo.com.ar

92 Int. Microbiol. Vol. 18, 2015 TOLEDO ET AL.

Bushy Stunt Mycoplasma (MBSM). Corn stunt is the most important disease of maize in USA, Mexico, and South and Central America. It was first identified in Argentina in the early 1990s [4]. Among the delphacids, *Delphacodes kuscheli* Fennah 1955 is the main vector of Mal de Río Cuarto virus, an important endemic disease in the central region of Argentina [22] that has had a considerable impact along the country's corn belt [24].

Among the many different strategies developed to control corn diseases, the use of maize genotypes tolerant to infection has gained the most attention [23,46]. However, biological control agents, including fungi that parasitize these insects, offer an interesting alternative [10,12,15]. Entomopathogenic fungi were the first organisms considered as control agents at the end of the 19th century. Since then, their value in insect control has been widely demonstrated, mainly within Integrated Pest Management programs [7,14]. Generally, the application of entomopathogenic fungi requires high specificity and the absence of resistance in the target organisms. As long as no secondary pest outbreaks occur, long-term control is feasible. Moreover, the use of entomopathogenic fungal strains is frequently compatible with that of other biological control agents, certain fungicides, and many other types of pesticides. A further advantage is that no pre-harvest interval is required [5,6,42,50].

The commercialization of entomopathogenic fungi is usually restricted to those species that are amenable to mass production in vitro on economical substrates. Among the commercial products developed to date are several that are based on species within the Hypocreales, such as Beauveria bassiana (Bals.-Criv.) Vuill., Bea. brongniartii (Sacc.) Petch, Isaria fumosorosea Wize, Lecanicillium spp. (Cordycipitaceae), Metarhizium anisopliae (Metchn.) Sorokin, and Nomuraea rileyi (Farl.) Samson (Clavicipitaceae) [7,49]. In the control of cicadellids and delphacids, entomopathogenic fungi have considerable potential because they invade their hosts through the integument [38]. However, fungal invasion of the host occasionally fails, not only due to the presence of antimicrobial substances associated with the insect cuticle, such as phenol groups, quinones, aldehydes, poisonous alkaloids, short-chain fatty acids, and cationic peptides [8,11,17,30,34], but also because of the presence of other fungi and bacteria on the insect surface that, by producing antimicrobial substances, inhibit germination of the conidia of entomopathogenic fungi [9,18,29,45].

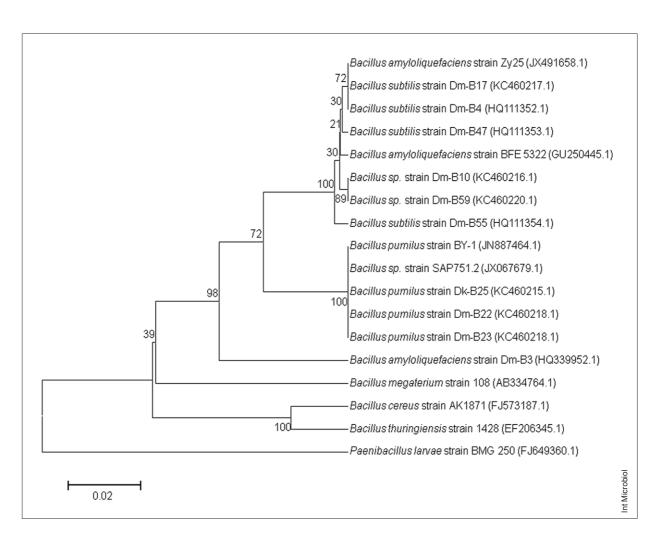
According to Steinhaus [33], the bacterial populations found on the external surface of the insects are predominantly

gram-positive, aerobic, spore-forming bacilli. Toledo et al. [40] recently isolated different *Bacillus* species, including *B. subtilis*, *B. pumilus*, and *B. amyloliquefaciens*, from the integument of *D. maidis* and *D. kuscheli*. The bacteria were found to be antagonistic to entomopathogenic *Bea. bassiana*, inhibiting germination as well as growth of conidia. Indeed, the ability of *Bacillus* to produce antibiotic-like compounds, antifungal compounds, and/or bacteriocins, such as surfactin, bacylisin, fengycin, bacyllomicin, subtilin and iturin, has led to the use of these bacteria throughout the world to control phytopathogens [2,3,16,20,36].

The development of novel formulations of biocides for use in the sustainable management of maize agroecosystems requires an understanding of the interactions between entomopathogenic fungi and the microbial populations living on the cuticle of insects. Thus, in the present work we characterized 10 strains of *Bacillus* by means of molecular techniques and then selected isolates of *Bea. bassiana* and *M. anisopliae* that were resistant to the antimicrobial compounds secreted by these bacteria.

Materials and methods

Bacterial strains. All bacterial strains used in this study were isolated from the integument of *D. maidis* and *D. kuscheli* [40]. Genomic DNA was extracted from these strains using the Wizard Genomic DNA purification kit (Promega). The 16S rDNA of strains Dm-B3, Dm-B4, Dm-B10, Dm-B17, Dm-B22, Dm-B23, Dm-B47, Dm-B55, Dm-B59, and Dk-B25 was amplified in a thermocycler (Minicycler, MJ Research) and sequenced according to Sanger et al. [27]. The sequences were deposited in the GenBank database of the National Center for Biotechnology Information (NCBI). From an analysis of the sequences using the Basic Local Alignment Search Tool (BLAST), 10 sequences were obtained and then aligned with those of reference strains *B. amyloliquefaciens*, *B. pumilus*, *B. megaterium*, *B. cereus*, and *B. thuringiensis* by means of the multiple sequence alignment program Clustal W. A UPGMA phylogenetic tree was constructed using Molecular Evolutionary Genetics Analysis version 5 (MEGA5) [35].


Fungal isolates. Forty-one isolates of *Bea. bassiana* and 20 isolates of *M. anisopliae* were used in this study. Fungal isolates were obtained from their insect hosts, which belonged to the orders Hemiptera, Coleoptera, and Dermaptera, and from soil samples collected from sorghum and corn crops. All of the isolates were obtained in Buenos Aires, Corrientes, and Tucumán provinces of northern Argentina. They were stored in the Mycological Collections of Centro de Estudios Parasitológicos y de Vectores (CEPAVE, La Plata, Buenos Aires, Argentina), in the Agricultural Research Service, Collection of Entomopathogenic Fungi (ARSEF, Ithaca, New York, USA), and in the collection of the Centro de Investigaciones de Fitopatología (CIDEFI, La Plata, Buenos Aires, Argentina). The isolates were characterized according to both their morphology [39] and their virulence against cicadellids and delphacids [38].

Inhibition of fungal growth by bacteria. The antagonistic activity of 10 *Bacillus* strains against 41 isolates of *Bea. bassiana* and 20 isolates of *M. anisopliae* was tested using the central disk test [26]. Fungal isolates were cultured on malt extract agar (MEA 2%) at 25°C in the dark for 7 days. A 7-mm mycelium disk was cut and transferred to the center of a tryptic soy agar (TSA; Britania) plate and cultured at 30°C for 48 h. Three such disks were transferred to each TSA plate and placed at equidistant points from the central disk. Each treatment consisted of six replicates and one control (plates containing only a central disk of the fungus). The plates were incubated at 30°C in darkness. Mycelial growth was estimated based on the radial increase in colony size, which was measured between two orthogonal diameters drawn 10 days after the incubation. Antagonism was estimated based on the percentage of mycelial growth inhibition (MGI), which was calculated as suggested by Michereff et al. [19].

Statistical analysis. The effects of treatments were determined by the factorial analysis of variance (ANOVA). The mean values were separated using Tukey's honestly significant difference (HSD) test (P < 0.05) [31].

Results and Discussion

Bacterial isolates. The 16S rDNA sequences confirmed that all of the strains belonged to the genus *Bacillus* and suggested that strain Dm-B3 was *Bacillus amyloliquefaciens* (Gen Bank accession number: HQ339952), strains Dm-B22, Dm-B23, and Dk-B25 were *B. pumilus* (KC460218, KC460219, and KC460215, respectively), and that strains Dm-B4, Dm-B17, Dm-B47, and Dm-B55 were *B. subtilis* (HQ111352, KC460217, HQ111353, and HQ111354, respectively). However, strains Dm-B10 and Dm-B59 (KC460216 and KC460220), initially identified by Toledo et al. [40] by means of biochemical reactions as *B. megaterium*, had a

Fig. 1. Dendrogram showing the identity and relationship of the major antagonistic bacteria isolated from the cuticular surfaces of *Delphacodes kuscheli* and *Dalbulus maidis*. Numbers on the branches represent bootstrap values obtained from 1000 replicates. The bar indicates 0.02 substitutions per site. Species names are followed, in parentheses, by the National Center for Biotechnology Information (NCBI) GenBank database accession numbers

Int. Microbiol. Vol. 18, 2015 TOLEDO ET AL.

16S rDNA sequence 99% homologous to the full sequence of *B. subtilis* and *B. amyloliquefaciens*. Therefore, pending additional molecular data, both strains were reclassified as *Bacillus* sp. (Dm-B10 and Dm-B59, respectively).

94

The bacterial strains were grouped into four clusters (Fig. 1). The first one comprised six strains and two reference sequences of B. amyloliquefaciens. It was supported by a bootstrap value of 100%. Within the cluster, there were four representatives of B. subtilis (Dm-B17, Dm-B4, Dm-B47, and Dm-B55) and two of Bacillus sp. (Dm-B59 and Dm-B10). The isolates of *B. subtilis* were clustered in separate groups; thus, Dm-B4, Dm-B17, and Dm-B47 formed a cluster (30% bootstrap) that was clearly distinct from that formed by strain Dm-B55 (B. subtilis). The second cluster was also supported by a bootstrap value of 100% and was made up of three isolates of B. pumilus (Dm-B22, Dk-B25, and Dm-B23) and the reference sequences of *B. pumilus* (BY-1) and *Bacillus* sp. (SAP751.2). The third cluster contained a single isolate, Dm-B3, identified as B. amyloliquefaciens. It merits further study to confirm its identity and to identify the nucleotides that render it distinct—including, perhaps, phenotypically—from the other isolates of the same species. Nonetheless, all of the studied strains belong to a monophyletic cluster comprising closely related organisms with strong similarity at the 16S rDNA sequence level and clustering separately from other Bacillus species, among them B. cereus, B. thuringiensis, and B. megaterium.

Inhibition of fungal growth by bacteria. The MGI of M. anisopliae was dependent on the bacterial strain (F = 9.5; df = 9, 1171; P < 0.0001) and on the targeted fungal isolate (F = 35.8; df = 19, 1171; P < 0.0001). The 10 bacterial strains differed in their antifungal activity (P < 0.05) and could be separated into four homogeneous groups. Bacillus subtilis Dm-B47 (68.4%), B. amyloliquefaciens Dm-B3 (64.4%), and B. pumilus Dk-B25 (64.3%) differed significantly from the other strains and showed the greatest antagonism against M. anisopliae, whereas B. subtilis Dm-B17 (52.8%) and Bacillus sp. Dm-B10 (52.6%), were the least antagonistic against the fungus. Similar results were obtained with Bea. bassiana. Both the bacterial strains (F = 10.8; df = 9, 2350; P < 0.0001) and the fungal isolates (F = 91.2; df = 40, 2350; P < 0.0001) had a significant effect on MGI. In this case, the bacterial strains could be separated according to their antagonistic activity into five statistically different groups (P < 0.05). Bacillus pumilus Dm-B22 (64.6%), Dm-B23 (62.8%), and Dk-B25 (63.2%) differed significantly from other strains and

Table 1. Mycelial growth inhibition (MGI) of the entomopathogenic fungi *Beauveria bassiana* and *Metarhizium anisopliae* by *Bacillus* strains isolated from the cuticular surfaces of cicadellids and delphacids

	MGI (%)*			
Bacterial strain	M. anisopliae	Bea. bassiana		
Dm-B10	52.6 ± 1.7 a	$61.4 \pm 0.8 \text{ cde}$		
Dm-B17	$52.8 \pm 1.7 \text{ a}$	$58.3 \pm 0.8 \text{ abo}$		
Dm-B55	$56.2 \pm 1.7 \text{ ab}$	$57.5 \pm 0.8 \text{ ab}$		
Dm-B23	$57.7 \pm 1.7 \text{ abc}$	$62.8 \pm 0.8 \text{ de}$		
Dm-B22	$58.3 \pm 1.7 \text{ abc}$	$64.6 \pm 0.8 \text{ e}$		
Dm-B59	$60.7 \pm 1.7 \text{ bc}$	$57.9 \pm 0.8 \text{ abo}$		
Dm-B4	$63.3 \pm 1.7 \text{ bcd}$	$57.3 \pm 0.8 \text{ a}$		
Dk-B25	$64.3 \pm 1.7 \text{ cd}$	$63.2 \pm 0.8 \text{ de}$		
Dm-B3	$64.4 \pm 1.7 \text{ cd}$	$61.3 \pm 0.8 \text{ cd}$		
Dm-B47	$68.4 \pm 1.7 d$	60.9 ± 0.8 bcc		

*Mean \pm standard error. Values with the same letters are not significantly different according to Tukey's HSD test (P < 0.05).

were the most antagonistic strains when tested against *Bea. bassiana*, whereas *B. subtilis* Dm-B55 (57.5%) and Dm-B4 (57.3%) were the least antagonistic (Table 1). Some bacterial strains differed in their behavior against the two fungal species. For example, *B. subtilis* Dm-B4 was one of the least antagonistic strains against *Bea. bassiana* but it was one of the most antagonistic ones against *M. anisopliae* isolates.

The most antagonistic bacterial strains in our study belonged to the *B. subtilis* group, which includes *B. amyloliquefaciens*, *B. licheniformis*, *B. pumilus* and other close relatives of *B. subtilis*. In previous reports, a number of species of bacteria belonging to the *B. subtilis* group, such as *B. pumilus*, *B. licheniformis*, *B subtilis*, *B. atrophaeus*, and *B. amyloliquefaciens*, were shown to secrete inhibitors of bacterial and fungal growth. These compounds are thought to play a crucial role in competition or microbial interactions [2,3,16,36,47].

Fungal susceptibility to antagonistic bacteria seems to be a variable trait. In this study, the susceptibility of *Bea. bassiana* was much more variable than that of *M. anisopliae*. Thus, *Bea. bassiana* isolates 099 (5.9%) and 111 (12.4%) were the least inhibited, and isolates Bb075 (78.1%) and Bb189 (76.5%) the most inhibited ones (Table 2). By contrast, representatives of *M. anisopliae* exhibited less variability in terms of their susceptibility to bacteria. For these species, bacterial inhibition was strongest for isolates Ma120 (77.9%), Ma35

Table 2. Isolates of *Beauveria bassiana* and *Metarhizium anisopliae* and the inhibition (expressed as the percent of the control) of mycelial growth (MGI) by *Bacillus* strains

solate	MGI (%)*	Isolate	MGI (%)	Isolate	MGI (%)
Ma079	$31.8 \pm 2.4 a$	Bb099	5.9 ± 3.6 a	Bb147	69.1 ± 1.6 jklmnop
Ma003	$36.9 \pm 2.4 \text{ ab}$	Bb111	12.4 ± 1.8 a	Bb112	69.1 ± 1.6 jklmnop
Ma34	$44.1 \pm 2.4 \text{ bc}$	Bb001	$31.8 \pm 1.6 \text{ b}$	Bb137	69.6 ± 1.6 jklmnopq
Ma31	$44.3 \pm 2.4 \text{ bc}$	Bb061	$33.3 \pm 1.6 \text{ b}$	Bb081	69.9 ± 1.6 jklmnopq
Ma33	$45.6 \pm 2.4 \text{ bc}$	Bb074	$33.3 \pm 1.6 \text{ b}$	Bb175	70.1 ± 1.6 jklmnopq
Ma076	$51.0 \pm 2.4 \text{ cd}$	Bb072	$33.3 \pm 1.6 \text{ b}$	Bb148	70.5 ± 1.6 jklmnopq
Ma36	$53.6 \pm 2.4 \text{ cd}$	Bb092	$44.1 \pm 1.6 c$	Bb114	$71.0 \pm 1.6 \text{ klmnopq}$
Ma37	$53.7 \pm 2.4 \text{ cd}$	Bb249	$46.7 \pm 1.6 \text{ cd}$	Bb145	$71.1 \pm 1.6 \text{ klmnopq}$
Ma30	$55.5 \pm 2.4 \text{ cde}$	Bb140	48.4 ± 1.6 cde	Bb143	$71.1 \pm 1.6 \text{ klmnopq}$
Ma078	$58.9 \pm 2.4 \text{ def}$	Bb117	$53.9 \pm 1.6 \text{ def}$	Bb146	71.5 ± 1.6 lmnopq
Ma178	$61.1 \pm 2.4 \text{ defg}$	Bb136	$57.1 \pm 1.6 \text{ efg}$	Bb176	72.2 ± 1.6 lmnopq
Ma095	$67.3 \pm 2.4 \text{ efgh}$	Bb149	$57.4 \pm 1.6 \text{ fg}$	Bb142	$72.9 \pm 1.6 \text{ mnopq}$
Ma39	$68.0 \pm 2.4 \; fgh$	Bb080	$58.3 \pm 1.6 \text{ fgh}$	Bb54	$73.2 \pm 1.6 \text{ mnopq}$
Ma086	$71.6 \pm 2.4 \text{ gh}$	Bb083	$59.9 \pm 1.6 \text{ fghi}$	Bb153	$73.6 \pm 1.6 \text{ mnopq}$
Ma32	$73.5 \pm 2.4 \text{ h}$	Bb118	62.2 ± 1.6 fghij	Bb069	$73.7 \pm 1.6 \text{ mnopq}$
Ma29	$74.2 \pm 2.4 \text{ h}$	Bb119	62.6 ± 1.6 fghijk	Bb116	$75.1 \pm 1.6 \text{ nopq}$
Ma160	$74.9 \pm 2.4 \text{ h}$	Bb077	63.7 ± 1.6 ghijkl	Bb150	$75.3 \pm 1.6 \text{ opq}$
Ma38	$76.3 \pm 2.4 \text{ h}$	Bb113	66.2 ± 1.6 hijklm	Bb141	$75.5 \pm 1.6 \text{ pq}$
Ma35	$76.7 \pm 2.4 \text{ h}$	Bb138	66.5 ± 1.6 hijklmn	Bb189	$76.5 \pm 1.6 \text{ pq}$
Ma120	$77.9 \pm 2.4 \text{ h}$	Bb002	66.6 ± 1.6 hijklmno	Bb075	$78.1 \pm 1.6 \text{ q}$
		Bb151	66,7 ± 1.6 ijklmnop		

^{*}Mean \pm standard error. Values with the same letters are not significantly different according to Tukey's HSD test (P < 0.05).

(76.7%), Ma38 (76.3%), and Ma160 (74.9%) and weakest for isolates Ma003 (36.9%) and Ma079 (31.8%) (Table 2).

Therefore, in this study we identified two isolates of *Bea. bassiana* (Bb099 and Bb111) and two of *M. anisopliae* (Ma003 and Ma079) as the most resistant to antagonism by the ten *Bacillus* strains tested. Figure 2 shows the results of the disk tests for the most and the lest inhibited fungal species.

The differences in the responses of the fungal isolates to bacterial attack might be due to their different abilities to detoxify bacterial growth inhibitors, for example, by producing secondary metabolites with antibacterial activity. Diverse toxic metabolites have been described in several fungal biological control agents, including species of *Beauveria, Metarhizium*, and *Isaria* [43]. Some of these metabolites have antibiotic, fungicidal, or insecticidal properties [13,43]. Recently, Sahab [28] characterized a crude

ethyl acetate extract of *Bea. bassiana* with antibacterial and antifungal activities. The antibacterial activity was effective at any of the concentrations tested when used against different strains of gram-positive and gram-negative bacteria.

Several studies have shown that the insect cuticle is an ecological niche for microbes, where fungi and bacteria co-exist and interact [9,18,29,45]. Among the mechanisms proposed for the biocontrol activity of *Bacillus* spp., competition, the induction of systemic resistance, and antibiotic production appear to be the most important one [1,32,37].

A better understanding of fungal-bacterial interactions may lead to the development of potent formulations of *Bea. bassiana* and *M. anisopliae* for their use in insect control. Further studies on the diversity of microorganisms that colonize the insect cuticle, their role, and their impact in nature are needed in order to develop biological control agents

Int. Microbiol. Vol. 18, 2015 TOLEDO ET AL.

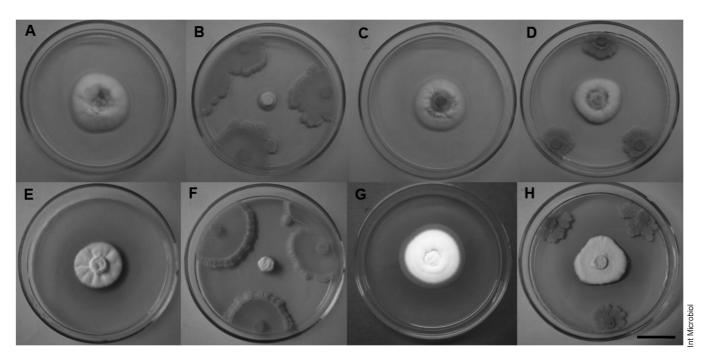


Fig. 2. Antifungal activity of *Bacillus* strains against *Metarhizium anisopliae* and *Beauveria bassiana* (Bb) on tryptic soy agar plates after 10 days at 30°C in the dark. From left to right, fungal isolates more and less inhibited by bacteria. (A–D) *M. anisopliae* (Ma); (E–H) *Bea. bassiana* (Bb). (A) Ma35 control. (B). Ma35 in the presence of *B. subtilis* DM-B17. (C). Ma079 control. (D). Ma079 in the presence of *B. subtilis* Dm-B4. (E) Bb075 control. (F) Bb075 in the presence of *B. subtilis* Dm-B55. (G) Bb099 control. (H) Bb099 in the presence of *B. subtilis* Dm-B4. Scale bar = 2.5 cm.

that are effective against insect pests such as cicadellids and delphacids.

Acknowledgements. We thank Dr. Nigel Hywel-Jones, and Lic. Arnaldo Maciá (Research Assistant, CICBA) for their critical reviews of the manuscript. We also thank two anonymous reviewers and the Editor of International Microbiology for helpful comments on the manuscript. This work was supported by CONICET (PIP 11220090100162) and ANPCyT (PICT 2007-00143).

Competing interests. None declared.

References

96

- Bizani D, Brandelli A (2002) Characterization of a bacteriocin produced by a newly isolated *Bacillus* sp. strain 8A. J Appl Microbiol 93:512-519
- Feignier C, Besson F, Michel G (1995) Studies of lipopeptide biosynthesis by *Bacillus subtilis*: Isolation and characterization of iturin⁻, surfactin⁺ mutants. FEMS Microbiol Lett 127:11-15
- Gálvez AM, Maqueda M, Martínez-Bueno M, Lebbadi M, Valdivia E (1993) Isolation and physico-chemical characterization of an antifungal and antibacterial peptide produced by *Bacillus licheniformis*. Appl Microbiol Biot 39:438-442
- Giménez Pecci MP, Olivera E, Resende R, Borgogno C, Nome CF, Laguna IG (2000) Occurrence of Maize rayado fino virus in maize in Argentina. Plant Dis 84:1046

- Goettel MS, Poprawski TJ, Vandenverg JD, Li Z, Roberts DW (1990) Safety to nontarget invertebrates of fungal biocontrol agents. In: Laird M, Lacey LA, Davidson EW (eds) Safety of microbial insecticides. CRC Press, Boca Raton, FL, USA, pp 209-232
- Goettel MS, Hajek AE, Siegel JP, Evans HC (2001) Safety of Fungal Biocontrol Agents. In: Butt T, Jackson C, Magan N (eds) Fungi as Biocontrol Agents: Progress, Problems and Potential. CABI Publishing, Wallingford, UK, pp 347-375
- Gul HT, Saeed S, Khan FZA (2014) Entomopathogenic fungi as effective insect pest management tactic: A review. Appl Sci Bus Econ 1:10-18
- Howard RW, Lord JC (2003) Cuticular lipids of the booklouse, *Liposcelis bostrychophila*: Hydrocarbons, aldehydes, fatty acids, and fatty acid amides. J Chem Ecol 29:615-627
- Hübner J (1958) Untersuchungen zur Physiologie insektentötender Pilze. Arch Mikrobiol 29:257-276
- Ibarra-Aparicio G, Moya-Raygoza G, Berlanga-Padilla A (2005) Efecto de *Beauveria bassiana y Metarhizium anisopliae* sobre la chicharrita del maiz (*Dalbulus maidis*) (DeLong & Wolcott, 1923) (Hemiptera: Cicadellidae). Folia Entomol Mex 44:1-6
- James PR, Buckner JS, Freeman TP (2003) Cuticular lipids and silverleaf whitefly stage affect conidial germination of *Beauveria bassiana* and *Paecilomyces fumosoroseus*. J Invertebr Pathol 84:67-74
- Kanga LHB, Jones WA, Humber RA, Boyd Jr DW (2004) Fungal pathogens of the glassy-winged sharpshooter *Homalodisca coagulata* (Homoptera: Cicadellidae). Folia Entomol 87:225-228
- Kershaw MJ, Moorhouse ER, Bateman R, Reynolds SE, Charnley AK (1999) The role of destruxins in the pathogenicity of *Metarhizium anisopliae* for three species of insects. J Invertebr Pathol 74:213-223
- 14. Lacey LA, Goettel MS (1995) Current developments in microbial control

- of insect pests and prospects for the early 21st century. Entomophaga 40:3-27
- Lane BS, Trinci APJ, Gillespie AT (1991) Influence of cultural conditions on the virulence of conidia and blastospores of *Beauveria bassiana* to the green leafhopper, *Nephotettix virescens*. Mycol Res 95:829-833
- Leifert C, Li H, Chidburee S, Hapson S, Workman S, Sigee D (1995) Antibiotic production and biocontrol activity by *Bacillus subtilis* CL27 and *Bacillus pumilus* CL45. J Appl Bacteriol 78:97-108
- Lord JC, Howard RW (2004) A proposed role for the cuticular fatty amides of *Liposcelis bostrychophila* (Psocoptera: Liposcelidae) in preventing adhesion of entomopathogenic fungi with dry-conidia. Mycopathologia 158:211-217
- Mattoso TC, Moreira DDO, Samuels RI (2011) Symbiotic bacteria on the cuticle of the leafcutting ant *Acromyrmex subterraneus subterraneus* protect workers from attack by entomopathogenic fungi. Biology Letters, doi:10.1098/rsbl.2011.0963
- Michereff SJ, Silveira NSS, Reis A, Mariano RLR (1994) Epiphytic bacteria antagonistic to *Curvularia* leaf spot of yam. Microbial Ecol 28:101-110
- Mora I, Cabrefiga J, Montesinos E (2011) Antimicrobial peptide genes in Bacillus strains. Int Microbiol 14:213-223
- Nault LR, Ammar ED (1989) Leafhopper and planthopper transmission of plant viruses. Annu Rev Entomol 34:503-529
- Nome SF, Lenardón SL, Raju BC, Laguna IG, Lowe SK, Docampo D (1981) Association of reovirus-like particles with "Enfermedad de Río IV" of maize in Argentina. Phytopathol Zeitsch 101:7-15
- 23. Oliveira E, Duarte AP, Carvalho RV, Oliveira AC (2004) Molicutes e vírus na cultura do milho no Brasil: caracterização e fatores que afetam sua incidência. In: Oliveira E de, Oliveira CM de (eds) Doenças em milho: Molicutes, vírus, vetores, mancha por *Phaeosphaeria*. EMBRAPA, Brasilia, pp 17-34
- 24. Remes Lenicov AMM de, Tesón A, Dagoberto E, Huguet N (1985) Hallazgo de uno de los vectores del "Mal de Río Cuarto" del maíz. Gaceta Agronómica 5:251-258
- Remes Lenicov AMM de, Virla E (1993) Aportes al conocimiento de la biología de *Dalbulus maidis* (Homoptera-Cicadellidae) en condiciones de laboratorio. Neotropica 39:103-109
- Reynaldi FJ, De Giusti M, Alippi AM (2004) Inhibition of the growth of *Ascosphaera apis* by *Bacillus* and *Paenibacillus* strains isolated from honey. Rev Arg Microbiol 36:52-55
- Sanger FS, Nicklen S, Coulson AR (1977) DNA sequencing with chainterminating inhibitors. Proc Natl Acad Sci USA 74:5463-5467
- Sahab AF (2012) Antimicrobial efficacy of secondary metabolites of Beauveria bassiana against selected bacteria and phytopathogenic fungi. J Appl Sci Res 8:1441-1444
- Schabel HG (1978) Percutaneus infection of Hylobius pales by Metarhizium anisopliae. J Invertebr Pathol 31:180-187
- Smith RJ, Grula EA (1981) Nutritional requirements for conidial germination and hyphal growth of *Beauveria bassiana*. J Invertebr Pathol 37:222-230
- Sokal RR, Rohlf FJ (1995) Biometry: The principals and practice of statistics in biological research. Freeman, San Francisco, CA, USA
- 32. Stein T (2005) *Bacillus subtilis* antibiotics: Structure, syntheses and specific functions. Mol Microbiol 56:845-857
- Steinhaus EA (1949) Principles of insect pathology. McGraw Hill, New York
- 34. Szafranek B, Maliñski E, Nawrot J, Sosnowska D, Ruszkowska M, Pihlaja K, Trumpakaj Z, Szafranek J (2001) In vitro effects of cuticular lipids of the aphids Sitobion avenae, Hyalopterus pruni and Brevicoryne brassicae on growth and sporulation of the Paecilomyces fumosoroseus and Beauveria bassiana. ARKIVOC: J Org Chem 3:81-94

- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011)
 MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731-2739
- Thimon L, Peypoux F, Marget-Dana R, Michael G (1992) Surfactive properties of antifungal lipopeptides produced by *Bacillus subtilis*. J Am Oil Chem Soc 69:92-93
- 37. Thomashow LS, Weller DM (1996) Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: Stacey G, Keen NT (eds) Plant-microbe Interactions. Chapman and Hall, New York, USA, pp 187-235
- 38. Toledo AV, Remes Lenicov AMM de, López Lastra CC (2007) Pathogenicity of fungal isolates (Ascomycota: Hypocreales) against Peregrinus maidis, Delphacodes kuscheli (Hemiptera: Delphacidae) and Dalbulus maidis (Hemiptera: Cicadellidae), vectors of corn diseases. Mycopathologia 163:225-232
- Toledo AV, Remes Lenicov AMM de, López Lastra CC (2008) Host range findings on *Beauveria bassiana* and *Metarhizium anisopliae* (Ascomycota: Hypocreales) in Argentina. Bol Soc Arg Bot 43:211-220
- 40. Toledo AV, Alippi AM, Remes Lenicov AMM de (2011) Growth inhibition of *Beauveria bassiana* by bacteria isolated from the cuticular surface of the corn leafhopper, *Dalbulus maidis* and the planthopper, *Delphacodes kuscheli*, two important vectors of maize pathogens. J Insect Sci 11:29. Retrieved from http://insectscience.org/11.29/
- Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzon A, Ownley BH, Pell JK, Rangel DEN, Roy HE (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2:149-159
- Vestergaard S, Cherry A, Keller S, Goettel M (2003) Hyphomycete fungi as microbial control agents. In: Hokkanen HMT, Hajek AE (eds) Environmental impacts of microbial insecticides. Kluwer Academic, Dordrecht, Germany, pp 35-62
- Vey A, Hoagland R, Butt TM (2001) Toxic metabolites of fungal biocontrol agents. In: Butt TM, Jackson CW, Magan N (eds) Fungi as Biocontrol Agents: Progress, Problems and Potential. CABI Publishing, Wallingford, UK, pp 311-346
- 44. Virla E, Remes Lenicov AMM de, Paradell S (1990/91) Presencia de Dalbulus maidis (Insecta-Homoptera- Cicadellidae) sobre maíz y teosinte en la Argentina. Rev Fac Agr 66/67:23-30
- Walstad JD, Anderson RF, Stambaugh WJ (1970) Effects of environmental conditions on two species of muscardine fungi (*Beauveria bassiana* and *Metarhizium anisopliae*). J Invertebr Pathol 16:221-226
- Waquil JM (1998) Corn leafhoppers as vectors of maize pathogens in Brazil. In: Casela C, Renfro R, Krattiger A (eds) Diagnosing maize diseases in Latin America. ISAAA, Ithaca/ EMBRAPA, Brasilia, pp 34-42
- 47. Wattiau P, Renard ME, Ledent P, Debois V, Blackman G, Agathos SN (2001) A PCR test to identify *Bacillus subtilis* and closely related species and its application to the monitoring of wastewater biotreatment. Appl Microbiol Biot 56:816-819
- 48. Wilson S (2005) Keys to the families of Fulgoromorpha with emphasis on planthoppers of potential economic importance in the Southeastern United States (Hemiptera: Auchenorrhyncha). Folia Entomol 88:464-481
- 49. Wraight SP, Jackson MA, De Kock SL (2001) Production, stabilization, and formulation of fungal biocontrol agents. In: Butt TM, Jackson CW, Magan N (eds) Fungi as Biocontrol Agents: Progress, Problems and Potential. CABI Publishing, Wallingford, UK, pp 253-287
- Wraight SP, Inglis DG, Goettel MS (2007) Fungi. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Application and evaluation of pathogens for control of insects and other invertebrate pests. Springer, Dordrecht, Germany, pp 223-248