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Abstract. Active learning provides promising methods to optimize the
cost of manually annotating a dataset. However, practitioners in many
areas do not massively resort to such methods because they present tech-
nical difficulties and do not provide a guarantee of good performance, es-
pecially in skewed distributions with scarcely populated minority classes
and an undefined, catch-all majority class, which are very common in
human-related phenomena like natural language.
In this paper we present a comparison of the simplest active learning
technique, pool-based uncertainty sampling, and its opposite, which we
call reversed uncertainty sampling. We show that both obtain results
comparable to the random, arguing for a more insightful approach to
active learning.

1 Introduction and Motivation

Active learning has been a promising area of machine learning since the mid-
nineties [3]. However, unlike other areas of machine learning, active learning has
not been so widely adopted in applied areas. A reason for that is put forward
by [1]: practicioners do not have any solid ground to take practical decisions as
to which configurations are most adequate for their purposes.

We propose to compare the performances of the most used method in active
learning, uncertainty sampling [9], and its exact oposite, what we call reversed
uncertainty sampling. Uncertainty sampling is appealing to the nonexpert be-
cause it is a wrapper method that can be applied to any base learner, and even
very easily, if we measure uncertainty as the uncertainty provided by the learner
itself, without further calculations.

The rest of the paper is organized as follows. In the next Section we review
relevant work on the methods that we are putting into practice in our approach.
Then, we detail our approach in Section 3. In Section 4 describe the experimental
settings and analyze results in Section 5.

2 Relevant Work

In the active learning challenge organized on 2011 by [7], the most used active
learning method was uncertainty sampling [9,12,16]. Uncertainty sampling con-
sists in choosing, from a large set of unlabeled instances, those where a classifier
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is most uncertain. It performs well in general, and it is very simple to implement,
being a wrapper method over any base learner. Uncertainty can be calculated
by sophisticated measures, but the practitioner can also resort to the measures
of uncertainty provided by an off-the-shelf learner.

It is widely known in the active learning community that discriminative meth-
ods (like uncertainty sampling or query by committee [6]) perform well only if
a big labeled dataset is available for training, while density estimation methods
(like [14]) have a good performance with very few labeled instances [4,17]. This is
due to the fact that density estimation is specially good at establishing an initial
decision boundary that adequately separates most of the population, even if it is
unlabeled. This is so because these methods sample from regions with maximal
density and few or no labels at all. In contrast, discriminative methods sample
from the regions where the classifier shows least certainty, and as a result pro-
vide more certainty in those regions specifically. This helps to refine the decision
boundary, but does not take into account the distribution of the unlabeled data.

Despite the benefits of density-based approaches, discriminative methods
tend to be easier to implement and more intuitive. That is why we have ap-
proached the density-based intuition by a simple approach: reversing simple
discriminative methods. By reversing a discriminative method we mean select-
ing instances where the model has most certainty or lowest entropy, instead of
most uncertainty or highest entropy. These can be assumed to be closest to the
generative center that the current model assumes correct. Then, having them
labeled by an oracle should be a good approximation to testing the current gen-
erative centers. If the oracle confirms what the model believes, then the current
generative center is consolidated by adding one more instance to the training set.
If the oracle rejects what the model believes, the generative center is relocated.

3 Reversing discriminative rankings

The principle behind discriminative approaches to active learning is to choose
those instances or features that accumulate the most uncertainty, assuming that
labelling those will help decision making information in a region of the instance
space that is currently unexplored. This principle implies that providing labels
for regions where there are already labels is the same as providing redundant
information.

However, when there are very few labeled instances in the training set, the
principle behind discriminative approaches does not succeed in improving per-
formance. This is so because discriminative methods are well-suited to refine
decision boundaries, not to set them. To place decision boundaries in the in-
stance space, methods that try to characterize the space, like density estimation
methods, are better suited. Instead of refining the decision frontier, these meth-
ods aim to locate the generative centers of the data.

We propose to use discriminative methods in a reverse manner; that is, to
help locate the generative centers of the data. As described in Section 2, it is
well known that discriminative methods do not have the ability to characterize
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the instance space and locate generative centers based on such characterization.
However, we can use them to check whether our current assumptions about the
generative centers are right. The instances where the model has most certainty
can be assumed to be closest to the generative center that the current model
assumes correct. Then, having them labeled by an oracle is the same as testing
the current generative centers. If the oracle confirms what the model believes,
then the current generative center is consolidated by adding one more instance
to the training set. If the oracle rejects what the model believes, the generative
center is relocated, as in a search procedure.

We apply the most popular discriminative method, uncertainty sampling, to
try to set the initial decision boundary more adequately. We reverse the ranking
criterion of uncertainty sampling: instead of selecting those instances where the
classifier is most uncertain, we select those where the classifier is most certain.
The intuition behind our approach is also at the basis of bootstrapping as semi-
supervised learning, but to our knowledge it has not been systematically studied
in an active learning context.

4 Experimental Setting

As a base learner we used a Multinomial Näıve Bayes (MNB) classifier, which is
commonly employed in active learning because parametrizations and adaptations
can be introduced in a principled way without much complication. We exploit
the MNB classifier provided by Weka [13] to implement uncertainty sampling to
choose instances.

4.1 Data

We used the 20 Newsgroups dataset, a standard dataset for evaluation of ac-
tive learning [7]. The 20 Newsgroups dataset is a collection of approximately
20,000 newsgroup documents, partitioned (nearly) evenly across 20 different
newsgroups. As features, we use the standard bag-of-words model for the repre-
sentation of a document, together with bag-of-bigrams and -trigrams.

Since the dataset, represented as a matrix of features occurrences, was too
large to deal with in our current hardware setting, we decided to make experi-
ments with smaller samples of 1000 randomly selected documents of the 20000.
Features that occurred less than 10 times in the sampled dataset were discarded.

4.2 Experiments

To evaluate the different active learning approaches we simulated the learning
– automatic labelling – manual labelling – retraining loop as follows. For each
instance sampling strategy (uncertainty sampling, reverse uncertainty sampling
or random sampling) we run experiments with 10 samples with 1000 randomly
selected instances each. Each sample is divided in 800 instances for training and
200 for testing. From the training instances, we obtain 10 random instances and

44 JAIIO - ASAI 2015 - ISSN: 2451-7585 186



ASAI 2015, 16º Simposio Argentino de Inteligencia Artificial. 

we train the initial model with MNB. The remaining training dataset is used
as our ”untagged” dataset, where we apply either uncertainty sampling, reverse
uncertainty sampling or random sampling. The 10 instances ranking highest are
selected and assigned the class provided by the labeled dataset. Then these newly
labeled instances are added to the training dataset and we proceed to infer the
new MNB model. This loop continues until all instances are labeled.

To assess the performance of each strategy with skewed distributions, where
we had a majority class and some minority classes, for each random sample, we
found the 3 classes that had obtained most instances and established them as
minority classes, then collapsed the remaining 17 as a single catchall majority
class.

In each iteration of the loop, we evaluate the obtained model in the test
dataset. As metrics we use accuracy and True Positive Rate (TPR), also known
as sensitivity, that is, the weighted mean of the rate of true positives identified in
each class. This metric is very close to the standard accuracy metric [10], but it
allows us to obtain a per-class analysis, which is useful to assess performance in
the minority classes. Therefore, this is the metric we use for skewed distributions.

5 Analysis of Results
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Fig. 1. Mean accuracy across 10 samples of the 20 Newsgroups dataset.
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Fig. 2. Mean TPR on 10 experiments on the 20 Newsgroup dataset with 3 minority
classes and the remaining 17 classes collapsed into a single catchall majority class.

In Figure 1 we can see the mean accuracy obtained accross 10 1000-instance
samples of the balanced dataset. Accuracy figures are comparable to those ob-
tained by other active learning approaches to this dataset, like [16]. We can see a
slight tendency for the reversed uncertainty sampling approach to obtain better
performances when the training data are scarce, and the three methods to per-
form indistinguishably as the amount of labeled instances increases. Uncertainty
sampling tends to perform worse than the other two methods when there are
few examples.

Conversely, in the scenario with 3 minority classes and a catchall majority
class, seen in Figure 2, we can see that reversed uncertainty sampling performs
worse than the other two strategies when very few instances are available for
training, and performs best when the training dataset is bigger, as opposed to
what we have seen in the balanced dataset.

To assess the stability of these results, we applied Student’s t-test to test
against the null hypothesis that results were indistinguishable. As displayed in
Table 1, p-values obtained for the test are very high, thus the results cannot be
considered different. Thus differences are not significant if the whole range of
iterations is taken into account, but significance begins to emerge if we take into
account only some parts of the training process. We can see that the most certain
and most uncertain strategies are well differentiated both when the dataset has
very few or many instances, both in balanced and in skewed distributions.
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We can also see that the most certain strategy is more differentiated from
random, in some cases by performing worse and in some others by performing
better. These differences call for a closer study in different datasets, and de-
scribing the contribution of different feature configurations to the behaviour of
different instance selection strategies.

balanced dataset
whole 1.half 2.half 1.quarter 2.quarter 3.quarter 4.quarter

certain vs. uncertain .68 .15 .37 .01 .27 .62 <.001
certain vs. random .92 .67 .65 .18 .65 .31 .79
uncertain vs. random .75 .35 .60 .23 .17 .68 <.001

skewed dataset
whole 1.half 2.half 1.quarter 2.quarter 3.quarter 4.quarter

certain vs. uncertain .86 .10 <.001 <.001 .58 <.001 .03
certain vs. random .59 .56 <.001 .08 .55 <.001 <.001
uncertain vs. random .67 .22 .68 .15 .08 .03 .29

Table 1. Significance levels (p-values obtained by applying Student’s t-test) to assess
the difference between results obtained by different instance selection strategies.

6 Conclusions and Future Work

We have presented a straightforward approach to integrate some of the benefits
of insightful, density estimation active learning methods into an active learn-
ing approach for non-experts. We have shown that simply reversing the ranking
criterion of uncertainty sampling produces results that are not clearly differen-
tiable in terms of performance, but show some tendency comparable to density
estimation methods in the scenario where very few labeled instances are avail-
able for training, while classical uncertainty sampling performs better if there
are more labeled instances. We have shown this is the case for a standard text
classification problem, with standard features. This characterization should be
useful to reduce the costs of development of labeled datasets from scratch. In
addition to characterizing the performance of instance selection methods in a
standard dataset, with balanced classes, we have also assessed the performance
when we have imbalanced classes. Although results have been tested in a single
dataset, we expect that they are somewhat extrapolable to other datasets.

It must be noted that the results obtained so far are preliminary, and require
more experimentation on bigger and more diverse datasets, and actual compar-
ison with density estimation methods in the same experimental conditions.

Uncertainty sampling has the benefit of being a wrapper method over vir-
tually any base learner, which facilitates the implementation of such approach
in an established machine learning workflow. A very useful addition to improve
the usability of this approach would be an accessible way to determine which
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selection strategy is more useful at which point in the learning process. In the
literature this has been done by complex methods of error estimation [4], which
are contradictory with the simple spirit of the approach presented here. We will
be working on simpler methods to approach this question, most notably, the p-
value obtained by applying hypothesis testing to the difference between results
obtained by different strategies.

Once we have established that these different strategies produce significantly
different results, we need to study the contribution of different feature configu-
rations to the behaviour of different instance selection strategies.
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