
Goal-Conflict Detection Based on Temporal
Satisfiability Checking

Renzo Degiovanni∗, Nicolas Ricci∗, Pablo Castro∗
∗Departamento de Computación, Universidad Nacional de Rı́o Cuarto, Argentina

Conference: ASE 2016, Singapore, September 3 - 7, 2016.
http://dc.exa.unrc.edu.ar/staff/rdegiovanni/files/ASE2016.pdf

The derivation of correct software requirements specifica-
tions is essential to any reliable software development process.
With the ever increasing complexity of software, the impor-
tance of rigorous methods in supporting the attainment of cor-
rect specifications prior to their implementation, also increases.
Much research over the last decades has demonstrated the
significant advantages that formal, goal-oriented approaches
bring to the generation of correct software requirements spec-
ification. Goals are prescriptive statements of how the system
should behave. They reflect stakeholders’ understanding of
what the envisioned system is intended to do, and the criteria
upon which it would be evaluated. They are commonly used to:
aid the elicitation and elaboration of requirements; guide the
refinement and organisation of requirements; and support the
derivation of software operations. However, for such tasks to
be successfully achieved, the goals themselves must be correct,
which is not often the case. Goals are typically too ideal to
start with (wavering off the exceptional conditions that may
arise within its environment once implemented), partial and
imprecise. Ensuring their correctness within the development
cycle is of utmost importance.

One of the challenges in specifying correct goals is ensuring
their consistency. Inconsistency occurs when two or more
goals cannot be satisfied simultaneously, owing to their con-
tradictory nature, non-conformance to standards, or because
of restrictions imposed within certain domains, amongst other
reasons. They are typically a result of overlapping and con-
flicting expressions. Detecting and resolving inconsistencies
in goals (a process called inconsistency management) early
on not only helps in avoiding costly software repairs but also
supports systematic requirements’ elicitation and verification
activities. Several approaches have been proposed in the lit-
erature for managing inconsistency in goals. Much work has
been done on the qualitative end, where the general focus has
been on identifying contradictory low-level requirements and
computing the degree to which goals are satisficed or denied
by them. A weaker notion of conflict (called divergence) in
goals expressed in Linear Temporal Logic (LTL) has been
previously addressed. This latter type of inconsistency is
concerned with those goals which are not contradictory (can
be simultaneously satisfied), but become inconsistent when
certain conditions hold. Consider for instance the following
goals from the mine pump controller example: “the pump shall

be on when the water level is above the high threshold”, and
“the pump shall be off when methane is detected in the mine”.
These goals are not logically inconsistent as they are satisfiable
in cases where the water level never reaches a high level or
methane is not detected in the mine. They become logically
inconsistent only in the case when the water level is high
and methane is present at the same time. Situations like the
latter can be captured formally as assertions called boundary
conditions, i.e., declarative formulas that characterise those
particular circumstances that lead to inconsistency. Existing
model synthesis approaches would not detect this type of
inconsistency since there exists at least one model that satisfies
such goals, in which the boundary condition never holds. So
far, very limited work has been done on automatically finding
boundary conditions for goal expressions.

In this oral communication, we present a novel approach
to automatically compute boundary conditions for conflicting
goals expressed in LTL, using a satisfiability procedure based
on tableaux. A tableau for an LTL formula is essentially a
finite graph representation of all its satisfying models; it is
built by first decomposing the formula whose satisfiability is
being analysed, according to decomposition rules that produce,
for temporal operators, constraints on the current state and
future states, for their satisfaction. The resulting graph explores
the possible ways of making the initial formula satisfiable,
and in this process, contradictory portions are identified. The
second phase of the tableau method removes contradictory
portions, as well as parts of the graph that cannot satisfy
eventualities, leaving a subgraph, the tableau, that captures all
models of the formula (when it becomes empty, the formula
is unsatisfiable). Intuitively, the tableau indirectly captures
“conflicting situations”, since any condition not included in the
tableau necessarily prevents the formula from being satisfiable.
Our approach consists of computing the tableau from a set G
of goals, and then exploring it to identify conditions that would
“escape” the tableau, thus violating the goals, to produce
boundary conditions. Our approach is general, in the sense that
it can automatically detect conflicts in goals expressed as any
LTL formula. In particular, our technique can automatically
produce boundary conditions that are more general than those
obtainable through existing previous pattern-based approaches,
and can also generate boundary conditions for goals that are
not captured by these patterns.

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 39

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301081325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

