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Abstract. In this paper, an algorithm inspired on the immune system
is presented, IA DED stands for Immune Algorithm Dynamic Economic
Dispatch, it is used to solve the Dynamic Economic Dispatch problem.
IA DED uses as differentiation process a redistribution power operator
and the output power are integer values. The proposed approach is val-
idated using three problems taken from the specialized literature. Our
results are compared with respect to those obtained by several other
approaches.
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1 Introduction

One of the early problems in power system optimization is the Dynamic Eco-
nomic Dispatch (DED) problem. Its main objective is to determine the optimal
schedule of output powers of on line generating units, over a certain period of
time (T intervals), to meet power demands at minimum operating cost [10]. Be-
sides, several constraints associated to the system have to be satisfied, such as
load demands, ramp rate limits, maximum and minimum limits, and prohibited
operating zones. As DED problem is nonlinear different heuristics have been
used to solve it, such as, artificial immune system [8], genetic algorithm [7], par-
ticle swarm optimizer [7], algorithm bee colony [7], harmony search [14], [12],
[2], imperialist competitive algorithm [11], an hybridized differential evolution
[3], among others. Surveys about these techniques can be found in [16] and [9].

In this paper, we propose an algorithm to solve DED problem which is in-
spired on the immune system. Considering T intervals, the problem is regarded
as a sequence of T problems. But, each problem (at time i) depends on its pre-
decessor (at time i − 1) and it conditions to its successor (at time i + 1). The
algorithm applies a redistribution power operator in order to improve a solution
at time t with the aim of keeping such a solution feasible at a low computational
cost.
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The remainder of this paper is organized as follows. Section 2 defines the
DED problem. In Section 3, we describe our proposed algorithm. In Section 4, we
present the test problems used to validate our proposed approach and parameters
settings. In Section 5, we present our results and we discuss and compare them
with respect to other approaches. Finally, in Section 6, we present our conclusions
and some possible paths for future research.

2 Problem Formulation

The DED problem minimizes the total production cost (TC) associated with N

dispatch units for a time period:

TC =

T
∑

t=1

N
∑

i=1

Fi(P
t
i ) (1)

where TC is the fuel cost over the whole dispatch period, T is the number of
intervals in the period, N is the number of generating units in the system, P t

i is
the power of ith unit at time t (in MW) and Fi is the fuel cost for the ith unit
(in $/h).

A smooth fuel cost function can be expressed as a single quadratic function:

Fi(P
t
i ) = ai(P

t
i )

2 + biP
t
i + ci (2)

where ai , bi and ci are the fuel consumption cost coefficients of the ith unit.
But, if the valve-point effects are taking into account, the fuel cost function of
the ith unit is expressed as the sum of a quadratic and a sinusoidal function in
the form:

Fi(P
t
i ) = ai(P

t
i )

2 + biP
t
i + ci+ | eisin(fi(Pmini

− P t
i )) | (3)

where ei and fi are the fuel cost coefficients of the ith unit with valve-point
effects.

Regardless the function considered (Eq. 2 or Eq. 3), its minimization is
subjected to:

1. Power Balance Constraint: the power generated has to be equal to the power
demand required. It is defined as:

N
∑

i=1

P t
i − P t

D − P t
L = 0 (4)

where t = 1, 2, . . . , T . P t
D is the total power demand at time t, and P t

L is
the transmission power loss at time t (in MW). P t

L is calculated using the
B-matrix loss coefficients, and the general form of the loss formula using
B-coefficients is:
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PLt =

N
∑

i=1

N
∑

j=1

P t
iBijP

t
j +

∑

i=1

B0iP
t
i +B00 (5)

If transmission power loss is not considered, P t
L = 0.

2. Operating Limit Constraints: units have physical limits about the minimum
and maximum power they can generate:

Pmini
≤ P t

i ≤ Pmaxi
(6)

where Pmini
and Pmaxi

are the minimum and maximum power output of
the ith unit in MW, respectively.

3. Ramp Rate Limits: they restrict the operating range of all on-line units.
Such limits indicate how quickly the unit’s output can be changed:

{

P t
j − P

(t−1)
j ≤ URj if P t

j > P
(t−1)
j

P
(t−1)
j − Pjt ≤ DRj if P t

j < P
(t−1)
j

(7)

where P
(t−1)
j is the output power of jth unit at previous hour and URj

and DRj are the ramp-up and ramp-down limits of the jth unit in MW,
respectively. Due to ramp-rate constraints, Eq. 6 is modified as:

max(P t
minj

, P
(t−1)
j −DRj) ≤ P t

j ≤ min(P t
maxj

, P
(t−1)
j + URj) (8)

such that

{

P t
minj

= max(Pminj
, P

(t−1)
j −DRj)

P t
maxj

= min(Pmaxj
, P

(t−1)
j + URj)

(9)

4. Prohibited Operating Zones: they restrict the operation of the units due to
steam valve operation conditions or to vibrations in the shaft bearing. Thus,
an unit with prohibited operating zones has a discontinuous input-output
power generation characteristic which gives rise to additional constraints on
the unit operating range.







Pmini
≤ P t

i ≤ PZL
i,1 or

PZU
i,k−1 ≤ P t

i ≤ PZL
i,k, or

PZU
i,n1

≤ P t
i ≤ Pmaxi

k = 2, 3, ..., ni

(10)

where ni is the number of prohibited zones of the ith unit, k is the index of
the prohibited operating zones of the ith unit. PZL

i,k and PZU
i,k are the lower

and upper bounds of the kth prohibited operating zones of unit i.
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3 Our Proposed Algorithm

In this paper, an adaptive immune system model based on the immune responses
mediated by the T cells from the immune system is presented. These cells present
special receptors on their surface called T cell receptors (TCR), they are respon-
sible for recognizing antigens bound to major histocompatibility complex (MHC)
molecules.) [13].

The model considers some processes that T cells suffer. These are prolifer-
ation (to clone a cell) and differentiation (to change the clones so that they
acquire specialized functional properties); this is the so-called activation pro-
cess. IA DED (Immune Algorithm for Dynamic Economic Dispatch problem)
is an adaptation of an algorithm inspired on the activation process [1], which
was proposed to solve the economic dispatch problem. IA DED operates on one
population which is composed of a set of T cells.

For each cell, the following information is kept:

1. TCR: it identifies the decision variables of the problem (TCR ∈ ℵN ). Each
thermal unit is represented by one decision variable, each variable is encoded
by an integer value.

2. objective: objective function value for TCR, (TC(TCR)).
3. prolif : it is the number of clones that will be assigned to the cell, it is N for

all problems.
4. differ: it is the number of decision variables that will be changed when the

differentiation process takes place (if applicable). This level is calculated as
U(1, N).

5. TP : it is the power generated by TCR (
∑N

i=1 TCRi).
6. P t

L: it is the transmission loss for TCR, according to Eq. 5.
7. ECV : it is the equality constraint violation for TCR. At t time (| TP −PD−

PL |). If ECV > 0, then the power generated is bigger than the demanded
power, and if ECV < 0 then the power generated is lower than the required
power.

8. ICS: it is the inequality constraints sum,
∑N

i=1

∑ni

j=1 poz(TCRi, i, j)

poz(p, i, j) =

{

min(p− PZL
i,j , PZU

ij − p) ifp ∈ [PZL
i,j , PZU

ij ]
0 otherwise

where ni is the number of prohibited operating zones and [PZL
i,j , PZU

ij ] is

the jth prohibited range for the ith unit.
9. feasible: it indicates if the cell is feasible or not. A cell is considered as

feasible if: 1) ECV = 0 for problems without transmission network loss and
0 ≤ ECV < ǫ for problems with transmission loss and 2) ICS = 0 for
problems which consider prohibited operating zones.

Differentiation for feasible cells - Redistribution Process

The idea is to take a value (called d) from one unit (say i) and assign it to
another unit (say j). ith and jth units are modified according to: cell.TCRi =
cell.TCRi − d and cell.TCRj = cell.TCRj + d, where d = U(1, (int)⌉(P1 ∗
min(cell.TCRi − P t

mini
, P t

maxj
− cell.TCRj))), U(w1, w2) refers to a random
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number with a uniform distribution in the range (w1,w2) and P1 is a change
factor (P1 ∈ [0, 1]). Besides, a probability, P2, determines if ith and jth units will
be modified.
Differentiation for infeasible cells

For infeasible cells, the number of decision variables to be changed is deter-
mined by their differentiation level (differ). Each variable to be changed is cho-
sen in a random way and it is modified according to: cell.TCR

′

i = cell.TCRi±m,

where cell.TCRi and cell.TCR
′

i are the original and the mutated decision vari-
ables, respectively. m = U(1, (int)⌉(cell.ECV + cell.ICS)). In a random way,
it decides if m will be added or subtracted to cell.TCRi. If the procedure can-
not find a TCR′

i in the allowable range, then a random number with a uniform

distribution is assigned to it (cell.TCR
′

i = U(cell.TCRi, P
t
maxi

) if m should be

added or cell.TCR
′

i = U(P t
mini

, cell.TCRi), otherwise). If the resulting clon is
feasible then differentiation process stops, otherwise, the process is applied to the
resulting clon instead the original infeasible cell. This methodology follows until
prolif differentiations have been applied or a feasible clon has been reached.

Algorithm 1 IA DED Algorithm

1: P ← Initialize Population();
2: Evaluate Constraints(P );
3: Evaluate Objective Function(P );
4: for t ← 1 to T do

5: top← 0;
6: while A predetermined number of evaluations has not been reached and top <

5 ∗ 107 do

7: Proliferation Population(P );
8: Differentiation Population(P );
9: top++;
10: end while

11: bestt ← Search best at Population(P , t);
12: t++;
13: Update limits(bestt);
14: Repair output power(P );
15: Update output power(P );
16: Evaluate Constraints(P );
17: Evaluate Objective Function(P );
18: end for

19: BEST ← (best1, best2, . . . , bestT );

The algorithm works in the following way (see Algorithm 1). First, the
TCRs are randomly initialized within the limits of the units (Step 1). Then,
ECV and ICS are calculated for each cell (Step 2). Only if a cell is feasible,
its objective function value is calculated (Step 3). Next, the following steps
are repeated T times (Step 5 to 17): while a predetermined number of objective
function evaluations had not been reached and 5∗107 iterations are not performed
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the cells are proliferated and differentiated according to their feasibility. After
activation process, best solution at t time is recorded. The time is increased and
new operational limits are updated according Eq. 3. Those units which outputs
power falling out the new operational limits are changed by random values from
the valid limits. Finally, (Step 19) the whole final solution is sequence of solutions
found in time 1, time 2, to time T .

4 Validation

IA DED performance was validated with three test problems, 5-unit system [11],
15-unit system [5], 54-unit system [4]. Table 1 provides their most relevant
characteristics and the maximum number of function evaluations. IA DED was
implemented in Java (version 1.6.0 24) and the experiments were performed in
an Intel Q9550 Quad Core processor running at 2.83GHz and with 4GB DDR3
1333Mz in RAM.

The required parameters by IA DED are: size of population, maximum num-
ber of objective function evaluations, change factor (P1) and probability for
redistribution operator (P2). To analyze the effect of the first and third parame-
ters on IA DED’s behavior, we tested it with different parameters settings. Some
preliminary experiments were performed to discard some values for the popu-
lation size parameter. Hence, the selected parameter levels were: a) Population
size (C) has four levels: 5, 10 and 50 cells, b) Probability P1 has three levels:
0.1, 0.5 and 0.9 and c) Probability P2 has two levels: 0.01 and 0.1.

Thus, we have 18 parameters settings for three problems. They are identified
as C<size>-P1<Prob>-P2<Prob>, where C, P1 and P2 indicate the population
size and the probabilities, respectively. For each problem, 100 independent runs
were performed.The box plot method was selected to visualize the distribution of
the objective function values for each power system. This allowed us to determine
the robustness of our proposed algorithm with respect to its parameters. Figure
1 show in the x-axis the parameter combinations and the y-axis indicates the
objective function values for each problem. We can see for 5-unit system and
15-unit system the results are robust. For 54-unit system, to increase the change
factor improve the results and to increase the probability of application of the
redistribution process and size population deteriorate the results. So, the settings
parameters were used to compare the results got by IA DED with those produced
by other approaches are: for 5-unit system C=10 and P1=0.1, P2=0.1, for 15-unit
system C=50 and P1=0.9, P2=0.1, for 54-unit system C=5 and P1=0.9, P2=0.01.
Also, we set ǫ=2.0 for those problems which consider loss transmission.

5 Comparison of Results and Discussion

Several methods are compared with IA DED. They are listed next with the max-
imum number of function evaluations performed (if the value was available): AIS
[8] (300000), GA [7] (not found), PSO [7] (not found), ABC [7] (not found), HS
[14] (50000), ICA [11], for 5-unit system, (20000), DE-SQP [3] (50000), NPAHS
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Table 1. Test Problems Characteristics

Problem Thermal Objective PL Prohibited PD (MW) Evaluations
Units Zones

5-unit system 5 non-smooth Yes No 14577 19000
15-unit system 15 smooth Yes No 60981 19000
54-unit system 54 non-smooth No Yes 111600 30000

[12] (50000) CSADHS [2] (250000), SAMF [6] (not indicated), OCD [15] (not
indicated), ICA [11] (80000), for 54-unit system.

Table 2 shows: the best, worst, mean, standard deviation and running times
obtained by the approaches. For IA DED only four decimal digits are shown
due to space restrictions. For all the test problems, our proposed IA DED found
feasible solutions in all the runs performed.

The running time of each algorithm is affected by both the hardware environ-
ment and the software environment. That is the reason why the main comparison
criterion that we adopted for assessing efficiency was the number of objective
function evaluations performed by each approach. For having a fair comparison
of the running times of all the algorithms considered in our study, they should
all be run in the same software and hardware environment (something that was
not possible in our case, since we do not have the source code of several of
them). Clearly, in our case, the emphasis is to identify which approach requires
the lowest number of objective function evaluations to find solutions of a certain
acceptable quality.

However, the running times are also compared in an indirect manner, to give
at least a rough idea of the complexities of the different algorithms considered
in our comparative study. Analyzing Table 2, IA DED, for 5-unit system, is out-
performed by ICA [11] and DE-SQP [3], but it can found quickly an acceptable
solutions performing less evaluations of objective function. For 15-unit system,
IA DED outperformed all approaches which we compare it, it found the best
solution both running time and total fuel cost. For 54-unit system, IA DED
outperformed all approaches which we compare it, taking into account the total
fuel cost. It need 8.565s to find this solution, however it costs $54547 less than
OCD’s solution.

6 Conclusions and Future Work

This paper presented an adaptation of an algorithm inspired on the T-Cell model
of the immune system, called IA DED, which was used to solve dynamic eco-
nomic dispatch problems. IA DED is able to handle the five types of constraints
that are involved in this kind of problems: power balance constraint with and
without transmission loss, operating limit constraints, ramp rate limit constraint
and prohibited operating zones, and different types of objective function: smooth
and non-smooth.
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Table 2. Comparison of results. The best values are shown in boldface. - denotes
that the value was not available in the literature.

Problem/
Algorithm Best Worst Mean Std. Time(s)

5-unit system
IA DED 43716.6386 46611.1333 44879.9749 649.60 2.228s

AIS [8] 44385.43 45553.7707 44758.8363 - 4min
GA [7] 44862.42 - - - -
PSO [7] 44253.24 - - - -
ABC [7] 44045.83 - - - -
HS [14] 44376.23 - - - 2.8min
ICA [11] 43117.055 43209.533 43144.472 19.821
DE-SQP [3] 43161 - - -

15-unit system
IA DED 759385.9148 759665.1300 759478.5852 55.08 2.08s

NPAHS [12] 759603.089 759988.390 759779.467 - 250.0
CSADHS [2] 759689.220 759845.739 759766.233 - 3.36min
SAMF [6] 759406.42 - - - 2.951s

54-unit system
IA DED 1718177.0643 1718695.4568 1718424.5910 130.85 8.565s
OCD [15] 1772724.032 - - - 0.132s

ICA [11] 1807081.174 1811388.285 1809664.219 - -

At the beginning, the search performed by IA DED is based on a simple
differentiation operator which takes an infeasible solution and modifies some of
its decision variables by taking into account their constraint violation. Once the
algorithm finds a feasible solution, a redistribution power operator is applied.
This operator modifies two decision variables at a time, it decreases the power
in one unit, and it selects other unit to generate the power that has been taken,
always integer values.

The approach was validated with three test problems having different char-
acteristics and comparisons were provided with respect to some approaches that
have been reported in the specialized literature. Our proposed approach pro-
duced competitive results in all cases, being able to outperform some approaches
while performing a lower number of objective function evaluations.

As part of our future work, we are interested in redesigning the redistribution
operator in order to maintain the solutions’ feasibility when a problem involves
prohibited operating zones.
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