
ASSE 2015, 16º Simposio Argentino de Ingeniería de Software.

Test Reduction for Easing Web Service
Integration⋆

Diego Anabalon1,3, Mart́ın Garriga1,3, Andres Flores1,3, Alejandra Cechich1,
and Alejandro Zunino2,3

Springer-Verlag, Computer Science Editorial,
Tiergartenstr. 17, 69121 Heidelberg, Germany

{alfred.hofmann,ursula.barth,ingrid.haas,frank.holzwarth,
anna.kramer,leonie.kunz,christine.reiss,nicole.sator,
erika.siebert-cole,peter.strasser,lncs}@springer.com

http://www.springer.com/lncs

Abstract. Since the irruption of Web Services, in their SOAP and
REST flavors, the market has turned from intra-business applications
to inter-organizational applications. Nowadays, more organizations have
a broad access to the Web and span their frontiers using service-centered
applications. In this paper, we review the testing challenges and strate-
gies in Web Services – as the technological weapon-of-choice to imple-
ment Business Services. Then we deepen into a possible strategy to ad-
dress service testing: Test Reduction. Fresh strategies are necessary since
Web Services testing is substantially different from legacy systems test-
ing.

Keywords: Web Services, Web Service Testing, Service-oriented Appli-
cations, Component-based Software Development

1 Introduction

Service Oriented Computing (SOC) is a computing paradigm whose main ob-
jective is the development of distributed applications in heterogeneous environ-
ments, which are built by assembling or composing existing functionality called
service. Services are published through a network and accessed by specific pro-
tocols [20, 14]. A service-oriented architecture is composed of three actors: a
provider, a consumer and a service registry. The registry is used by the provider
to publish the description of their services, and also for consumers looking for
services that meet their needs. Once a service is selected, it will be invoked
from the client application [21]. In general, service-oriented applications are im-
plemented using Web Services technology. A Web Service is a program with a
well-defined interface which can be localized, published and invoked using the
standard Web infrastructure [18].

⋆ This work is supported by projects: ANPCyT–PICT 2012-0045 and UNCo – Service-
oriented Reuse (04-F001).

44 JAIIO - ASSE 2015 - ISSN: 2451-7593 115

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301068771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ASSE 2015, 16º Simposio Argentino de Ingeniería de Software.

2 Anabalon et. al.

SOC brings clear advantages, such as the low coupling between consumer/pro-
vider of a particular service and greater reusability. However, a main drawback
implies to increase some costs on the development of reliable software. Organi-
zations dealing with load testing, performance testing and integration testing of
services face at least two kinds of challenges:

– Organizational challenges, such as limited testing budget, restrictive or im-
possible deadlines and high costs per test.

– Technical challenges, such as the high number of test cases, little or inexistent
reuse of test cases and geographical distribution of nodes.

Current efforts in industry for selection, test and integration of Web Services
involve semi-automatic mechanisms to facilitate the daily task of test engi-
neers [23]. However, such mechanisms provide partial results in the form of sets
of candidate services, where the engineer must still perform a manual task to
definitively select the adequate candidate service. Candidate services sets may
vary both in the required interface and in the expected behavior within a target
application. Moreover, a candidate services set can be of a considerable size.
Thereby, the task of selection and test may be overwhelming, affecting the de-
velopment phase of an application as well as total costs.

This paper presents a concrete improvement to the services testing process
by means of Test Reduction, in the context of Web Services selection. Candi-
date services are assessed at interface level and mainly at behavioral level. At
interface level, Web Services are analyzed to identify whether their operations
are structurally compatible with the required operations of a client application.
Behavioral evaluation is based on the execution of a set of test cases or Test Suite
(TS) which allows observing the runtime behavior of the service. Considering a
reliability factor, the Test Suite usually scale to a high volume, making costly
both its generation and execution. However, the definition of a small and proper
Test Suite could also be helpful to confirm the compatibility of a candidate ser-
vice. A specific Test Reduction strategy has been defined, aiming to improve the
Web Services testing efficiency.

This paper is structured as follows. Section 2 introduces some foundational
concepts in Web Service Testing and Components Testing, along with a review
of the current challenges in the field. Section 3 presents our proposal for Web
Services behavioral assessment based on Test Reduction. Conclusions and future
work are presented afterwards.

2 Background

2.1 Web Service Testing

The following concepts are related to Software Testing and testability, partic-
ularly in the context of Component-based Software Development (CSBD) and
Web Services – being CBSD the basis for the development and testing of Web
Services [16].

44 JAIIO - ASSE 2015 - ISSN: 2451-7593 116

ASSE 2015, 16º Simposio Argentino de Ingeniería de Software.

Test Reduction for Web Service Integration 3

The Testing process consists of the dynamic verification of the behavior of a
program against the expected behavior, by means of a finite set of test cases. Test
cases are properly selected from a (usually infinite) set of possible executions in
a given domain [2]. In general, testing strategies attempt to cover the greatest
possible risky or conflictive areas of a system. That is, those more error-prone, or
those where defects could significantly affect the data, processes or users. Thus, a
TS can become unmanageable when trying to ensure reliability on the behavior
of the Service Under Test (SUT), implying an enormous effort to implement an
exhaustive TS. To this end, specific strategies have been defined to maximize
the value of the TS: minimization, selection and prioritization [23].

– Minimization attempts to reduce the size of a TS deleting redundant test
cases or retaining essential test cases. Minimization is also called reduction,
meaning that test cases deletion is permanent. These two concepts are es-
sentially interchangeable.

– Selection also tries to reduce the size of a TS, but mostly considering soft-
ware modifications. Test cases are selected because they are relevant to the
modified parts of the SUT, which usually involves a white box static analysis
of the program code.

– Prioritization attempts to re-order test cases to maximize some desirable
properties early, such as fault detection rate. Prioritization finds the optimal
permutation of the sequence of test cases. Upon re-ordering of test cases, it
is possible to terminate the execution of TS on an arbitrary point.

2.2 Testability in Components and Web Services

According to the Standard Glossary IEEE 610 [2], Testability considers two as-
pects: (1) the degree to which a system or component facilitates both test criteria
establishment and test performance; and (2) the degree to which a requirement
allows tests and performance criteria to be established. The software industry
requires components and reusable services that can be effectively tested in order
to satisfy the high demand for effective and efficient software development. To
do this, providers need guidelines and practical and valid methods to develop
components and services capable of being tested [15, 4].

Particularly, a set of Testability factors are essential for providers to assess
the testability level of their components, and for users to perform components
selection and evaluation. The works in [15, 4] summarize Testability factors for
software components, which are shown in Table 1.

Such factors are also valid in the context of Web Services. Customers or
service requesters must add an additional assessment level that involves runtime
availability of services, and continuous and reliable delivery of offered capabilities
(functional and non-functional). This implies an additional burden for service
providers that must extend the lifecycle of service development towards providing
service execution platforms. In particular, such aspect of the SOC paradigm
is called “relationship without responsibility” [24]. A service client is neither
concerned about the service implementation nor about the actual execution of

44 JAIIO - ASSE 2015 - ISSN: 2451-7593 117

ASSE 2015, 16º Simposio Argentino de Ingeniería de Software.

4 Anabalon et. al.

Table 1. Testability Factors for Software Components

Factor Description

Understandability Information attached to the component (e.g., interfaces
documentation, testing documentation)

Observability Perceiving the output data as a function of the inputs

Controllability Producing output data from a specific set of input data

Traceability Comparison of expected behavior against the actual execution of
the component (black-box). Checking the internal state of the
component in each invocation (white-box)

Testing Support Mechanisms to speed-up component testing (e.g., to build and
execute a TS, to manage the testing process)

the service. Thereby, the reliability challenges in the SOC paradigm significantly
expand. This led to a complementary set of factors to support testability in SOC,
as summarized in Table 2.

Table 2. Testability factors for Web Services

Factor Description

Atomic Services Considers publishing service levels (and their accessible
information): source code, binary code, pattern, signature
(WSDL).

Data Provenance Considers the history of data processing: identify their raw
origin, how they were derived, its routing in SOA, and the
processes applied to the data.

Service Integration Considers the dynamicity of SOA: interoperability,
composition and re-composition, service controller (as
orchestrator), controller adaptation.

Service Collaboration Considers the support of dynamic collaboration protocols:
preparation, establishment, execution, completion. Each
service determines its collaboration in execution.

2.3 Testing Techniques for Components and Web Services

Following we discuss the suitability of Component-specific testing strategies in
the context of Web Services, and new strategies that addressed the inherent
complexity of the Web Services environment.

44 JAIIO - ASSE 2015 - ISSN: 2451-7593 118

ASSE 2015, 16º Simposio Argentino de Ingeniería de Software.

Test Reduction for Web Service Integration 5

Coverage Criteria for Components and Web Services

The provider/developer of components and services has access to their source
code and therefore can apply different white-box testing methods and strategies.
However, clients without access to the source code of a component/service require
specific testing criteria to assess the correctness of services as units. Following
we introduce the coverage criteria for components and Web Services used in this
work [15, 22].

All-Methods [13] Also called all-interfaces criterion [22]. Components may have
multiple interfaces, each one consisting of a set of operations or methods. The
criterion requires all operations to be executed at least once. In the context of
Web Services, the criterion is called all-operations [1], in whichWSDL documents
describe a single interface comprised of a set of operations.

All-Events [22] An event is an incident resulting in the invocation of an interface.
Events can be synchronous (e.g., direct invocation of operations) or asynchronous
(e.g., exceptions). The criterion establishes that every event (synchronous or
asynchronous) of a component should be covered by a test case.

All-Context Dependences [22] Events can have sequential dependencies with
other events, causing different behaviors according to the order in which op-
erations or exceptions are invoked. The criterion requires traversing each valid
operational sequence at least once. In the context of Web Services, the crite-
rion is called operation flows [1], and considers the sequences of invocations to
service’s operations.

We consider inter-component dependencies, consisting of a component’s in-
terface depending upon external events (caused by another component). In the
context of Web Services, other dependences are also considered that involve the
input and output data (messages) from operations [1]: Input dependence, when
two operations share the same input messages; Output dependence, when two
operations share the same output messages; and Input/output dependence, when
at least one of the output messages from an operation is the input message of
another operation.

2.4 Testing strategies for Components and Web Services

The quality and volume of information that a component/service provides about
itself allows applying certain testing strategies. The availability of source (or
binary) code, or model specifications distinguishes between two types of com-
ponents. On the one hand, in-house and FOSS1 components, which could also
be Web Services (from a provider perspective). On the other hand, components
whose only available information is a provided interface, as most of the COTS2

components and Web Services as well (from a client perspective).

1 Free and Open Source Software
2 Commercial off-the-shelf

44 JAIIO - ASSE 2015 - ISSN: 2451-7593 119

ASSE 2015, 16º Simposio Argentino de Ingeniería de Software.

6 Anabalon et. al.

Some testing techniques assume accessibility to the source code, while others
may disregard it by depending on the provider to incorporate testing information
that a client can extract from the components/services [15, 23]. In particular,
in this work we use specification-based testing [3, 23]. Also known as black-box
testing, its aim is either to reveal defects (faults) related to external functionality,
communication between modules, and constraints (pre- and post-conditions); or
to analyze the operational behavior of a program – i.e., Compliance Testing.
The main challenge in testing is to discern the behavior of services from its
specification, to then classify services reliably. However, the usually available
service specifications are not formal, which hinders consistent test creation. Even
though, specification-based criteria can be used in any context (procedural, OO,
CBSD and Web Services) without significant adaptation.

We also use Mutational Testing, in which slight changes are applied to the
source code of a Program Under Test (PUT) generating new versions that should
misbehave. Defective versions are called mutants, and are created based on mu-
tation operators: rules that define syntactic changes to the PUT. The purpose is
to evaluate a TS in terms of distinguishing between the PUT and its mutants.
One problem with the mutation technique is the high cost of running a large
number of mutants [23, 5].

Different authors have proposed extensions to Mutational Testing for in-
tegration based upon program specifications. For example, Interface Mutation
applies the mutation concept to the integration testing phase using a new set
of specialized mutation operators [13, 8]. For components that do not provide
access to source code, certain defects-based strategies can be applied, depending
on the interfaces provided by the components. Particularly, Interface Mutation
techniques can be used with minimal adjustments in the context of Web Services
and CBSD [5, 4].

3 Test Reduction for Service Selection

In order to ease the development of Service-Oriented Applications, our proposal
assist on the selection and test of candidate Web Services – previously retrieved
from a service discovery registry. Figure 1 depicts the Testing-based Service
Selection Method, which includes our strategy of Test Reduction.

3.1 Testing-based Selection Method Overview

As an initial step, a simple specification is needed, in the form of a required in-
terface IR (linked to an in-house component C), as input for the four comprising
procedures. The Interface Compatibility procedure (step 1) assesses the required
interface IR and the interface (IS) provided by a candidate service S. Through
an structural-semantic analysis, operations signature (return, name, parameters,
exceptions) is characterized at four compatibility levels: exact, near-exact, soft,
near-soft. The outcome is an Interface Matching list where each operation from

44 JAIIO - ASSE 2015 - ISSN: 2451-7593 120

ASSE 2015, 16º Simposio Argentino de Ingeniería de Software.

Test Reduction for Web Service Integration 7

IR may have a matching with one or more operations from IS [11, 7]. Particu-
larly, operations from IR with multiple matchings are considered as “conflictive
operations” in this approach – i.e., they must be disambiguated yet.

The Behavioral Compatibility procedure is based on a testing framework to
explore the required behavior of candidate services [9]. The goal is to fulfill the
observability testing metric that observes the operational behavior of a service,
by analyzing its functional mapping of data transformations (input/output).

When a functional requirement (IR) from an application can be fulfilled by
a potential candidate Web Service, a Behavioral Test Suite (TS) is built (step
2). This TS exhaustively describes the required messages interchange from/to a
third-party service, upon a selected testing coverage criteria [8]. This exhaustive
TS might be costly on both its generation and its execution. Thereby, another
option is building a Reduced TS (step 3) with focus just on the subset of “con-
flictive operations” from IR – identified from the Interface Matching list. In
addition, to settle the expected behavior defined by IR operations, an impera-
tive specification is built as a Shadow Class – describing a black-box relationship
between input-output data (functional mapping).

Lastly, for the behavioral evaluation (step 4), the Interface Matching list is
processed to generate a set of wrappers W (adapters), which allow running the
TS against the candidate service S [10]. After exercising the TS against each
wrapper w ∈ W , at least one wrapper must successfully pass most of the tests
to confirm the proper (behavioral) matching of “conflictive operations”. As an
optional final step, the exhaustive TS could be run against the successful wrapper
for a more robust confirmation of behavior on the candidate Web Service. The
achieved optimization involves a significant reduction in terms of time and effort
– that might involve minutes instead of hours or days.

Besides, such successful wrapper can act as a connector between the business
application and the candidate Web Service S – allowing an in-house component
C to safely invoke service operations. From the whole process, this section will
deepen in the procedure to Build a Reduced TS.

3.2 Proof-of-concept

To illustrate the process of generating a reduced TS we will assume a simple
example as a calculator application, with the four basic arithmetic operations.
The required functionality Calculator will be implemented with the candidate
Web Service CalculatorService. Figure 2 shows the required interface (IR) of
Calculator and the interface (IS) of CalculatorService.

3.3 Identifying Conflictive Operations

When the information about requirements conformance is reliable enough, it
is possible to reduce the coverage area of the TS to optimize both test case

44 JAIIO - ASSE 2015 - ISSN: 2451-7593 121

ASSE 2015, 16º Simposio Argentino de Ingeniería de Software.

8 Anabalon et. al.

Fig. 1. Testing-based Service Selection Process

Fig. 2. Interfaces of Calculator (IR) and CalculatorService (IS)

generation and execution. In this proposal, the information about requirements
conformance comes from the Interface Compatibility evaluation [7, 11]. This eval-
uation generates an Interface Matching list comprised of recognized matchings
among operations opR of the required interface IR and operations opS from the
interface IS of a candidate Web Service S. Ideally, a required operation opR
will obtain a high compatibility with only one operation opS from the candidate
service – i.e., an univocal (unambiguous) matching.

However, some opR operations may obtain various potential matchings with
opS operations at the same compatibility level – i.e., a multiple matching. For
these cases, it becomes difficult to determine the most adequate service opera-
tion opS to match the required operation opR. Such opR operations are called
“conflictive operations” in this approach and still need a proper disambiguation,
becoming relevant for building a Reduced TS.

Example Table 3 summarizes the result from the Interface Compatibility analysis
in the Calculator example. On the one hand, sum and product obtained three

44 JAIIO - ASSE 2015 - ISSN: 2451-7593 122

ASSE 2015, 16º Simposio Argentino de Ingeniería de Software.

Test Reduction for Web Service Integration 9

near-soft compatibilities with operations add, subtract and multiply from the
candidate service. On the other hand, subtract and divide obtained only one
compatibility (at exact and near-exact levels respectively), thus they will not be
considered as conflictive operations. Then, this example contains two conflictive
operations: sum and product, as these two operations present multiple potential
matchings with service operations at the same compatibility level.

Table 3. Conflictive operations for the Calculator example

IR IS Level Conflictive?

Sum Add, Subtract, Multiply near-soft Yes

Subtract Subtract exact

Product Add, Subtract, Multiply near-soft Yes

Divide Divide near-exact

3.4 Shadow Class Generation

Through the shadow class, the test engineer can specify the expected behavior
defined by each operation in the required interface IR. The goal is to determine
the validity of the results obtained during the execution of each test case into the
Reduced TS. The generated shadow class is named as the required interface IR,
to act as its fair representative. For every conflictive operation identified from
the required interface IR, an operation with the same name is shaped into the
shadow class.

The expected behavior for an operation is defined in terms of causes and
effects that help to describe the input/output transformation or functional map-
ping. The cause-effect relationship raises four possible cases:

1. An operation may have an explicit cause defined by input parameters;
2. An operation may have an implicit cause without input parameters;
3. An operation may have an explicit effect defined by its return values;
4. An operation may have an implicit effect without return values. The effect

could be changing a state variable or a constant value. For this, an additional
operation with explicit effect may show such changing effect.

Example In the Calculator example (Figure 2) – all operations have an explicit
cause. Figure 3 shows a facility from our tool support that assists a test engineer
to define the values for parameters, return and fields of conflictive operations.
Figure 3 also shows (on the right) the generated code of the shadow class ac-
cording to the input values.

44 JAIIO - ASSE 2015 - ISSN: 2451-7593 123

ASSE 2015, 16º Simposio Argentino de Ingeniería de Software.

10 Anabalon et. al.

Fig. 3. Test data and shadow class for the Calculator example

3.5 Reduced Test Generation

The exhaustive Behavioral TS has been particularly designed upon the all-
context dependence coverage criterion – introduced in Section 2.3. It describes
the interdependences among operations of the required interface IR as opera-
tional sequences. In turn, operational sequences define an interaction protocol
(or usage protocol), represented by regular expressions. In the context of test
reduction, the interaction protocol is as a regular expression comprising only
conflictive operations – i.e., the shadow class interface. Each sentence that can
be derived from this regular expression corresponds to a test template describing
a valid operational sequence to be tested. First, the class to be executed must
be instantiated, so always the first operation of the operational sequence will be
the constructor method of the required interface. Thus, test templates always
begin with a call to the default constructor of the class. Then, the test template
should call a conflictive operation and return its value.

Test templates and test data are then combined to generate test cases. Test
data are representative input/output values for parameters and return of the
required operations opR that were defined by a test engineer to settle the shadow
class. Test cases are generated in the specific format of MuJava [17], a framework
for mutation testing. According to this format, test cases return a String value
that will be compared against the expected result stored in the shadow class.

44 JAIIO - ASSE 2015 - ISSN: 2451-7593 124

ASSE 2015, 16º Simposio Argentino de Ingeniería de Software.

Test Reduction for Web Service Integration 11

Example The Calculator example (Figure 2), presented the conflictive opera-
tions sum and product. Thus, a test engineer must define input data for those
operations – in the form of float values to instantiate parameters – and output
data for the given input – in the form of float values to instantiate the return.

The regular expression is automatically generated as:

Calculator (sum|product)

From where the test templates to derive are:

1. Calculator sum
2. Calculator product

Then, for the sum operation the causes define conditional compound predicates
(if-then sentences), through the input data pairs (10.0, 5.0) and (0.0,0.0), while
effects define expected return as output data 15.0 and 0.0 respectively. For the
product operation, input data (causes) are pairs (2.0, 3.0) and (2.0,1.0), while
expected results (effects) are 6.0 and 2.0 respectively.

The combination of the 2 test templates and 2 sets of test data generates 4
test cases into a test file called MujavaCalculator – being the Reduced Behavioral
TS. Code Listing 1.1 shows one of the 4 test cases generated for the Calculator

example. In particular, the shown test case instantiates the class under test using
the constructor (line 3) and calls the conflictive operation sum with values 10.0
and 5.0 for the parameters (lines 4, 5 and 6). The result of the operation (line
7) will be compared against the expected result in the shadow class – 15.0 for
this example (Figure 3, line 8 from the shadow class).

Listing 1.1. Sample Test Case for the Calculator example

1 pub l i c S t r ing te s tTS 0 1 (){
2 ca l cu l ado ra . c a l c u l a t o r obta ined = nu l l ;
3 obta ined = new ca l cu l ado ra . c a l c u l a t o r () ;
4 f l o a t arg1 = (f l o a t) 1 0 . 0 ; 5
5 f l o a t arg2 = (f l o a t) 5 . 0 ;
6 f l o a t r e s u l t 0 = obtained . sum(arg1 , arg2) ;
7 re turn new Float (r e s u l t 0) . t oS t r i ng () ;
8 }

3.6 Proof-of-concept: Behavioral Compatibility

As a final step, the Behavioral TS must be executed for a candidate Web Service
S to then compare the results against those enclosed in the shadow class. As
explained in Section 3.1, the execution is performed through a set of wrappers
W that act as adapters to allow a seamless communication with the candidate
Web Service. Then, the proper execution of the TS is performed using our tool
support based upon the Mujava framework. Table 4 shows the results of execut-
ing the TS for each wrapper w ∈ W where the wrapper2 successfuly passed the

44 JAIIO - ASSE 2015 - ISSN: 2451-7593 125

ASSE 2015, 16º Simposio Argentino de Ingeniería de Software.

12 Anabalon et. al.

100% of the tests. This successful wrapper helps to confirm the compatibility
of the candidate service CalculatorService as well as confirming the most ade-
quate operation matching for conflictive operations – sum to add and product to
multiply. Additionally, the wrapper2 can be selected as an adapter for the safe
integration of the candidate CalculatorService into the client application.

Table 4. Results of executing the Reduced TS for the Calculator example

Wrapper
Test Cases

Success Failure Success %

wrapper0 2 2 50

wrapper1 2 2 50

wrapper2 4 0 100

wrapper3 0 4 0

wrapper4 0 4 0

wrapper5 2 2 50

wrapper6 0 4 0

wrapper7 0 4 0

wrapper8 2 2 50

3.7 Discussion

As explained in Section 3.5, the exhaustive TS has been designed to satisfy
certain coverage criteria for Integration Testing. However, the test reduction
strategies directly affect the satisfiability of the different coverage criteria as
follows.

– All-Methods: as the Reduced TS is narrowed to the conflictive operations
subset, it is not possible to satisfy this criterion considering all the required
operations. However, considering only operations included into the shadow
class, then the criterion is satisfied, as every operation from the shadow class
is covered by, at least, one test case.

– All-Events: requires executing both synchronous events (operations invoca-
tions) and asynchronous events (exceptions) – which covers the exceptions
criterion. The reduced TS is not intended to test asynchronous events, par-
ticularly considering the scarce adoption of exceptions in the context of Web
Services [6]. Finally, the events criterion is partially satisfied considering only
operations in the shadow class.

44 JAIIO - ASSE 2015 - ISSN: 2451-7593 126

ASSE 2015, 16º Simposio Argentino de Ingeniería de Software.

Test Reduction for Web Service Integration 13

– Context dependence criterion: this criterion is not satisfiable as the regular
expression generated to build the Reduced TS does not include all opera-
tional sequences. However, it is satisfiable considering only conflictive oper-
ations.

Conclusively, although the Reduced TS satisfies only partially the coverage cri-
terion defined for the exhaustive TS, it is possible to assume certain confidence
in the obtained results. Moreover, the Reduced TS is optimized in terms of ef-
ficiency, reducing the number of software artifacts and executions needed, and
thus reducing test times and costs. Particularly, for the Calculator example, the
exhaustive TS comprised 33 test cases, while the Reduced TS comprises only 4
test cases. Both tests successfully identify the adequate wrapper that confirms
the behavioral compatibility, also allowing to safely integrate the candidate Web
Service in the client application.

4 Conclusion

In this paper we detailed specific test reduction techniques for Web Services
selection and integration in organizational systems. Particularly, this work con-
cerned compliance testing, which is intended not to find errors in services but to
dynamically verify the behavior of a program (service) against the expected be-
havior. This is accomplished through a Behavioral Testing framework, in which
we apply test reduction techniques. A dynamic and efficient evaluation of ser-
vices is crucial to integrate them successfully at organizational level. Moreover,
the adoption of the detailed techniques and processes facilitates:

– Monitoring and adaptation against service evolution
– Monitoring the quality of services offered by providers
– Detecting violations to Service Level Agreements (SLAs)
– Understanding the dynamics and elasticity of service providers

As for the daily work of testers in-the-trenches, test reduction expedite on-
demand testing of new or updated Web Services, ensuring a similar coverage
to any exhaustive test. These advantages can imply, in the middle or long term,
the association or contract of service providers as operating partners, particu-
larly in cases where the client organization produces commercial software for
third-parties (COTS). This can also be of great interest to the service provider,
if the client organization is ready to be used as a case study, mitigating the costs
of hiring the services.

4.1 Future Work

Currently, we are working on testing service compositions [12]. This is particu-
larly useful when a single service cannot provide all the required functionality.
In this context, it is necessary to generate tests according to specifications in
business process languages such as BPEL and BPML [21]. Finally, another in-
teresting extension of this work is to derive automatically the reduced tests from

44 JAIIO - ASSE 2015 - ISSN: 2451-7593 127

ASSE 2015, 16º Simposio Argentino de Ingeniería de Software.

14 Anabalon et. al.

system models – for example from models described in SoaML [19], an UML
profile for modeling service-oriented applications.

References

1. Xiaoying Bai, Wenli Dong, W-T Tsai, and Yinong Chen. Wsdl-based automatic
test case generation for web services testing. In Service-Oriented System Engi-
neering, 2005. SOSE 2005. IEEE International Workshop, pages 207–212. IEEE,
2005.

2. A. Bertolino. Guide to the software engineering body of knowledge-SWEBOK,
chapter 5. IEEE Press, 2001.

3. Robert Binder. Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley Professional, 2000.

4. G. Canfora and M. Di Penta. Testing Services and Service-Centric Systems: Chal-
lenges and Opportunities. IT Professional, 8(2):10–17, Mar./Apr. 2006.

5. Alejandra Cechich, Mario Piattini, and Antonio Vallecillo. Component-based soft-
ware quality: methods and techniques. Springer Science & Business Media, 2003.

6. M. Crasso, J. M. Rodriguez, A. Zunino, and M. Campo. Revising WSDL Docu-
ments: Why and How. IEEE Internet Computing, 14(5):48–56, 2010.

7. A. De Renzis, M. Garriga, A. Flores, A. Zunino, and A. Cechich. Semantic-
structural assessment scheme for integrability in service-oriented applications.
In Latin-american Symposium of Enterprise Computing, held during CLEI’2014,
September 2014.

8. M. Delamaro, J. Maidonado, and A. Mathur. Interface mutation: An approach for
integration testing. IEEE Transactions on Software Engineering, 27(3):228–247,
2001.

9. M. Garriga, A. Flores, A. Cechich, and A. Zunino. Testing-based process for
service-oriented applications. In 30th International Conference of the Chilean Com-
puter Science Society (SCCC), pages 64–73, Nov 2011.

10. M. Garriga, A. Flores, A. Cechich, and A Zunino. Behavior assessment based
selection method for service oriented applications integrability. In Proceedings of
the 41st Argentine Symposium on Software Engineering, ASSE ’12, pages 339–353,
La Plata, BA, Argentina, 2012. SADIO.

11. M. Garriga, A. Flores, C. Mateos, A. Zunino, and A. Cechich. Service selection
based on a practical interface assessment scheme. International Journal of Web
and Grid Services, 9(4):369–393, October 2013.

12. Martin Garriga, Andres Flores, Alejandra Cechich, and Alejandro Zunino. Web
services composition mechanisms: A review. IETE Technical Review, In press,
2015.

13. S. Gosh and A. P. Mathur. Interface mutation. Software Testing, Verification and
Reliability, 11:227–247, 2001.

14. M. Huhns and M. Singh. Service-Oriented Computing: Key Concepts and Princi-
ples. IEEE Internet Computing, 9(1):75–81, January-February 2005.

15. M. Jaffar-Ur Rehman, F. Jabeen, A. Bertolino, and A. Polini. Testing Software
Components for Integration: a Survey of Issues and Techniques. Software Testing,
Verification and Reliability, 17(2):95–133, June 2007.

16. L. Kung-Kiu and W. Zheng. Software Component Models. IEEE Transactions on
Software Engineering, 33(10):709–724, October 2007.

44 JAIIO - ASSE 2015 - ISSN: 2451-7593 128

ASSE 2015, 16º Simposio Argentino de Ingeniería de Software.

Test Reduction for Web Service Integration 15

17. µJava Home Page. Mutation system for Java programs, 2008.
http://www.cs.gmu.edu/ offutt/mujava/.

18. Ramesh Nagappan, Robert Skoczylas, and Rima Patel Sriganesh. Developing Java
web services: architecting and developing secure web services using Java. John
Wiley & Sons, 2003.

19. OMG. Service oriented architecture modeling language (soaml) spec-
ification. Technical report, Object Management Group, Inc., 2012.
http://www.omg.org/spec/SoaML/1.0.1/PDF/.

20. M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-Oriented Com-
puting: State of the Art and Research Challenges. IEEE Computer, 40(11):38–45,
November 2007.

21. S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. Ferguson. Web
Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-
BPEL, WS-Reliable Messaging, and More. Prentice Hall PTR, 2005.

22. Ye Wu, Dai Pan, and Mei-Hwa Chen. Techniques of maintaining evolving
component-based software. In Software Maintenance, 2000. Proceedings. Inter-
national Conference on, pages 236–246. IEEE, 2000.

23. Shin Yoo and Mark Harman. Regression testing minimization, selection and pri-
oritization: a survey. Software Testing, Verification and Reliability, 22(2):67–120,
2012.

24. O. Zimmerman, M. Tomlinson, and S. Peuser. Perspectives on Web Services –
Applying SOAP, WSDL and UDDI to Real-World Projects. Springer-Verlag, 2005.

44 JAIIO - ASSE 2015 - ISSN: 2451-7593 129

