ASAI 2015, 16° Simposio Argentino de Inteligencia Artificial.

Solving Package Recommendation Problems with Item
Relations and Variable Size

Christian Villavicencio, Silvia Schiaffino and J. Andrés Diaz Pace

ISISTAN Research Institute, Universidad Nacional del Centro de la Provincia de Buenos Aires,
Tandil, Campus Universitario, Argentina.
CONICET, Consejo Nacional de Investigaciones Cientificas y Técnicas, Argentina.
{christian.villavicencio, silvia.schiaffino, andres.diazpace } @isistan.exa.unicen.edu.ar

Abstract. In this article, we explore an approach to solve the problem of recom-
mending a package of items (each of them with a score and a cost) to a user.
In our approach, we consider two types of relations between items: dependency
and incompatibility; and we also consider that the size of the package is not fixed
but cost-driven. To this end, adaptations of existing package recommendation al-
gorithms are proposed. We have evaluated the proposed approach in a specific
domain and obtained promising results.

Keywords

Recommendation Systems, Constraint-based Optimization, Prerequisites.

1 Introduction

Traditional recommendation systems deal with the problem of recommending items or
sets of items to users by means of various techniques [1,9] In some domains, instead
of recommending individual items, it is necessary to suggest packages of items, such
as in tourism, or movie recommendation, among others. In most existing works [8,11],
packages have a fixed size, using a value of k as the desired size of the package. This
kind of problem is referred to as the Top-K Package Problem [3,5,8,10,11,12]. Further-
more, some approaches focus on certain aspects, such as the existence of prerequisites
while recommending an item or, specially, a set (package) of items. For example, in [7]
a prerequisite is defined as follows: “A prerequisite of an item i is another item j that
must be taken or consumed (done, watched, read, ...) in advance of i.”

Existing works consider that each item has a score, in order to indicate how good
it is for the users. Only a few approaches [11,12] take in account the cost of the items
and a maximum cost limit (known as budget). To the best of our knowledge, none of
them considers packages of variable size or packages whose items have a score and cost
associated to them. In such cases, we can put as many items as the budget (cost limit)
allows, without restricting a-priori the number of items for each package, while trying
to maximize the package score.

In this context, we present an approach for package recommendation that considers
a combination of the aforementioned factors. In particular, we recommend packages
of items that have dependency (aka. prerequisites) and incompatibility relations, while
trying to maximize a certain value, and also considering a maximum cost (budget). Our
approach applies some of the techniques proposed by Xie’s approach [11,12] (budget

44 JAIIO - ASAI 2015 - ISSN: 2451-7585

88

ASAI 2015, 16° Simposio Argentino de Inteligencia Artificial.

and item incompatibility) together with those of Parameswaran [7]. To this end, we
explore different adaptations of Xie’s and Parameswaran”s algorithms.

There are specific domains in which our approach can be beneficial. Examples of
such domains include: i) selecting a list of movies to be watched [2,7] (considering that
some movies might have to be watched in sequence); ii) searching for a travel pack-
age [6], given the initial and final destinations plus some requirements to be met by
the package; and iii) determining what level of detail should the sections of a Software
Architecture Documentation [4] (SAD) have, in function of the stakeholders that con-
sume the SAD contents. In the movies domain [7], we can consider the movies to be
recommended to a user in a package form as items with both a score and a cost. The
score and cost for each item has to be given, for example, the score can be measured
in terms of how much the user will be satisfied by the suggested package. The cost can
be measured as the money necessary for buying or renting each movie, and therefore
the budget will represent the maximum amount of money the user is willing to pay in
order to watch some movies. Thus, the problem consists of recommending a package
of movies that achieves the maximum user satisfaction while having a cost below the
given budget.

The contribution of this work is a set of algorithms that combine existing techniques
for dealing with constraint-based package recommendation problems. Our approach
can be applied to problems that need to model dependency and incompatibility relations
between items, or even certain restrictions regarding package size.

The rest of the article is organized as follows. Section 2 briefly covers the state of
the art. In Section 3, we define the problem we aim to solve. Section 4 describes the
algorithms that support the proposed approach. Section 5 presents some experimental
results obtained with our approach. Finally, in Section 6, we give the conclusions of the
article and discuss future work.

2 Related Work

The problem of recommending packages of items has been studied by several au-
thors [3,5,7,10,8,12,11]. The closest approach to the problem we are trying to solve
is [7]. These authors presented the item-package recommendation problem taking into
account certain dependency relationships between the items, described as prerequisites.
However, their solution only solves problems with packages of fixed size.

In [10] the concept of skyline (which works similarly to the Pareto Frontier) is de-
fined and then used to find the set of items (with fixed size) that maximizes a certain
score while taking into account a maximum cost that cannot be exceeded. This approach
relies on the concept of Top-N Recommendation proposed in [3], in order to create the
mentioned skyline. This approach is also presented in [8] in conjunction with a variant
of the problem: finding the top-k popular products focusing in customer preferences in
order to make the recommendations.

The authors in [12] explore the idea of composed recommendations combined with
Top-N Recommendations in order to generate the packages of items to recommend. The
system finds the top-k packages of items with the highest total value such that each
package has a total cost under a given budget and is also compatible. This way, the
package size is not fixed but subjected to the budget restriction. Compatibility between
items in a package models certain type of dependency relation between them. Xie’s
approach is similar to ours, but it lacks prerequisite relationships between items. Finally,

44 JAIIO - ASAI 2015 - ISSN: 2451-7585

89

ASAI 2015, 16° Simposio Argentino de Inteligencia Artificial.

in [11] an application of composite recommendation systems to the travel planning
domain is discussed.

3 Problem Definition

As explained in Sections 1 and 2, the main idea of this article is to develop a solution
to a variation of the problem of recommending packages of items, in which we try to
maximize a score value while taking into account a cost limit. Following [12] problem
specification, we initially have a set / of items and U of users, an active user u € U (the
user the system is making recommendations for), and an item 7 € /. Every item in the
set has a score s(t) and a cost ¢(t).

A package P can be defined as a set of items that can be related or not. Since a
package encompasses a set of items, it has two related values: score and cost, which are
computed based on the members of the package, as shown in Eq. 1.

c(P)= Zc(t) and s(P)= Zs(t). (1)

teP teP

Then, we say that a package P is feasible according to a budget B iff ¢(P) < B.

3.1 Item relationships

When creating packages, some sort of relations between items can exist. In this work,
we focus on two types of relations: dependency and incompatibility. The first type,
shown in Fig. 1a, can be modeled using the prerequisite definition given by [7]:

Definition 1. (Prerequisite) Given a directed graph G(I,E) whose vertices v € I corre-
spond to items, adirected edge (v,w) € E represents aprerequisite if item v needs to be
taken (for a package) before item w. In addition, the constraint described by Eq. 2 must
be satisfied to ensure that prerequisites are fulfilled:

Vviswel :wePA(vw)EE=>VvEP 2)
The second type of relation can be defined as follows:

Definition 2. (Item incompatibility) Two items v and w are incompatible if they cannot
be within a package P at the same time.

Ywiwel :vEPSwWEPAwWEPSVEP 3)

This kind of relation can be modeled as a non-directed graph where vertices are items
and edges between vertices represent incompatibility cases. An example of incompati-
ble relations is shown in Fig. 1b in which we can see that itemA is incompatible with
itemB and itemC, which is also incompatible with item D.

Once incompatibility is defined, we say that an inconsistency exists within a pack-
age P if the number of incompatibilities for P (iC(P)), as described by Eq. 4, is greater
than zero. If a package P is inconsistent, then the proposed solution is not valid.

iC(P) = number o f incompatibilities betweenitemsin P 4

44 JAIIO - ASAI 2015 - ISSN: 2451-7585

90

ASAI 2015, 16° Simposio Argentino de Inteligencia Artificial.

Key
@ ltem

— Incompatibility relationship

(a) Prerequisites Graph (b) Incompatibilities Graph

Fig. 1: Example of Prerequisites and Incompatibilities Graphs
3.2 Optimization formulation

Overall, taking into account the concepts explained before, the package recommenda-
tion problem can be stated as follows: given a certain budget B, find a feasible package
A (A C 1) that maximizes the score value s(A), as expressed by Eq. 5, while covering
all the existing prerequisites between items inside P and avoiding any inconsistency.

maximize s(A) while ¢(A)<B and iC(A)=0
with ACI and s(A):Zs(t) and c(A)ch(t) 3)

teA teA

4 Proposed Approach

In order to implement algorithms that solve the problem formulation above, we decided
to extend 3 heuristic algorithms proposed in [7] and modify one function which is used
by two of them. In particular, we considered the following changes:

1. The function that computes the external set of a given package A, which is defined
as “the set of items that are not in A and can be potentially added to A without
violating prerequisites” (that is, either their prerequisites are already included in A
or they have no prerequisites at all). This function is referred to as external(A), and
is used by both the BF Pickings and TD Pickings algorithms.

2. The Breadth-first Pickings (BF Pickings) algorithm, which in its original version
firstly generates a package of size k (k being the package size limit) and then applies
arefinement process over it. This refinement replaces the items with the lower score
in the boundary of package A using the best item in external(A). The boundary of
a package A, boundary(A), is the set of items that can be removed from A without
violating the prerequisites of any other items in A).

3. The Greedy-value Pickings (GV Pickings) algorithm, which uses a priority queue
Q to maintain sets of items. For each item in the graph of dependencies G they add
to the queue a set containing that item and its prerequisites. For example: if item
a depends on items b and ¢, and item d depends on item e, and b, d and e do not
have any prerequisites, Q will contain the sets: a,b,c,d,e,b,d and e. Then, it loops
trying to add the best set of the queue to A. If the set was added, the algorithm
updates the sets in @, if it was not added it changes the value of the set to zero (to
avoid selecting it in the next step).

4. The Top-down Pickings (TD Pickings) algorithm, which in its original version gen-
erates the best size for k£ and then loops trying to add the prerequisites of the items
to A. To do so, it removes items that are in the boundaryof A, in order to "make
space" for placing the prerequisites. If it wasn’t possible to add the prerequisites of
an item, the item is discarded.

In the sequel, we give a summary of our modifications to the algorithms.

44 JAIIO - ASAI 2015 - ISSN: 2451-7585

ASAI 2015, 16° Simposio Argentino de Inteligencia Artificial.

Algorithm 1 BreadthFirst Pickings: BF Pickings Algorithm 1 BreadihFirst Pickings: BF Pickings
- - — @), [Require: G« graph
G — grapk
te raph =
2 |while size(4) < k do (b) 2, | while size(eaternal’(A)) >0 do /xinitialization
3:[A<= AU {item with largest score in external(A)} € 3 A<= Au{item with largest score in external'(A)}
1:lend while 1 |lend while
5: B = caternal(A)_ - 5 B« external(A)
6: while there exist items in B do 6 while there exist items in B do /xrefinementx
7: _pick b€ B in order of decreasing score . o : e o e
& ; : . 7 pick be B in order of decreasing score
8: | a <= item with smallest score in boundary(A) that is not| _(c) - — - 3 l - - -
arent of b - 8 yfaea sct of items of boundary(A) which are mot parcnts
. e—— eore] S seorela) then of b selected using certain criteria
10: A<= A—{a}u{b} 9 [if validReplacement(b,a, A) then
11: B & external(A) 10 if score(b) - score(a) then
12: | else — 11 A= A-{a}u{b}
13: remove b from B —) 12 B < caternal(A)
14: |_end if Rt else
15: end while M emove b from B
16: return A 0ld version :_‘ ‘l‘ “,“f’“ rom
5 end i
16 |else
17 remove b from B
18 end if
19 end while
20 return A
New version
Fig. 2: BF Pickings Changes: Old vs New version
Algorithm 2 GreedyValue: GV Pickings Algorithm 2 Greedy Value: GV Pickings
oquire T —se]e Require: G + graph
I—IReqm b @ Require: Q « max — priority — queue
Require: Q — max-priority-queue ———»Require: Budget — budget
1: A=) .
zo<0 i :¢w1(f¢w ¢ d tializat
3 for all items i € G do : or all items i € G do /+initializationx
e (i) 3 e« {i}
5! ¢4 e U prerequisites of i 4 c< c U prerequisites of i
6: [[insert cinto Q with size(c) = no. of items in ; value(c) = |, (b) 5 [imsert ¢ into Q@ with
3 ace score(a)/size(c) N 6| size(c)= no. of items in c; value(c) = ¥, cc score(a)/size(c) :
7. end for 7 cosi(c) = 3, . cost(a)
AOdoje—— (© 8 end for <
s highest galue in Q*/ 9 »[while «(A) < Budget A Q£D do)

——) 10 m=pop(@ sm has highest value in Qs
—t+—[if_incompatibilityCount(A Um) = 0 A cost(A U m) < Budgel_then

for all sets ¢ € Q where c(1m £ 0 do I o
Sum =) score(a) 2 A=AUm
size(©) e me of Jorms in ¢ = A 13 wrefine Priovity Queue (Q)+
if size(c) £ 0 then) 14 for all sets c€@Q where cnm#0 do
wvalue(c) < sum/size(c) *\‘\ i(‘; ‘fzf:w(u)T)x;:é :xlt Ttems in (c— A)
else .] if size(c ren
value(c) =0 —{ 7 SUM & 3 e (oo SCOTe(a): value(c) < sum/size(c)
end if TS| cost(e) = Te(emny costla)
P 19 cec— A Jeremove the considered items+
end while 20 else
: return A 0Old version ; tllv.l;n' ¢ from Q
22 jend 1
23 end for
2 end if

25 end while
26 return A
New version

Fig. 3: GV Pickings Changes: Old vs New version

4.1 External function

Originally, external(A) was defined as explained in Section 4. In order to adapt this
function to our objectives, we must consider the information regarding to the cost of the
items and the budget B when selecting those items that will be included in the external
set, by checking that cost(A) < B. Additionally, we need to add a validation in order
to asure the absence of incompatibility relations (ic(A) = 0). Both objectives can be
achieved by adding an additional restriction to the original function.

4.2 Breadth-first Pickings (BF Pickings)

We modified the original BF Pickings algorithm along several points, as shown by
Fig. 2. In (a) the new version does not need a k value anymore, as the package has
not fixed size, so the initialization step of the original algorithm was removed. In (b)
we changed the generation of the initialization data, we actually use the new external
function (see Section 4.1). In (c¢) we changed the rules for selecting the items to be
replaced. And finally, in (d) we replaced the aexists check of the original version by
a valid Replacement check, which is more complex than the one used before because

44 JAIIO - ASAI 2015 - ISSN: 2451-7585

92

ASAI 2015, 16° Simposio Argentino de Inteligencia Artificial.

Algorithm 3 TeopDownPickings: Top-Down Pickings Algorithm 3 Top-Down Pickings
Roquire: e — (a) Requirs: C graph
R T O — crap B (b) ——»[Re udget «— budget]
1A = best set with cost <B /ximitializations
2 BEU /valready considered ifems F
3 2e(A—B)>0 do /xadd prervequisitess
I a< item with largest score in A—B
5 C e« prerequisites of a
. 6 B< B U {a}
T:if (C'— A == 0) eontinue T 0 (C—A#D)
8 s o(C' = A) /* no. of missing preregs, */ 8 A=A
o: 9 Re0 /sdele s from As
10; /* deletions from A */ [(o —TIY »[while ms{(.’?] < cost(C — A) A (boundary(A') — B) £ 0 _do
11: e size(R) < s A (boundary(A") — B) £ 0 do_ |+ 11 T= Ttem witl TTest score in boundarg(AT) — B
12; a <= item with smallest score in boundary(A’) — B 12 Re=Rud A <
13: if a exists, R<= RUa; A' = A" —a 13 eud_while
14 end while B
15: siz — “um @ in A \u.]. Trom with largest score from
16: Teplace @ in A with item with largest score from external'(A)
external(A) 16 else
17: else 17 if (incompatibilityCount((A — R)UC) £ 0
18: A=@-—Rmude— 18 v e((A = R)UC) < Budget then
19 end if T (e) 19 A=(A-RUC
211.&&\:,_ "”"’"f——'z».p_,* clse
21: return M Old version 21 replace a in A with item with largest seore from
external’(A)
22 end if
end i
f) 31 end while
25 [[*Fill cmpty spacc in A+
26 lwhile cost(A) < Budget A external(A) # 0 do
27 A< AU {item with greatest score in erternal’(A)}
2% fnd while

29 return A .
New version

Fig. 4: TD Pickings Changes: Old vs New version

it does not only check that a exists and it is not empty but also checks if, after the
replacement, the contraints added to the external function (see Section 4.1) are fulfilled.

4.3 Greedy-value Pickings (GV Pickings)

There are four points in the original GV Pickings algorithm in which it is necessary to
make changes. These changes are depicted by the connected coloured boxes in Fig. 3.
In (a), k variable initialization is replaced by budget variable initialization, as we do not
need k anymore because the packages have not fixed size now. In (b) for every set c,
we compute also its cost. In (¢) we replaced the package size validation (that controls
if the size after adding the set m exceeds the size limit k) with a validation that checks 2
conditions: 1) if AUm does not have inconsistencies, and ii) if its cost does not exceed
the Budget. In (d) the loop condition is changed. In (e¢), when updating the sets of the
priority queue for every set ¢ with non-zero intersection with m , we updated c itself (by
removing its items that are already included in A) and its score and cost . If the amount
of items that are in ¢ — A is zero, then c is useless (because it will be empty after the
update) and should be removed from Q.

4.4 Top down Pickings (TD Pickings)

For TD Pickings, we needed to make similar considerations as with BF Pickings and
GV Pickings. Fig. 4 shows our main changes. Since the package size is not fixed any-
more, in (a) and (b) we adjusted the algorithm to work with the budget restriction. In
(D) the best set is generated by using an heuristic. In (¢) we changed the loop restriction
because there is no need to check the remaining space in the set, in terms of item count-
ing. Now, we need to check if the cost of the removed items is lower than the cost of the
prerequisites that are yet not in A (C — A). The same argument is valid for (d). In (e),
when trying to add the missing prerequisites of a to A, we need to check before the new
restrictions (introduced with the modifications explained in Section 4.1). If any of the
restrictions is not fulfilled, the item whose prerequisites could not be added should be
replaced (removed from the set). Additionally, after the main loop, a “gap” can exist in

44 JAIIO - ASAI 2015 - ISSN: 2451-7585

93

ASAI 2015, 16° Simposio Argentino de Inteligencia Artificial.

A. A gap is an space measured by comparing the cost of A and the budget B. Certainly,
the constraint cost(A) < B will be satisfied but score(A) will not be the best score that
could be achieved by using this technique. To solve this situation several approaches
can be used. We decided to use a heuristic, which consists in filling the gap in the set
by adding iterativetly items of external’(A) to A, described (f) in Fig. 4.

5 Experimental Results

There are several problems that can be solved as constraint-based recommendation
problems. Because of prior work in optimization of software architecture documen-
tation [4], we decided to adapt the problem in order to solve it using the techniques
proposed in this article.

Definition 3. (SAD Optimization Problem) The Software Document Architecture (or
SAD) consists of a set of documents, each one with a certain detail level. As completing
all the documents (or sections of the SAD) takes considerable time and work, the SAD
is instead completed iterativetly. Some of the documents are related by dependency
relations (e.g. document A depends on document B if we need to complete B before
A). Also, there are users interested in those documents (called stakeholders) and each
one will be more or less satisfied if certain documents have the level of detail most
appropriate for each stakeholder. The problem involves finding which documents should
be modified in the next iteration (and with what detail level) while trying to maximize
the satisfaction of the stakeholders, but taking into account that every modification has
a cost and there is a cost limit for every iteration.

In order to be able to solve the SAD optimization problem as a package recommen-
dation one, we need to find a way to map the elements of the first problem to the ones
of the second. This way: (a) Item: each SAD document can be linked to several items,
each one representing a possible detail level that the document can have in the next
version of the SAD. For example, if document A is in level 1, and the top level is 3, and
we consider that the level cannot go down from one iteration to the next one, then three
items will be linked to A when applying package recommendation: one for staying at
level 1, say iteml, one for going to level 2, say item2, and one for going from level 1
to 3, item3. (b) ItemScore: is the stakeholder satisfaction level respect to that item (this
quantifies how much the stakeholders will be satisfied if the document takes the level
indicated by the item). (¢) ItemCost: it is the cost of taking the document (linked to
the item) to the detail level indicated by the item. (d) Budget: it is the cost limit of the
iteration. And (e) IremRelations: dependency relations between SAD documents can
be mapped to prerequisite relations of the proposed approach (e.g. document A depends
on document B, so B is a prerequisite of A). Also, we can consider as siblings to the
items linked to the same document, and so, they cannot be in the solution at the same
time, having by definition an incompatibility relationship.

After doing the mapping, we tested the approach over the SAD domain and obtained
interesting results, as it can be seen in Fig. 5. The package recommendation algorithms
obtained solutions with an acceptable stakeholder satisfaction level (when compared
to previous results [4]). In terms of performance (measured by execution time), they
also behaved well with an average execution time of 1 second. In terms of cost, all
the solutions found had a cost equal to the budget. Finally, in terms of dependency
satisfaction no dependency relationships were violated. The experiments were executed
in a PC with: AMD FX-6300, 16 GB RAM and Windows 8.1 Pro.

44 JAIIO - ASAI 2015 - ISSN: 2451-7585

94

ASAI 2015, 16° Simposio Argentino de Inteligencia Artificial.

ToPickings NI ©2732 TO Pickings | 9
£ E
k= =
5 GV Pickings I 63145 S GvPickings NI 1208,2
20 Lo
3 <

BF pickings [N ©.1729 BF Pickings [l 852

610 615 620 625 630 635 0 500 1000 1500
Average stakeholder satisfaction Execution time (ms)

(Higher is better) (Higher is better)

Fig. 5: Experimental Results
6 Conclusions

The main contribution of this article is a new proposal for solving constraint-based
package recommendation problems, supporting both prerequisite and incompatibility
relations between items and packages with variable size.

The results obtained so far (in a particular domain) are promising in terms of the
stakeholder satisfaction level and the performance of the algorithms. However, we still
need to evaluate the approach in other domains, such as tourism (travel planning) and
movies. As future work, we also plan to: /) do a comparison between solutions gener-
ated with the proposed approach for the SAD domain and the solutions generated by
prior optimization techniques [4] and group recommendation algorithms; ii) evaluate
alternative formulations for the problem that can be tackled with SAT solvers [4] and
iii) analize the theorical guarantees of our proposed algorithms.

Acknowledgements

This work has been partially funded by CONICET through project PIP 112-201101-
00078 and ANPCyT through PICT 2011-0366.

References

1. Alexander Felfernig, Michael Jeran, G.N.F.R.S.R., Stettinger, M.: Basic Approaches in Rec-
ommendation Systems. Springer (2014)
2. Christensen, I. A. & Schiaffino, S.: Ratings estimation on group recommender systems. Re-
vista Iberoamericana de Inteligencia Artificial (2012)
3. Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM Trans. Inf.
Syst. (2004)
4. Diaz-Pace, J., Nicoletti, M., Schiaffino, S., Vidal, S.: Producing just enough documentation:
The next sad version problem. In: Search-Based Software Engineering. Springer (2014)
5. Khabbaz, M., Xie, M., Lakshmanan, L.V.: Efficient algorithms for recommending top-k
items and packages (2011)
6. Liu, Q., Ge, Y., Li, Z., Chen, E., Xiong, H.: Personalized travel package recommendation.
In: IEEE 11th ICDM (2011)
7. Parameswaran, A.G., Garcia-Molina, H.: Recommendations with prerequisites. In: Proceed-
ings of the 3th ACM RecSys (2009)
. Peng, Y., Wong, R.C.W., Wan, Q.: Finding top-k preferable products. IEEE TKDE (2012)
. Ricci, F,, Rokach, L., Shapira, B., Kantor, P.B.: Recommender systems handbook. Springer
(2011)
10. Wan, Q., Wong, R.C.W., Peng, Y.: Finding top-k profitable products. In: Proceedings of IEEE
27th ICDE (2011)
11. Xie, M., Lakshmanan, L.V.S., Wood, P.T.: Comprec-trip: A composite recommendation sys-
tem for travel planning. In: Proceedings of IEEE 27th ICDE (2011)
12. Xie, M., Lakshmanan, L.V., Wood, P.T.: Breaking out of the box of recommendations: From
items to packages. In: Proceedings of the 4th ACM RecSys (2010)

Nelleo]

44 JAIIO - ASAI 2015 - ISSN: 2451-7585

95

