
Applying meta-functions for improving JavaScript
code performance

Ricardo Medel, Alexis Ferreyra, Nestor Navaro and Emanuel Ravera
Departamento de Ingenierı́a en Sistemas de Información

Universidad Tecnológica Nacional - Facultad Regional Córdoba
Córdoba, Argentina

Email: ricardo.h.medel@gmail.com, alexis.ferreyra@gmail.com, nestornav@gmail.com, ravera.emanuel@gmail.com

Abstract—In recent years, the expansion of the World Wide
Web, and web runtimes in particular, to all kind of devices has
rendered the JavaScript performance in a hot topic. Several ap-
proaches to improve the performance of JavaScript applications
have been tried by the industrial and research communities. In
this paper we review the most popular approaches and propose
a novel solution based on meta-programming and source code
rewriting. The preliminary results of our experiments are very
promising, although more studies are required to know to what
extent this approach can improve the performance of real-life
JavaScript programs.

Index Terms—Performance, Meta-programming, Macros,
Rewriting, JavaScript, Compiler

I. INTRODUCTION

Improving JavaScript performance have been a hot topic in
recent years. The ubiquity of the World Wide Web, and web
runtimes in particular, across all kind of devices in addition to
the increasing complexity of applications written in JavaScript
have drawn attention of the industrial and research communi-
ties towards the improvement of JavaScript performance and
security.

In this paper we focus on the performance aspects of
this problem. Here we propose a novel solution based on
meta-programming and code rewriting, show some preliminary
results based on a small set of experiments, and then review
other approaches and compare them with our proposal.

Most of the work to boost the performance of programs
written in JavaScript is focused on improving the compil-
er/execution infrastructure. Such approach is implemented by
the Safari SquirrelFish runtime [10], the just in time (JIT)
compiler Google V8 [1], and applied on the trace based
optimizations [2] by the Mozilla team. A different approach,
also tried by Mozilla, is asm.js [3], a subset of JavaScript from
which highly efficient code can be generated on the fly. Intel
improves the performance by adding new extensions to the
language, like SIMD [4] instructions or support for parallel
execution [5] of certain APIs.

Our work, on the other hand, explores the feasibility of
improving performance by using source code rewriting tech-
niques at compile time, well before the source code reaches the
JavaScript runtime. We found several cases where JavaScript
performance is highly sensitive to the way in which the
programmer writes the code. For example, as we show in
Section II, using the for-in statement to iterate an array

object is at least 25 times slower than using a standard C-style
for to iterate the same array. Even more remarkable, different
APIs generating the same, or semantically similar, results can
show a big difference in execution times. For example, using
the API document.getElementByTagName to find ele-
ments in the DOM can be 200 times faster than using the API
document.querySelectorAll.

Therefore, we propose to improve the performance of
JavaScript programs by analysing this kind of cases, which
are out of reach of JIT compilers and runtimes. To test
our hypothesis we initially identified a number of patterns
amenable of being optimized and then implemented a set of
simple experiments to check the performance gains. Once we
showed that replacing slow patterns with the fast ones provided
measurable performance benefits, we designed and imple-
mented a general tool to easily automate this refactoring. The
tool, named PumaScript, is a JavaScript dialect extended with
program introspection and rewriting capabilities. Finally, by
using PumaScript we are able of implementing meta-functions
to automatically rewrite slow code with faster, semantically
equivalent code.

In the following section we describe in detail the patterns
we discovered and the code that can replace them. Next, we
explain the implementation of PumaScript and how to use
meta-functions to rewrite slow code. In the fourth section,
we review different approaches to solve the same problem,
showing their advantages and disadvantages. Finally, we close
this paper with an analysis of our results and proposing future
lines of work.

II. ANALYSIS OF JAVASCRIPT PATTERNS

In this section we compare the performance of several
code patterns with semantically similar code but with different
execution time. We also analyze and propose solutions for the
cases where the semantics is not exactly the same.

We identified five JavaScript patterns showed in Table I.
The second column of the table describes the pattern, while
the third column shows first the original, slower code, and then
the faster, semantically equivalent code.

In order to measure the different running times, we created
and ran simple programs for each pattern. The observed
performance improvements for the five patterns are shown in
Table II. Each test was executed using two different desktop

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 32

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301081324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Native selector by ID vs
jQuery ID selector

Original Code
$("#test");

Improved Code
$(document.getElementById("test"));

2 Iterate an array using
for in vs C for
statements

Original Code
var array = [1,2,3 ...];
for (var i in array) {
array[i] +=1;

}
Improved Code
var array = [1,2,3 ...];
for (var i=0; i<array.length; i++) {
array[i] +=1;

}
3 Round an integer using

parseInt vs bitwise
operator

Original Code
var number = Math.random() * 1000;
parseInt(number);

Improved Code
var number = Math.random() * 1000;
number | 0;

4 querySelectorAll vs
getElementsByClassName

Original Code
var items = document.querySelectorAll(".test");

Improved Code
var item = document.getElementsByClassName("test");

5 querySelectorAll vs
getElementsByTagName

Original Code
var items = document.querySelectorAll("test");

Improved Code
var items = document.getElementsByTagName("test");

TABLE I
JAVASCRIPT PATTERNS IN THEIR ORIGINAL AND IMPROVED FORM.

PC Chrome
v36

PC Mozilla
v30

Android
Tablet
Native

Browser

Android
Tablet

Chrome v36

1 2.15x 1.49x 1.98x 1.79x
2 55.54x 167.60x 27.96x 25.26x
3 12.91x 33.30x 11.24x 4.75x
4 138.88x 364.97x 915.23x 394.26x
5 236.16x 393.29x 213.69x 146.89x

TABLE II
IMPROVEMENT RATE FOR EACH PATTERN COMPARING SLOW AND FAST

CODE.

browsers and two different Android browsers. The hardware
used to run on desktop browsers was a notebook Lenovo
T430, 4GB RAM, processor Intel Core i5-3320M 2.60Hz,
with Windows 8 operating system. For benchmarking Android
browsers we used a Tablet Asus MeMO Pad 7 with an Intel
Atom Z3560 1.83GHz quad core processor, 2GB RAM and
Android 4.4.2.

As it can be seen in the table, the improvement in perfor-
mance between the slower and the fastest version of a pattern
ranges between 1.49 times for the worst case (pattern 1 on a
desktop PC with a Mozilla browser) and up to 915.23 times
for the best case (pattern 4 on an Android tablet).

A. Solving Semantic Differences

Notice, however, that patterns 4 and 5 are opti-
mistic transformations, since the original and improved
code will generate the same result most of the time,
but not always. This discrepancy exists because the
querySelectorAll method returns an instance of a
NodeList object, while getElementsByClassName and
getElementsByTagName return an HTMLCollection ob-
ject. Both objects, NodeList and HTMLCollection are similar,
since both are collections containing the properties length and
item(), which are used to get the number of items in the
collection and to get an specific item, respectively. But because
both collections use different constructors, a code that checks
for the instance type of the collection can fail in the translated
version.

Another consideration to take in account is that HTML-
Collection objects are live collections, that is, when the
DOM is updated the collection is updated. For example, after
retrieving all nodes with class name class1 by using the
getElementsByClassName method, if a new node with
class1 class name is added to the DOM, the collection will be
automatically updated.

Although for most cases the differences between
HTMLCollection and NodeList will not change the semantic of

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 33

function createNodeList (elements) {
var fragment = document.createDocumentFragment();
for(var i; i < elements.length; i++)

fragment.appendChild(elements[i]);
return fragment.childNodes;

};

Fig. 1. Function that converts an HTMLCollection into a NodeList.

the program, it may be the case. Fortunately, there is a way to
circumvent this semantic difference between the two collection
types. When rewriting calls to querySelectorAll
into calls to getElementsByClassName or
getElementsByTagName, it is possible to wrap the
returned collection with a new NodeList collection. Figure 1
shows the method createNodeList, which converts an
HTMLCollection object into a NodeList collection.

After applying these changes for patterns 4 and 5
and running the benchmarks again, it was found that
the improvement in a PC using Chrome was down
from 138.88 times faster to a more conservative 17.2
times faster. Still, there is a sizable improvement in
performance when using getElementsByClassName
or getElementsByTagName methods instead of
querySelectorAll.

III. IMPLEMENTING A META-PROGRAMMING AND
REWRITING INFRASTRUCTURE

In order to automate the process of rewriting the identified
patterns, we designed a new JavaScript dialect and imple-
mented a rewriting infrastructure. The resulting framework,
named PumaScript, provides a general tool to experiment
with code introspection and meta-programming applied to
improving language performance.

PumaScript main feature is the support for meta-functions,
a mechanism similar to the programmable macro-expansion
systems available in Lisp, Ruby, and other programming lan-
guages. Like other macro systems, PumaScript meta-functions
can expand caller expressions inline. When called, a meta-
function takes the decorated Abstract Syntax Tree (AST) of
the arguments and returns an AST to be used as a replacement
for the caller expression.

However, there are two key differences between PumaScript
meta-functions and other macro systems:

1) Under certain conditions, a PumaScript meta-function
can choose not to expand a certain occurrence of a caller
expression, returning a null value instead of an AST.

2) PumaScript does not have a special macro-expansion
phase before fully executing the program. Instead, meta-
functions are live functions just like normal functions
and can be called any time during the lifetime of the
program.

PumaScript meta-functions can execute any arbitrary com-
putation, including calling other normal functions or meta-
functions. Additionally, all meta-functions have access to
special intrinsic functions which provide access to the program
AST for introspection and re-writing of any portion of it.

/* @meta */
function sum(a, b){

return pumaAst($a + $b);
}

/* The following call to sum(5, 6),
will expand to the 5 + 6 expression */

sum(5, 6);

Fig. 2. A simple meta-function and its invocation.

As a simple example of a PumaScript meta-function, the
Figure 2 shows a meta-function that rewrites the call into an
addition expression.

The current high level implementation and execution pro-
cess of PumaScript is shown in Figure 3. We use the Es-
prima library [6] to parse the JavaScript-like syntax. Then the
PumaScript runtime is used to execute the Abstract Syntax
Tree following the standard JavaScript semantic plus the
additional rules and semantics added by PumaScript. Once the
program is executed, PumaScript runtime discards the meta-
functions nodes and the resulting Decorated Syntax Tree is
processed by the Escodegen library [7] in order to pretty print
the program into standard JavaScript.

A. PumaScript Meta-Functions

As seen in Figure 2, PumaScript meta-functions are written
just like normal JavaScript functions, with the annotation
@meta in a comment before the function declaration. This
method is used to avoid introducing a new syntax require-
ment, making PumaScript backward compatible with standard
JavaScript.

Meta-functions work in a similar way than regular
JavaScript functions, with three specific differences:

1) All its parameters will evaluate to a reference into the
caller argument Decorated Syntax Tree at the moment of
execution. For example, when calling the meta-function
foo(a,b) with actual argument expressions (2 * x)
and (3 * y), the parameter a will take the value of
the syntax tree for (2 * x) and the parameter b will
take the value of the syntax tree (3 * y).

2) It must return a valid syntax tree or null. If the return
value is null, then the caller expression will not be
rewritten. Otherwise, if the return value is a non-null
syntax tree, the caller expression will be replaced with
the returned syntax tree, actually rewriting the caller
expression in the process.

3) It has access to a reserved context with intrinsic objects
and functions that can be used to make introspection into
the program or to rewrite any portion of the program.
Sample intrinsic objects and functions available in the
meta-function context are: pumaAst, context, and
pumaFindByType.

In the example of Figure 4 the meta-function
firstLetter rewrites its caller only if the actual
argument is a string literal. In the second call the function
returns null and then the caller is not rewritten.

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 34

Fig. 3. PumaScript program execution workflow and high level modules.

// Program sent to PumaScript

/* @meta */
function firstLetter(valueExp){

var ast = null;
if(valueExp.type === "Literal"){

ast = valueExp;
ast.value = ast.value.substring(0, 1);

}
return ast;

}

// This call will be rewritten to "H";
firstLetter("Hello World");

// This call will not be rewritten because
// the argument expression is not a literal
firstLetter("Hello " + "World");

// Output of PumaScript
"H";
firstLetter("Hello " + "World");

Fig. 4. A meta-function replacing string literals and its invocations.

As an example of use of intrinsic objects and functions,
Figure 5 shows a PumaScript meta-function that counts all
the occurrences of for statements in a script and shows the
resulting number by using the standard console object. In this
example we use the intrinsic function pumaFindByType and
the intrinsic object pumaProgram. These objects and functions
can be used to introspect any portion of the program, not only
the current context that is calling the meta-function.

B. Rewriting Code

In this section we describe how automatic rewriting of
the patterns presented in Table I was implemented using the

/* @meta */
function countForStatemets() {
var forStas = pumaFindByType(pumaProgram, "ForStatement");
console.log("For statements found: " + forStas.length);
return null;

}

Fig. 5. Meta-function counting the number of for statements in a program.

PumaScript language. For clarity and space reasons, we only
include the first two patterns shown in the mentioned Table.

1) Pattern 1 - Rewrite jQuery Selector Calls:: Fig-
ure 6 shows a meta-function that rewrites jQuery selec-
tors by Id into the more efficient JavaScript native API
document.getElementById. Line 6 checks that the ac-
tual argument is a Literal node and tests for the regular
expression used to match selectors by Id. By executing
the then branch, it removes the # character from the be-
ginning and returns a new abstract syntax tree (AST) us-
ing document.getElementById and the provided argu-
ment with the modified string literal. The intrinsic function
pumaAst is used to build the returned AST, starting from
a template where the local variables are expanded with their
actual values.

The simplest use case happens when the meta-function is
called with a simple string literal argument.

// Invocation with literal
var myElement = $("#Element_Id_1");

In this case, it is always safe to rewrite the invocation.
Therefore, the execution of the meta-function of Figure 6 will
follow the then branch of the if-else statement of line 6.

On the other hand, when the actual argument is not a

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 35

/* @meta */
function $(valueExp){
var regex = /ˆ#\b[a-zA-Z0-9_]+\b$/;
var argValue = {};
var substr = ’’;

if(valueExp.type === "Literal" && regex.test(valueExp.value)){
valueExp.value = valueExp.value.substring(1);
return pumaAst($(document.getElementById($valueExp)));

}
else if(OPTIMISTIC_REWRITE){
argValue = evalPumaAst(valueExp).value;
if(regex.test(argValue)){

console.log("WARNING: Optimistic rewrite at line("
+ valueExp.loc.start.line + ")");
substr = valueExp.substring(1);
return pumaAst($(document.getElementById($substr)));

}
}
return null;

}

Fig. 6. Meta-function to rewrite jQuery selectors by Id.

simple literal, the meta-function uses the intrinsic function
evalPumaAst to evaluate any portion of AST in the cur-
rent execution context. In this case, it uses a flag variable
OPTIMISTIC_REWRITE to enable optimistic rewriting when
it can check that at least one execution of the caller expression
matches the selector by Id form.

For example, the following invocation may not be safe to
rewrite if the variable element_id is an argument into a
function, but by using the evalPumaAst intrinsic function
in line 11 (Fig. 6), the meta-function can detect that the call
is safe to rewrite into a more efficient API call.

// Invocation with non-trivial expression
var element_id = "5";
var myOtherElement = $("#Element_Id_" + element_id);

Finally, there are cases where the selector does not match
a simple selector by Id.

// Invocation that does not match a selector by Id
var myOtherClassElements = $(".Class_Id_" + element_id);

For this invocation, the meta-function is capable of identi-
fying the problem easily: no matter what value the variable
element_id takes, it will not form a valid selector by Id.

2) Pattern 2 - Rewrite for-in Statements:: In order to
implement the automatic rewriting of for-in statements into
C-style for statements, a different approach is needed. It is
not possible to use a meta-function like a macro call which
rewrites the caller expression. Instead, the meta-function to
rewrite for-in statements needs to use intrinsic functions
provided by the PumaScript runtime environment to introspect
the AST of the running program.

Figure 7 shows the main meta-function used to rewrite
for-in statements. In line 3, it uses the intrinsic function
pumaFindByType and the intrinsic object pumaProgram
to match all AST nodes whose type is ForInStatement. Then,
the function iterates on this list and uses a helper function to
rewrite each for-in subtree in the program.

The helper function to rewrite a single for-in statement,
shown in Figure 8, has four main steps:

/* @meta */
function rewriteForIn() {
var forIns = pumaFindByType(pumaProgram, "ForInStatement");
console.log("For In statements found: " + forIns.length);

for(var i = 0; i < forIns.length; i++) {
rewriteSingleForIn(forIns[i]);

}
return null;

}

Fig. 7. Main meta-function to rewrite all for-in statements.

function rewriteSingleForIn(forInAst){
var left = forInAst.left;
var right = forInAst.right;
var itemName;
var tempId;

// Detect which kind of iteration variable it uses
if (left.type === "Identifier") { itemName = left;}
else if (left.type === "VariableDeclaration") {
tempId = left.declarations[0].id;
itemName = pumaAst($tempId);}

else {return;}

// Prepare fallback version and optimized AST
var cloneForIn = pumaCloneAst(forInAst);
var optimizedFor = pumaCloneAst(forInAst);

optimizedFor.type = "ForStatement";
optimizedFor.init = left;
optimizedFor.test = pumaAst($itemName < $right.length);
optimizedFor.update = pumaAst($itemName = $itemName + 1);

// Create type-guard to test runtime type
var temp = pumaAst(function(){
if (Array.isArray($right)) $optimizedFor;
else $cloneForIn;});

var tempIf = pumaFindByType(temp, "IfStatement")[0];

// Replace original node with type-guarded one
forInAst.type = tempIf.type;
forInAst.test = tempIf.test;
forInAst.consequent = tempIf.consequent;
forInAst.alternate = tempIf.alternate;

}

Fig. 8. Helper function to rewrite a for-in statement.

1) It detects if the for-in statement uses a variable
declaration as the iteration reference or an existing
variable.

2) It creates a new AST for an equivalent C-style for
statement.

3) It creates an if statement that will be used as type guard
to fallback into the original for-in if the type of the
collection expression to be iterated is not an array.

4) It replaces the original for-in AST node with the
generated if AST node.

Note that the function in Figure 8 is not marked as a meta-
function, as PumaScript can arbitrarily mix meta-functions
with normal functions.

Figure 9 shows an example of a client program that calls the
meta-function to rewrite all the program’s for-in statements.
The output obtained from running the program is shown in
Figure 10.

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 36

var array = [1,2,3,4,5,6,7,8,9,0];
var i = 0;

// Test for-in with existing iteration variable
for(i in array){ array[i] += 1;}

// Test for-in with new iteration variable
for(var j in array){ array[j] += 1;}

// Call to meta-function to optimize for-in
rewriteForIn();

Fig. 9. Sample client program which uses the rewriteForIn meta-function.

var array = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0];
var i = 0;

if (Array.isArray(array))
for (i; i < array.length; i = i + 1) { array[i] += 1;}

else
for (i in array) { array[i] += 1;}

if (Array.isArray(array))
for (var j; j < array.length; j = j + 1) {
array[j] += 1; }

else
for (var j in array) { array[j] += 1;}

Fig. 10. Output generated by PumaScript after running the program of
Figure 9.

IV. RELATED WORK

To our knowledge, source-to-source code rewriting tech-
niques were never before used to improve JavaScript per-
formance. However, other approaches have been developed
previously to improve the performance of JavaScript programs.
In this section we review other source code rewriting tools,
describe commonly used JavaScript pre-processing tools, and
analyze the most relevant approaches to compare them with
our proposal.

A. Rewriting and Pre-processing Tools

1) Source Code Rewriting Frameworks:: A number of
existing frameworks and tool chains can be used to imple-
ment end-to-end source code cross-compilation or refactoring.
Stratego XT [8] and DMS [9] are two of the more mature
frameworks to build source-to-source transformation tools
applying rewriting techniques. The main strength of these
frameworks is their flexibility, as they provide end-to-end tools
to build parsers, rewriting scripts, semantic analyzers, and
pretty printers. Our approach, as implemented by PumaScript,
is simpler and does not aim to be a generic tool to transform
from any source to any possible target. It is focused in
JavaScript language rewriting.

Moreover, building and end-to-end JavaScript-to-JavaScript
tool with these frameworks requires an important amount of
work because every major component must be created using
these tools. In contrast, in the implementation of PumaScript
we reuse existing and tested components like the Esprima
parser [6] for the front-end and EscodeGen [7] for pretty
printing.

Another major difference between these frameworks and
our solution, is that to implement transformations in these

frameworks the developer must learn specific languages based
on the tree rewriting paradigm. This programming paradigm
is not well known by most developers. Instead, PumaScript
meta-functions use the same JavaScript programming language
that any JavaScript developer already knows. Our approach
does not introduce a significantly new programming paradigm
beyond requiring familiarity with macro-expansion systems,
which are already available in a number of well known
programming languages.

2) Code Minifiers and Pre-Compilers:: Code minifiers have
been utilized by the JavaScript community for a long time.
Simple minifiers like JSMin [10] and JSZap [11] provide
mostly bandwidth optimization but not measurable perfor-
mance improvements. Elaborated precompilers, like Google
Closure Compiler [12], are capable of more advanced opti-
mizations like code inlining and removing unused variables.
However, those optimizations are provided as a mean to
shorten the source code and not as a way to improve per-
formance.

B. JavaScript Performance Improvement Approaches

1) Runtimes and Just in Time Compilers:: The greatest
performance improvement in JavaScript language has been
related with the progression from using runtimes, like Safari
SquirrelFish [13], to more advanced Just In Time (JIT) com-
pilers, such as Chrome V8 [1], Mozilla SpiderMonkey [2], or
Microsoft Chakra [14].

All of these JIT-based engines reuse techniques previously
used in other language runtimes, most notably the Java
HotSpot compiler [15]. Although the introduction of JIT
compilers has provided an improvement of at least one order
of magnitude, even the more advanced JIT engines cannot
optimize certain language patterns, such as for-in vs C
style for. Moreover, JIT engines are not good candidates to
incorporate optimizations related to similar APIs with different
performance, like the jQuery selectors vs native APIs cases
identified in this work.

2) Language Extensions:: Language extensions like
Mozilla asm.js [3] or Intel proposed SIMD [4] and parallel
execution [5] extensions are capable of providing important
performance benefits for certain use cases. However, these
approaches suffer from several limitations. First, developers
must embrace the language extensions by using them in
their source code. Second, runtime providers must implement
support for these extensions in their products. These
limitations generate the classic chicken-and-egg problem:
developers are not willing to invest effort in modifying their
code until most runtime providers add support for a certain
language extension, while at the same time, runtime providers
are not encouraged to support the extensions because there
are not enough projects using them.

In contrast, our approach can be used from day one by
developers, not requiring them to change the source code
and having immediate benefits in existing runtimes. The only
additional cost for a developer to use our method is to

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 37

add PumaScript and the rewriting scripts to the deployment
process.

V. SUMMARY AND FUTURE WORK

In this work we show that the performance of JavaScript
programs is highly sensitive to the use of a number of
source code and API patterns. Therefore, sizable performance
improvements can be achieved by replacing these patterns by
semantically equivalent faster code.

Also, we introduce a JavaScript language extension and
framework called PumaScript, which can be used to automate
a number of source code rewriting tasks. This new framework
adds meta-functions to JavaScript, allowing introspection and
rewriting syntax trees on the fly, without requiring the program
to be restarted or a specific macro-expansion phase included
in the runtime.

Developers can integrate PumaScript rewriting infrastruc-
ture and transformation scripts into their continuous integra-
tion environments to optimize the source code before the
deploying phase. Additionally, our novel approach to improve
performance is complementary to progress in JavaScript run-
times, high performance language subsets and other efforts to
improve the language performance.

Still, there is additional work to be done in order to
validate how the exhibited performance benefits in our simple
experiments translate to real life code. The first open task is
to analyze how common these non-optimal patterns are in
actual JavaScript source code. Moreover, it is possible that
several other non-optimal patterns exist and can benefit from
our approach.

Second, we have to use real life code from third parties
to prove that the performance gain are similar to the shown
in this work. We plan to use open source projects from
public repositories to create a new, more comprehensive set
of experiments.

Finally, we would like to explore the use of our PumaScript
infrastructure in other applications related to JavaScript meta-
programming. For example, it could be applied to source
code generation, construction of static, pre-compiled domain-
specific languages, static and real-time source code analysis,
application of aspect oriented programming, source code in-
strumentation, and source-to-source transformation to other
scripting languages.

REFERENCES

[1] Google Inc. V8 JavaScript virtual machine. https://github.com/v8/v8/
wiki, 2017.

[2] A. Gal, B. Eich, M. Shaver, D. Anderson, B. Kaplan, G. Hoare, D. Man-
delin, B. Zbarsky, J. Orendorff, J. Ruderman, E. Smith, R. Reitmaier,
M. R. Haghighat, M. Bebenita, M. Chang, and M Franz. Trace-based
just-in-time type specialization for dynamic languages. In Programming
Language Design and Implementation (PLDI 2009), Dublin, Ireland,
June 2009.

[3] David Herman, Luke Wagner, and Alon Zakai. asm.js specification.
http://asmjs.org/spec/latest/, 2013.

[4] Intel Corporation. SIMD in JavaScript. https://01.org/node/1495.

[5] Stephan Herhut, Richard L. Hudson, Tatiana Shpeisman, and Jaswanth
Sreeram. River trail: a path to parallelism in JavaScript. In Proceed-
ings of the 2013 ACM SIGPLAN international conference on Object
oriented programming systems languages & applications, Indianapolis,
IN, October 2013.

[6] ECMAScript parsing infrastructure for multipurpose analysis. http://
esprima.org/.

[7] ECMAScript code generator EscodeGen. https://github.com/estools/
escodegen.

[8] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/XT
0.17. a language and toolset for program transformation. Science of
Computer Programming, 72(1–2):52–70, June 2008.

[9] I. D. Baxter, C. Pidgeon, and M. Mehlich. DMS: Program transforma-
tions for practical scalable software evolution. In ICSE 04: Proceedings
of the 26th International Conference on Software Engineering, pages
625–634, Washington, DC, 2004. IEEE Computer Society.

[10] D. Crockford. JSMin: The JavaScript minifier. http://www.crockford.
com/javascript/jsmin.html.

[11] Martin Burtscher, Benjamin Livshits, Benjamin G. Zorn, and Gaurav
Sinha. JSZap: compressing JavaScript code. In Proceedings of the
2010 USENIX conference on Web application development, pages 4–4,
Boston, MA, June 2010.

[12] Google Inc. Google closure compiler. https://developers.google.com/
closure/compiler.

[13] Geoffrey Garen. Announcing SquirrelFish. https://www.webkit.org/blog/
189/announcing-squirrelfish/, June 2008.

[14] Advances in JavaScript performance in IE10 and Win-
dows 8. http://blogs.msdn.com/b/ie/archive/2012/06/13/
advances-in-javascript-performance-in-ie10-and-windows-8.aspx.

[15] Michael Paleczny, Christopher Vick, and Cliff Click. The java
hotspotTM server compiler. In Proceedings of the 2001 Symposium on
JavaTM Virtual Machine Research and Technology Symposium, pages
1–1, Monterey, CA, April 2001.

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 38

https://github.com/v8/v8/wiki
https://github.com/v8/v8/wiki
http://asmjs.org/spec/latest/
https://01.org/node/1495
http://esprima.org/
http://esprima.org/
https://github.com/estools/escodegen
https://github.com/estools/escodegen
http://www.crockford.com/javascript/jsmin.html
http://www.crockford.com/javascript/jsmin.html
https://developers.google.com/closure/compiler
https://developers.google.com/closure/compiler
https://www.webkit.org/blog/189/announcing-squirrelfish/
https://www.webkit.org/blog/189/announcing-squirrelfish/
http://blogs.msdn.com/b/ie/archive/2012/06/13/advances-in-javascript-performance-in-ie10-and-windows-8.aspx
http://blogs.msdn.com/b/ie/archive/2012/06/13/advances-in-javascript-performance-in-ie10-and-windows-8.aspx

	Introduction
	Analysis of JavaScript Patterns
	Solving Semantic Differences

	Implementing a Meta-Programming and Rewriting Infrastructure
	PumaScript Meta-Functions
	Rewriting Code
	Pattern 1 - Rewrite jQuery Selector Calls:
	Pattern 2 - Rewrite for-in Statements:

	Related Work
	Rewriting and Pre-processing Tools
	Source Code Rewriting Frameworks:
	Code Minifiers and Pre-Compilers:

	JavaScript Performance Improvement Approaches
	Runtimes and Just in Time Compilers:
	Language Extensions:

	Summary and Future Work
	References

