On the Application of Argument Accrual to
Reasoning with Inconsistent Possibilistic
Ontologies

Sergio Alejandro Gémez

Artificial Intelligence Research and Development Laboratory (LIDIA)
Department of Computer Science and Engineering
Universidad Nacional del Sur
Av. Alem 1253, (8000) Bahia Blanca, ARGENTINA
Email: sag@cs.uns.edu.ar

Abstract. We present an approach for performing instance checking in
a suitable subset of possibilistic description logic programming ontolo-
gies by using argument accrual. Ontologies are interpreted in possibilistic
logic programming under Dung’s grounded semantics. We present a rea-
soning framework with a case study and a Java-based implementation
for enacting the proposed approach.

Keywords: Argument accrual, ontology reasoning, inconsistency han-
dling, Description Logics.

1 Introduction

Reasoning with inconsistent ontologies plays a fundamental role in Semantic
Web applications. An ontology defines axiomatically a set of concepts that, given
assertions about the membership of individuals to some concepts, allows to de-
termine the membership of individuals to concepts (a task known as instance
checking). Ontologies can suffer from incoherence and inconsistency; either cor-
recting these anomalies or dealing with them with non-monotonic reasoning
techniques are the two main accepted solutions [1]. Argumentation [2] is an ap-
proach to defeasible reasoning that can be applied to handling inconsistency in
ontologies. In argumentation, given an inconsistent knowledge base, arguments
compete to decide which are the accepted consequences. Argument accrual for-
malizes the notion that having more arguments for a certain conclusion makes
it more credible [3].

In this paper we explore the application of argument accrual to reasoning
with inconsistent ontologies. To the best of our knowledge, argument accrual
were firstly studied by [4] and its application to the problem of ontology rea-
soning has only been suggested by Groza [5] in the context of fuzzy description
logics. We use possibilistic description logic programming as the language for on-
tology representation (i.e. an ontology is ultimately interpreted as a possibilistic
logic program). Arguments are then computed and accrued to compute the mem-
bership of instances to concepts using structured argumentation under Dung’s

14

grounded semantics. Our approach is qualitative providing a case study to show
how our approach works, and a downloadable Java-based implementation for
enacting our results.

The rest of the paper is structured as follows. In Sect. 2 we recall the fun-
damentals of possibilistic description logic ontologies. In Sect. 3 we review how
argumentation under Dung’s semantics with arguments expressed in possibilistic
logic programming is achieved and how possibilistic description logic ontologies
can be interpreted as possibilistic logic programs. In Sect. 4 we introduce how
to reason with inconsistent possibilistic ontologies using argument accrual. We
conclude in Sect. 5.

2 Possibilistic Description Logic Ontologies

Classical Description Logics. Description Logics (DL) are a well-known family
of knowledge representation formalisms [6]. In this work, we will consider a
very tight subset Lpr, of DLs, to which we will restrict our discussion, based
on the notions of concepts (unary predicates, classes). Concept descriptions are
built from concept names C, D, ... using the constructors conjunction (C 1 D),
disjunction (C'U D) and negation (=C'). The empty concept is denoted by L.
A DL ontology X' = (T, A) consists of two finite and mutually disjoint sets:
a Tbox T which introduces the terminology and an Abox A (assertional box)
which contains facts about particular objects in the application domain. The
Thox contains inclusion axioms C' C D, where C' and D are (possibly complex)
concept descriptions, meaning that every individual of C' is also a D. Objects
in the Abox are referred to by a finite number of individual names and these
names may be used in assertional statements a : C' (meaning the individual a is
a member of concept C).

Description Logic Programming. In this work we are only interested in the rea-
soning task known as instance checking that refers to determining if an individual
a is a member of a concept C'. Assigning semantics to a DL ontology can be done
based on that DL is isomorphic with first-order logic restricted to two variables.
Then, C' C D can be interpreted as the formula (Va)(c(z) — d(x)) and a : C as
¢(a). Description Logic Programming (DLP) approaches [7] take advantage of
this to interpret those expressions as the Prolog rules “d(X) :- ¢(X).” and “c(a).”,
resp. Therefore instance checking of a is a member of C reduces to proving the
goal “ c(a)”.

Possibilistic Description Logics. We now recall the fundamentals of possibilistic
description logic ontologies [8,9]. A possibilistic DL ontology is a set of possi-
bilistic axioms of the form (p, W(y)) where ¢ is an axiom expressed in Lpy,
and W (p) € [0,1] is the degree of certainty (or priority) of ¢. Namely, a pos-
sibilistic DL ontology X' is such that X = {(y;,W(y;)) : i = 1,...,n}. Only
somewhat certain information is explicitly represented in a possibilistic ontol-
ogy. That is, axioms with a null weight (W (y) = 0) are not explicitly represented

15

in the knowledge base. The weighted axiom (¢, W(¢)) means that the certainty
degree of ¢ is at least equal to W(p). A possibilistic DL ontology X will also
be represented by a pair X' = (T, A) where elements in both 7" and A may be
uncertain. Note that if we consider all W(y;) = 1, then we find a classical DL
ontology X* = {¢; : (@i, W(p;)) € X}. We say that X' is consistent if the classi-
cal ontology obtained from X by ignoring the weights associated with axioms is
consistent, and inconsistent otherwise. Notice that the weights W (-) for axioms
must be provided by the knowledge engineer that designs the knowledge base,
thus providing the relative importance of axioms/rules and assertions/facts.

Ezample 1. (Originally presented in [10].) Let X} = (T, A) be the ontology mod-
eling a variation of the famous Tweety example from the non-monotonic litera-
ture. It expresses that a bird usually flies, all penguins are birds, penguins do not
usually fly, birds with broken wings normally do not fly either, and pilots can
almost always fly. It is known that T'weety is a penguin with almost certainly a
broken wing and most likely a pilot. Formally:

T = {
A= {
In X}, because Tweety a penguin (and therefore a bird), he is both a member
of Flies and —Flies, meaning that he is a member of L. Traditional reasoners are

not able to infer anything from such an inconsistent ontology, thus invalidating
even reasoning with consistent subsets of the offending ontology.

Bird C Flies, 0.6), (Penguin C Bird, 1.0), (Pilot C Flies, 0.9)
Penguin C —Flies, 0.8), (Bird M BrokenWing C —Flies, 0.7),

TWEETY : BrokenWing, 0.8), (TWEETY : Penguin, 1.0), }

(
(
(
(TWEETY : Pilot, 0.9)

3 Ontology Reasoning in Possibilistic Argumentation a
la Dung

We now recall how to reason with possibly inconsistent ontologies by using Dung-
style argumentation, an approach we originally explored in [10].

3.1 Notions of Possibilistic Defeasible Logic Programming

The P-DeLLP [11] language £ is defined from a set of ground fuzzy atoms (fuzzy
propositional variables) p, g, ... along with the connectives ~ (strong negation),
A (written as a comma in Prolog clauses) and <. A literal L € £ is a ground
(fuzzy) atom ~ ¢, where ¢ is a ground (fuzzy) propositional variable. A rule in
L is a formula of the form @ < Ly A ... A Ly, where Q, L1, ..., L, are literals
in £. When n = 0, the formula @ < is called a fact. The term goal will refer to
any literal Q € L. Facts, rules and goals are the well-formed formulas in £. A
certainty-weighted clause, or simply weighted clause, is a pair (@, «), where @ is
a formula in £ and « € [0,1] expresses a lower bound for the certainty of ¢ in
terms of a necessity measure.

16

The proof method for P-DeLLP formulas, noted F, is based on the generalized
modus ponens rule, that from (P + Q1,...,Qk,7v) and (Q1,061),- .-, (Qk, Bk)
allows to infer (P,min(y,S31,...,08%)). A clause (g, «) is referred to as certain
when a = 1 and uncertain otherwise. A set of clauses I is deemed as contra-
dictory, denoted I' - 1, when I' F (Q,a) and I' + (~ @, 3), with a > 0 and
B > 0, for some atom @ in £. A program is a set of weighted rules and facts in
L in which certain and uncertain information is distinguished. As an additional
requirement, certain knowledge is required to be non-contradictory. A P-DeLP
program P (or just program P) is a pair (II, A), where IT is a non-contradictory
finite set of certain clauses, and A is a finite set of uncertain clauses. We build
arguments A for @) with weight 7, noted as (A, Q,~), inductively: If (Q,~) is a
fact, then ({(Q,7)},Q,7) is an argument; from (P + Q1,...,Qn,7) and n ar-
guments (A1, Q1,01), ..., (An, Qn, Bn), when Q1,...,Qn, P is consistent, then
we get <U?=1 -Az U {(P — Qla tety an’}/)}a Pa min(ﬁla s 7ﬂn;7)>

Conflict among arguments is formalized by the notions of counterargument
and defeat. Let P be a program, and let (A1, Q1,a1) and (As, Q2, az) be two
arguments in P. We say that (A1, Q1, 1) counterarques (As, Q2, a2 iff there ex-
ists a subargument (called disagreement subargument) (S, Q, 8) of (As, Qa, aa)
such that IT U {(Q1,a1),(Q,B)} is contradictory. The literal (Q,) is called
disagreement literal. Defeat among arguments involves the consideration of pref-
erence criteria defined on the set of arguments. The criterion applied here is
based on necessity measures associated with arguments. Let P be a program,
and let (A1, Q1,a1) and (As, Q2, a2) be two arguments in P. We will say that
(A1, Q1,aq) is a defeater for (As, Qa, az) iff (A1, Q1, 1) counterargues argument
(As, Q2, an) with disagreement subargument (A, Q, a), with a3 > a. If a3 > «
then (Aq,Q1, 1) is called a proper defeater, otherwise (a; = «) it is called a
blocking defeater. Notice that we digress from the original P-DeLP formalism of
Chestievar et al. [11] in that (i) we include facts in the support of arguments and
(ii) facts are allowed to have a weight different than one (so allowing them to be
considered as presumptions).

Ezxample 2. Consider again the ontology X7 presented in Ex. 1. This ontology is
interpreted as the equivalent possibilistic program P; where:

broken Wing (tweety), 0.8), (penguin(tweety), 1.0),
pilot(tweety),0.9),
flies(X) < bird(X),0.6),

(

E
P1 Ebzrd() + penguin(X), 1.0),
(
(

~ flies(X) + penguin(X),0.8),
~flies(X) < bird(X), broken Wing(X),0.7),
flies(X) « pilot(X),0.9)

Exactly 8 arguments can be built from this program (notice that they coincide
with the ones presented in Ex. 3):

— (Au, broken Wing(tweety), 0.8) where Ay = { (brokenWing(tweety),0.8) }
— (A, penguin(tweety), 1.0) where Ay = { (penguin(tweety), 1.0) }
— (As, pilot(tweety),0.9) where As = { (pilot(tweety), 0.9) }

17

(Aa, bird (tweety), 1.0) where Ay = { (bird(tweety) < penguin(tweety),1.0) } U Az
— (As, ~flies(tweety), 0.8) where

As = { (~flies(tweety) < penguin(tweety),0.8) } U A,
— (Ag, ~flies(tweety),0.7) where
Ag = { (~flies(tweety) < bird (tweety), broken Wing(tweety),0.7) } U A1 U Aq

— (Az, flies(tweety),0.9) where A7 = { (flies(tweety) <— pilot(tweety),0.9) } U As
— (As, flies(tweety),0.6) where As = { (flies(tweety) < bird (tweety),0.6) } U A4

The attacks among these arguments are exactly those presented in Fig. 1. Notice
that here the attacks are made into final conclusions (thus they are direct at-
tacks). Nonetheless the reasoning framework presented here and the application
we built also allow modeling attacks into premises (i.e. indirect attacks).

3.2 Dung-Style Abstract Argumentation

Abstract argumentation frameworks [12] do not presuppose any internal struc-
ture of arguments, thus considering only the interactions of arguments by means
of an attack relation between arguments. An abstract argumentation framework
AF is a pair (Arg, —) where Arg is a set of arguments and — is a relation of Arg
into Arg. For two arguments A and B in Arg, the relation A — B means that the
argument A attacks the argument . Abstract argumentation frameworks can
be concisely represented by directed graphs, where arguments are represented
as nodes and edges model the attack relation.

Ezample 3. Consider the argumentation framework AFs5 = (Arg,—) where
Arg = { A1, Az, A3, Ay, As, Ag, A7, Ag} and —= {(As, Ag), (As, Ag), (A7, As),
(A7, Ag)}. The framework is shown graphically in Fig. 1 and, although it is not
necessary from a mathematical viewpoint, we can assign meaning to the above
arguments to provide some intuition (notice that these arguments coincide with
the ones in Ex. 2):

— A; : Tweety has a broken wing

— Az : Tweety is a penguin

— Ajs : Tweety is a pilot

— A4 : Tweety is a bird

— As : Tweety does not fly because he is a penguin and penguins do not usually fly
— Ag : Tweety does not fly because he has a broken wing

— A7 : Tweety flies because he is also a pilot

— Az : Tweety flies because he is a bird and birds normally fly

Semantics are usually given to abstract argumentation frameworks by means
of extensions. An extension E of an argumentation framework AF = (Arg, —)
is subset of Arg that gives some coherent view on the argumentation under-
lying AF. In this work, we will reason under grounded semantics despite that
other semantics have been proposed. Let AF = (Arg,—) be an argumentation
framework. An extension F C Arg is conflict-free iff there are no A,B € E

18

Fig. 1. Abstract argumentation framework presented in Ex. 3

with A — B. An argument A € Arg is acceptable with respect to an extension
E C Arg iff for every B € Arg with B — A there is a A" € E with A’ — B. An
extension E C Arg is admissible iff it is conflict free and all A € E are accept-
able with respect to E. An extension E C Arg is complete iff it is admissible
and there is no A € Arg\F that is acceptable with respect to E. An extension
E C Arg is grounded iff it is complete and E is minimal with respect to set
inclusion.

The intuition behind admissibility is that an argument can only be accepted
if there are no attackers that are accepted and if an argument is not accepted
then there has to be an acceptable argument attacking it. The idea behind the
completeness property is that all acceptable arguments should be accepted. The
grounded extension is the minimal set of acceptable arguments and uniquely
determined. It can be computed as follows: first, all arguments that have no
attackers are added to the empty extension E and those arguments and all
arguments that are attacked by one of these arguments are removed from the
framework; then the process is repeated; if one obtains a framework where there
is no unattacked arguments, the remaining arguments are also removed.

Ezxample 4. Consider again the argumentation framework AF3 presented in
Ex. 3. The grounded extension E of AF3 is given by E = {A;, As, A3, A4, A7, Ag}.

3.3 Expressing Possibilistic DL Ontologies as Possibilistic Logic
Programs

Grosof et al. [7] provide a way of expressing a subset of Description Logic on-
tologies in logic programming, namely the description logic programming subset
of DL that can be expressed as Horn knowledge bases. The idea consist of ex-
pressing both DL assertional statements and terminological axioms as equivalent
Horn clauses. We will explain only the part of the algorithm relevant to this work.

Given an ontology X' = (T, A), for every terminological axiom or assertional
statement (¢, W(¢)) we will generate a possibilistic axiom (7 (¢), W(p)), where
T () is the transformation function from the language of description logics to the
language of Horn clauses. The specification of the T is as follows: Assertional
statements in A of the form a : C are expressed as facts c(a). We obtain an
equivalent ontology composed only of inclusion axioms of the form C1M1...MC,, &
D which are expressed as Horn clauses of the form d(X) < ¢1(X),...,cn(X).

19

Given a possibilistic DL ontology X', X' is expressed as an equivalent P-Del.P
program P. With this program, a grounded extension F will be computed. If
(c(a), @) belongs to E then we will say that the individual A is a member of the
concept C with certainty degree .

Ezample 5. Recall from Ex. 4 that E = {4, As, A3, Ay, A7, As}. Therefore we
can affirm that, from A;, TWEETY is a member of BrokenWing with certainty
degree 0.8; from Ay, TWEETY is a member of Penguin with certainty degree
1.0; from Az, TWEETY is a member of Pilot with certainty degree 0.9; from Ay,
TWEETY is a member of Bird with certainty degree 1.0; from A;, TWEETY is a
member of Flies with certainty degree 0.9, and from Ag, TWEETY is a member
of Flies with certainty degree 0.6.

From A; and Ag, as Tweety is both a member of Flies with both degrees 0.6
and 0.9, we take a credulous approach considering that TWEETY is a member
with degree 0.9.

4 Ontology Reasoning with Argument Accrual

Now we deal with the problem of accruing arguments for justifying the mem-
bership of individuals to concepts, thus redefining the task of instance checking
by means of argument accrual. Our approach relies in previous work of Gémez
Lucero et al. by presenting a variation of their approach that we apply to ontol-
ogy reasoning. Gémez Lucero et al. [3] presented an approach to model accrual
of arguments in a possibilistic setting where, given different arguments support-
ing the same conclusion, they are able to accumulate their strength in terms of
possibilistic values. For this, they define the notion of accrued structure whose
necessity degree is computed in terms of two mutually recursive functions: f;)
(the accruing function) and fM?(-) (that propagates necessity degrees). The
latter is parameterized w.r.t. a user-defined function ACC' that supports non-
depreciation (i.e. accruing arguments results in a necessity degree no lower than
any single argument involved in the accrual) and mazimality (i.e. accrual means
total certainty only if there is an argument with necessity degree 1). We recall
the notion of argument accrual as interpreted by [3]:

Definition 1. Let P be a P-DeLP program and let {2 be a set of arguments in
P supporting the same conclusion H, i.e. 2 = {{A1,H,a1),...,(An, H,ap)}.
The accrued structure ASy for H is a 3-uple [P, H, o], where ® = A;U...UA,
and « is obtained as follows. Let Q) be a literal in @ and let (v1,51),- -, (¢n, Bn)
be all the weighted clauses in @ with head Q, then

f2(@) = ACC(£3"" (¢1), - 13" (n))-
Let (p, 8) be a weighted clause in @, then

MP () — B if v is a fact Q
T\ min(fE (P, ... fE(PY) ife=Q ¢« Pi,..., Py

And ACC is the one-complement accrual: ACC(au, ..., 0) = 1=, (1 — o).

20

Given [@, H,a] and [0, K,~], [©, K,~] is an accrued substructure if & C
@. Also [0, K,~] is a complete accrued substructure of [®, H,«] iff for any
other accrued substructure [@', K,~] of [®, H,a] it holds that @ C ©. We
say [¥, K, 8] attacks [®, H,a] at literal H' iff there is a complete accrued sub-
structure [@', H',o'] of [@, H, o] such that K = H and 8 > o/. !

Definition 2. Let P be a possibilistic logic program. Let Accruals(P) be the
set of complete accrued structures of P. Let ASF(P) = (Accruals(P), attacks)
be the argumentation framework induced by the accruals of P where attacks C
Accruals(P) x Accruals(P). The extension of P is defined as the grounded ex-
tension of ASF(P) where attacks stands for the attack relation between complete
accrued structures.

Notice that the notions of both attack and valid conclusions of the system pre-
sented here differ from those of [3], thus leading to a different behavior.

Ezample 6. Consider again the ontology X and its interpretation as the possi-
bilistic program P;. The following complete accrued structures can be computed
from Py: AS; = [As, penguin(tweety), 1.0], ASe = [A7 U As, flies(tweety), 0.96],
ASs = [As, pilot(tweety),0.9], ASy = [A1, broken Wing(tweety),0.8], ASs =
[As U Ag, ~ flies(tweety),0.94] and ASg = [Ay, bird (tweety), 1.0]. We show AS2
and AS5 in Fig. 2. In this case ASs attacks AS5 at the literal flies(tweety) (see
Fig. 3). Therefore the grounded extension of ASF(Py) is {AS1, AS2, AS3, ASy,
ASg}.

flies(tweety)®-26 ~ ﬂies(tweety)0'94

pilot(tweety)®® bird(tweety)-°
[

true'° penguin (tweety)*-°
penguin (tweety)-° bird(tweety)*® broken Wing(tweety
truel:® \ \ ‘
truel-? penguin (tweety)'-° truel-?
[
truel©

Fig. 2. Accrued structures AS2 and AS5 from P; (Notice that the leftmost branch of
ASs5 stands for a sub-structure for ~ flies(tweety) based on the argument As while the
two rightmost branches for another based on the argument As.)

Definition 3. Given a possibilistic ontology X', a concept C' and an individual
a, we say that a is member of C with certainty degree o iff there is a complete
accrued structure for [@,c(a), a] in the grounded extension of ASF(T(X)).

1 is referred to as the complement operator where P is ~P and ~P is P.

21

)0.8

Fig. 3. Abstract argumentation framework ASF(P1) of Ex. 6

Ezample 7. Consider again the ontology X, 7(X7) is the program P;. The
complete accrued structures from this program are those presented in Ex. 6. As
ASy = [A7UAg, flies(tweety), 0.96] belongs to the grounded extension of accrued
structures of Py, then we conclude TWEETY is a member of Flies with certainty
degree 0.96.

Property 1. When each accrued structure is formed by exactly one argument,
the grounded extension of the argumentation framework induced by the program
coincides with the argumentation framework induced from the accrued program.

Proof: Let X be a possibilistic ontology and P be T(X). Suppose that there
is only one argument A in P with certainty degree o supporting H. Then the
accrued structure AS for H is formed only by A. Because of how f, (H) is de-
fined, the certainty degree of AS is also . Then the graph of the argumentation
framework formed by arguments is identical to the argumentation framework
formed by accrued structures. Therefore their grounded extensions coincide.

Implementation details. In order to enact the approach proposed in this work,
we developed a Java-based implementation that extends the one already pre-
sented in [10]. This application can be downloaded from the author’s institu-
tional site at http://cs.uns.edu.ar/"sag/engine-v2/. The implementation
also provides the functionality of loading several examples, editing them, ob-
taining the equivalent P-DeLP program, computing grounded extensions and
also provides a graphical representation of the argumentation framework, in-
dividual arguments and accrued structures based on the D3.JS and Dracula
Javascript libraries. With this, we were able to replicate the accrued structures
presented by [3]. Based on the experience gained by testing examples, we argue
that this approach presents a more complex way to compute the vertexes of the
argumentation framework but the resulting graph is smaller, thus leading to a
much simpler reasoning framework.

5 Conclusions and Future Work

We have presented an approach for performing instance checking in inconsistent
possibilistic description logic ontologies based on argument accrual, leading to
more concise representations. Our approach involves translating ontologies into
the language of possibilistic logic programming and grouping arguments for the

22

same conclusion via argument accrual. We have developed a Java-based imple-
mentation that allows the user to input an ontology and select reasoning either
with or without argument accrual under a grounded semantics based on Dung-
style argumentation. In our implementation, we only implemented direct attack
between pairs of accrued structures; implementing the full approach of [3] in the
context of Dung-based structured argumentation requires further research.

Acknowledgments: This research is funded by Secretaria General de Ciencia
y Técnica, Universidad Nacional del Sur, Argentina.

References

1.

10.

11.

12.

Zhang, X., Xiao, G., Lin, Z., den Bussche, J.V.: Inconsistency-tolerant reasoning
with OWL-DL. International Journal of Approximate Reasoning 55 (2014) 557—
584

. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Arti-

ficial Intelligence 171(10-15) (2007) 619641

Lucero, M.G., Chesfievar, C.I., Simari, G.R.: Modelling Argument Accrual in Pos-
sibilistic Defeasible Logic Programming. In ad G. Chemello, C.S.; ed.: ECSQARU
2009, LNAT 5590. (2009) 131-143

Verheij, B.: Rules, Reasons, Arguments: Formal studies of argumentation and
defeat. PhD thesis, University of Maastricht (1996)

Letia, I., Groza, A.: Modelling Imprecise Arguments in Description Logics. Ad-
vances in Electrical and Computer Engineering 9(3) (2009) 94-99

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.:
The Description Logic Handbook — Theory, Implementation and Applications.
Cambridge University Press (2003)

Grosof, B.N., Horrocks, 1., Volz, R., Decker, S.: Description Logic Programs: Com-
bining Logic Programs with Description Logics. WWW2003, May 20-24, Budapest,
Hungary (2003)

Benferhat, S., Bouraoui, Z., Lagrue, S., Rossit, J.: Merging Inconmensurable Pos-
sibilistic DL-Lite Assertional Bases. In Papini, O., Benferhat, S., Garcia, L., Mug-
nier, M.L., eds.: Proceedings of the IJCAI Workshop 13 Ontologies and Logic
Programming for Query Answering. (2015) 90-95

Gémez, S.A., Chestievar, C.I., Simari, G.R.: Using Possibilistic Defeasible Logic
Programming for Reasoning with Inconsistent Ontologies. In Giusti, A.D., Diaz,
J., eds.: Computer Science & Technology Series. XVII Argentine Congress of Com-
puter Science Selected Papers. (2012) 19-29

Goémez, S.A.: Towards a practical implementation of a reasoner for inconsistent
possibilistic description logic programming ontologies. In: Proceedings of the 2do.
Simposio Argentino de Ontologias y sus Aplicaciones (SAOA 2016). SADIO (2016)
(accepted)

Alsinet, T., Chesfievar, C.I., Godo, L.: A level-based approach to computing war-
ranted arguments in possibilistic defeasible logic programming. In Besnard, P.,
Doutre, S., Hunter, A., eds.: COMMA. Volume 172 of Frontiers in Artificial Intel-
ligence and Applications., IOS Press (2008) 1-12

Dung, P.M.: On the aceptability of arguments and its fundamental role in non-
monotonic reasoning and logic programming. In: Proceedings of the 13th Interna-
tional Joint Conference in Artificial Intelligence (IJCAI). (1993) 852-857

23

	On the Application of Argument Accrual

