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Abstract

Theoretical estimates are given for the overall dissipative response of ferroelectric ceramics
with random dispersions of metallic inclusions under arbitrary loading histories. The fer-
roelectric behavior of the matrix is described via a stored energy density and a dissipation
potential in accordance with the theory of generalized standard materials. An implicit time-
discretization scheme is used to generate a variational representation of the overall response
in terms of a single incremental potential. Estimates are then generated by constructing se-
quentially laminated microgeometries of particulate type whose overall incremental potential
can be computed exactly. Because they are realizable, by construction, these estimates are
guaranteed to conform with any material constraints, to satisfy all pertinent bounds, and to
exhibit the required convexity properties with no duality gap. Sample results for isotropic
composites are reported and discussed.
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1 Motivation

Ferroelectricity refers to the capacity of certain polar dielectrics to sustain a spontaneous electri-
cal polarization that can be altered by application of an external electric field (Lines and Glass,
1977). Since this change in polarization is usually accompanied by a mechanical deformation,
ferroelectrics are electro-deformable materials which find applications as sensors and actuators
(e.g., Xu, 1991; Capsal et al., 2012), energy harvesters (e.g., van den Ende et al., 2012), material
damping enhancers (e.g., Asare et al., 2012), and other microdevices. Ferroelectric ceramics
such as barium titanate and lead zirconate titanate are probably the most prominent examples
among this class of materials.

The search for electro-deformable materials with specific combinations of properties not
found in monolithic ferroelectrics has recently motivated the development of an increasing va-
riety of two-phase ferroelectric composites, for instance, by dispersing metallic particles in a
ferroelectric ceramic matrix (e.g., Duan et al., 2000; Zhang et al., 2010; Ning et al., 2012).
However, the influence of metallic inclusions on the overall electrodeformation of the material is
not evident a priori for, on the one hand, the resulting concentration of the electric field in the
matrix enhances the electromechanical coupling, but on the other hand, the higher elastic stiff-
ness of the inclusions reduces the coupling. The purpose of this work is to estimate theoretically
such influence.

The problem calls for a methodology to estimate the overall response of two-phase dielectric
materials with complex microstructures and with constituent phases that can simultaneously
store and dissipate electrostatic energy. While full-field simulations are certainly an option, the
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focus here is on semi-analytical homogenization methods requiring low computational power.
In this work we use a variational representation of the problem together with so-called solvable
microgeometries.

2 The composite material model

2.1 The material system and field equations

The material system under study is idealized here as a heterogeneous body occupying a domain
2 and made up of a continuous matrix containing a uniform dispersion of inclusions. The matrix
phase will be identified with the index r = 1 while the inclusions will be collectively identified
with the index r = 2. Each phase occupies a domain Q") € Q (r = 1,2) such that Q = U2_, Q).
The domains Q") can be described by a set of characteristic functions x(") (x), which take the
value 1 if the position vector x is in Q") and 0 otherwise.

We restrict attention to isothermal processes produced by quasistatic electromechanical load-
ings. These interactions are represented by a fixed electrostatic potential gZS applied via a surface
electrode occupying the portion 02, of the body boundary 0f2 or by a displacement &1 imposed
in a portion 02, of the body boundary 0f2. For simplicity, we disregard the possible presence
of free charges within the material. The governing field equations are then given by

V.-D=0 and E=-V¢ inR3,

(1)

p=¢ ond, and [D-n]=0 on N\, (2)
V-o=0 and e=V®su inQ, (3)
(4)

u=u ondQ, and [on]=0 on IN\IQ, 4
with
[ «E in R3\Q 5)
| ©E+P in Q.

In these expressions, ¢ is the electrostatic potential, D, E, P, u, o and € are the electric
displacement, the electric field, the material polarization, the displacement, the stress field and
the material strain respectively, [-] denotes the jump across 92, n is the outward normal vector
to 012, and €y denotes the electric permittivity of vacuum. In addition, the electrostatic potential
must vanish at infinity, i.e., ¢ — 0 as |x| — oo.

The above field equations must be supplemented with constitutive relations describing the
dielectric response of each phase. Given our interest on ferroelectric composites, we follow
the thermodynamic approach of Bassiouny et al. (1988) wherein dissipative processes can be
characterized by an irreversible polarization p playing the role of an internal variable. This
framework is general enough to characterize simple responses such as linear polarizability as
well as complex responses such as rate-dependent ferroelectricity —see, for instance, Kamlah
(2001) and Miehe and Rosato (2011).

The total energy and dissipation of the material system and its surroundings are thus written
as

5:/8(x,€,P,p) dV+/ leOE2 dv, D:/ a—“,”(x,p)-pdv, (6)
0 RS 2 o Op

where the first term in the energy expression corresponds to the energy stored in the composite
material while the second term is the electrostatic energy associated with the electric field.
The function ¢ is a convex, positive function of the irreversible polarization rate p such that
©(+,0) = 0. Thermodynamic arguments then imply that the constitutive relations of the material
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are given by (see Bassiouny et al., 1988)

= g—;(x,s,P,p), o= %(X,E,P,p) and g—;(x,s,P,p) + g—g(x,p) =0. (7)
The field equations and boundary conditions (1)-(5), together with the constitutive relations
(7) and appropriate initial conditions, completely define the electrostatic response of the system
under consideration.
Polycrystalline polar solids exhibiting isotropic ferroelectricity are commonly characterized
by potentials of the form —see, for instance, Kamlah (2001) and Miehe and Rosato (2011)—

(e, P,p) =3 (e — &) Cle — &) + 3a(P — p)* + (P~ p) - h(p)(c — &) + cx(p)

. . 1+m
N eopo ([Pl
op) =eclpl + 00 (2)) ®

with

est(p) = —hop} [ln (1 - M) + M] ; (9)

Ds DPs
) 3 |p|>2p p
E(p =—€s<— — Qg —, 10
=2\ ) % (10)
P _P _P p p p
h(P):<C¥0—®—®—+C¥iI®—+C¥ —®SI>—, (11)
Pl Tpl TPl pl " p] Ps

where €5 and ¢ represent the energy stored and dissipated via microdomain switching and
¢ is the remanent strain induced by this switching. In the energy potential (8);, C is the
material stiffness tensor,  is a positive material parameter characterizing the polarizability of
the material and h represents the piezoelectric coupling tensor. In the dissipation potential (8)2,
ec is the coercive field strength of the material —i.e., the electric field level above which domain
switching is triggered—, eg and pg are reference electric field and polarization rate characterizing
the rate-dependence of the switching process, and m is a rate sensitivity exponent. In the stored
energy density (9), in turn, ps is the saturation polarization and hg is a material parameter
characterizing the hysteresis slope. In the remanent strain (10), 4 is the saturation strain at
the saturation polarization pgr).

The focus of this work is on material systems where the characteristic size of the microstruc-
tural heterogeneities —e.g., particles— is much smaller than the characteristic size of the com-
posite body. In this case, we can define an overall response of the composite material as the
relation between conjugate fields averaged over a ‘representative volume element’ (RVE) which
contains a sufficient number of heterogeneities for the overall response to be effectively indepen-
dent of the prevalent conditions on its boundary. The determination of the overall response thus
requires the solution to the above field equations for some suitable choice of boundary conditions
on the surface of the RVE. The problem can be cast in variational form by discretizing in time
following an implicit Euler scheme as in Idiart (2014). This problem is solved for a special,
yet quite general, class of composite microstructures known as sequential laminates —see Idiart
(2014) for details in the context of purely dielectric systems.

2.2 Results and discussion

The model presented above is used in this section to explore the effects of a random dispersion
of perfectly conducting particles on the response of three-dimensional ferroelectric composites
exhibiting overall isotropic symmetry. Table 1 shows the numerical values employed in the
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Symbol Parameter Units Value

Ferroelectric matrix

€ electric permittivity C/(V-m) 1800¢
Ds saturation polarization C/m? 0.25
ho hysteresis slope MV-m/C 0.1
m rate-sensitivity exponent — 0.2
Do reference polarization rate C/(m? s) 100
€c coercive electric field MV /m 0.35
€o reference electric field MV/m 0.35
I Lamé parameter GPa 45
A Lamé parameter GPa 70
€s saturation strain — 1073
g axial piezoelectric expansion MN/C 12.6
o) lateral piezoelectric expansion MN/C 276.2
a— piezoelectric shearing MN/C —1460
Metallic inclusions
€ electric permittivity C/(V - m) 00
I Lamé parameter GPa 60
A Lamé parameter GPa 225

Table 1: Parameters for the ferroelectric material (r = 1) and the conductive inclusion (r = 2).
These values roughly reproduce the rate-dependent behavior of a polycrystalline lead zirconate
titanate at low frequencies (e.g., Zhou et al., 2001; Miehe and Rosato, 2011) and platinum.

simulations for the various material parameters of the ferroelectric phase and the conductive
inclusion. These values roughly reproduce the rate-dependent behavior of a polycrystalline lead
zirconate titanate at low frequencies (e.g., Zhou et al., 2001; Miehe and Rosato, 2011) and
platinum. In the following, overbars are used to denote macroscopic quantities.

Figure 1 shows predictions for various volume fractions of metallic inclusions. These results
correspond to initially unpoled composites subjected to a triangular electric signal with a peak
amplitude of 4e. and a frequency fy of 1Hz.

In part (a) we observe that the addition of conducting inclusions reduces the macroscopic
coercive strength —i.e., the value of E for which D = 0— but produces minimal changes in
the macroscopic residual polarization —i.e., the value of D at E = 0. This is indeed consistent
with the experimental measurements of Duan et al. (2000) on PZT composites containing a
dispersion of Pt particles. The predictions also show that, unlike the monolithic ferroelectric
matrix, the composite exhibits a two-stage saturation. This phenomena fades out with decreas-
ing volume fraction of particles. Additional results —not provided here for brevity— show the
same tendency with increasing loading rate. The two-stage saturation is a consequence of the
fact that metallic particles induce a bimodal distribution of the electric field in the matrix. A
more detailed discussion of this phenomenon is given in Bottero & Idiart (2014).

More importantly, however, we observe in part (b) that the addition of metallic inclusions
actually results in a composite material with lower electrodeformability. This indicates that the
higher elastic stiffness of the inclusions wins over the concomitant localization of the electric
field in the matrix phase. It is also interesting to note that, unlike the monolithic phase, the
composite does not recover a strain-free configuration during cyclic loading. This is, once again,
a consequence of the underlying bimodal distribution of the electric field.

The variation in the electrodeformation of the specimen can be summarized by analyzing the
maximum strain variation, A€, defined as the difference between the maximum and minimum
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Figure 1: Predictions for various volume fractions (¢ = 0.05;0.15;0.25). The composite is subjected
to a triangular electric signal with a peak amplitude of 4e. and a frequency of 1Hz. Normalized vector
components along the direction of applied electric field: (a) overall dielectric displacement, (b) overall
longitudinal strain.

strains in the cycle. These results are presented in figure 2(a) as a function of the peak amplitude
of the applied electric signal for several inclusion concentrations. It can be observed that when
cycled with a maximum amplitude above roughly 1.6e., the electrodeformation of the specimen
is reduced by the addition of conductive inclusions. However, for fields below that value, an
improvement in the electrodeformation is actually obtained. Figure 2(b) shows the predicted
piezoelectric coefficient dsz —i.e. the slope of the strain-electric field diagram at E = 0— for
the composites as a function of peak amplitude. It is observed that for the whole range of
amplitudes considered, the addition of metallic inclusions increases the piezoelectric coupling of
the material. Thus, the predictions suggest that, on one hand, the addition of metallic particles
can prove beneficial or detrimental for the electromechanical coupling of the material depending
on the loading history imposed.

We conclude this discussion by noting that in the course of this study we have found that
the model (7)-(10) may actually lead to numerical instabilities related to the non-convexity of
the stored energy function. This problem is being assessed and its consequences will be reported
in due time.
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