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Abstract. We have presented in this report a new peak descriptor SD based on the lag plot and discussed its relationship to the NBD. 

The SD, defined as the slope of a linear regression model constructed through the data samples belonging to a time sequence, shows to be a 

good candidate for describing sinusoidal and noise peak classes. 

A proper choice of data set is crucial for discerning correctly between the peak classes. The SD makes use only of the spectral peak 

shape and consequently this information can be explained by just two parameters, namely the root mean square BWrms and absolute 

bandwidth L. This is similar to the way the shape factor explains the filter spectral shape in the circuit theory. We have shown that BWrms 

and L, initially defined in the spectrum domain, hold relationship to the time duration of the data set and its sampling rate respectively. 
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1   Introduction 

This work presents the development of the application of descriptors, which allow them to know the characteristics of the 

signal, will be explored here the following analysis of descriptors: 

1. LAG PLOT – BASICS, 2. LAG PLOT AND SPECTRAL PEAKS: THE SLOPE DESCRIPTOR (SD), 3. CHOOSING 

THE TIME-DOMAIN REPRESENTATION OF A SPECTRAL PEAK, 4. THE SLOPE DESCRIPTOR AND THE 

PARAMETERS BWrms AND L.  

 

1. LAG PLOT – BASICS 

 
The lag plot is a method in statistics that aims to determine whether a discrete data set is random or deterministic. For a data 

set x(n) the lag plot is conceived as a 2D representation of x(n) versus x(n-P), where P is a lag expressed in samples. Although 

P can be an arbitrary value, the lag plots are most commonly generated with P = 1. namely, the Gaussian noise and a pure tone 

of 100 samples each. In the case of the noise, the knowledge about the sample x(n-1) provides almost no knowledge about the 

following sample x(n). As for the sinusoid, the elliptical structure aligned with the diagonal (unitary slope) allows to precisely 

predict the next point in the data set and thus characterize the data set as deterministic. 
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2. LAG PLOT AND SPECTRAL PEAKS: THE SLOPE DESCRIPTOR (SD) 

By applying a lag plot to the time domain representation of a spectral peak, we 

may eventually distinguish sinusoids from noise. The lag plot for the sinusoidal signal 

shown on Figure 1 suggests that a linear regression (least-squares) model might be 

appropriate for characterizing the data set. The linear regression models are simple to 

implement and for our case, we would need only one coefficient (parameter) that 

would represent the slope of the straight line fitted to the data set. 

For a given data set x(n) we define the Slope Descriptor (SD) in the following way: 

x(n) = ax(n -1)+ b + e(n) , a = SD . (1) 

The parameters a and b are the coefficients of the model while e(n) is the modeling 

error. Wemay expect a priori that the sinusoidal patterns will have the SD close to one 

while the noise patterns will present a wide range of values (including SD = 1). This 

means that this simple linear model cannot achieve a complete sine/noise separation, 

so we have to adapt it somehow in order to reduce/eliminate the overlap between the 

peak classes. Hence, the key issue is to correctly choose the time-domain 

representation of the spectral peaks i.e. to adapt the data set in such a way to be 

correctly handled by the SD. 

 

3. CHOOSING THE TIME-DOMAIN REPRESENTATION OF A 

SPECTRAL PEAK 

 

Approach 1: Complex narrow-band spectral peak and its time signal 

In order to preserve the peak’s central frequency we first set to zero all the bins in 

the spectrum except those belonging to the peak. Then we calculate the IDFT and use 

its real part as a data set for the lag plot. The problem with this approach is that the 

time domain pattern of any spectral peak would exhibit a strong deterministic 

behaviour. Let us recall our previous research where 

we discovered that any spectral peak or, in general, a part of the spectrum with the 

bandwidth much smaller than the Nyquist frequency, can be considered a narrow-

band process represented by a strong carrier with slowly varying amplitude and 

phase: 

 
Therefore, even though the modulation parameters A(n) and are random 

variables, the presence of the carrier assures a deterministic behaviour of N(n). Hence, 

the lag plot for both sinusoidal and noise peaks will produce a tight clustering of the 

points along the diagonal and consequently there will be no way of distinguishing 

between the peak classes. As an example, we show on Figure 2 various narrow-band 

noise spectral peaks centred around 1.5 kHz and their corresponding real IDFTs. We 

observe that even though the time-domain patterns are quite different, the lag plots 

order the points as if they belonged to a purely deterministic signal. 

 



 
 

 
 

Approach 2: Complex narrow-band spectral peak and   its time envelope 

Another approach consists in first down shifting the peak to the origin (base-band) 

by typically multiplying the original signal with a corresponding complex exponential 

term. Then, like in Approach 1, the rest of the bins in the spectrum that are not 

included in the peak are set to zero 

and the IDFT is calculated. The resulting pattern (the real part of the IDFT) is the 

amplitude envelope while the carrier is suppressed. For pure tones the real part of the 

IDFT will be exactly the analysis window. For modulated peaks it will be a product 

between the analysis window and the modulator of the sinusoidal signal. For out 

worst case sinusoidal signal the resulting pattern will still resemble the shape of the 

analysis window (e.g. see the windowed longest and shortest pattern for the NDD 

thresholds determination in our previous work). The noise peaks will produce a wide 

variety of patterns, which may seem beneficial for distinguishing noise from 

sinusoids. Unfortunately, this approach is neither good because the envelope from a 

noise peak is a low-pass function, i.e. the transition between the contiguous samples is 

quite smooth, which will again produce very “deterministic” lag plots. The same 

noise peaks from Figure 2 are represented on Figure 3 together with respective 

amplitude envelopes and lag plots. We can see at glance that the lag plots show very 

strong deterministic behaviour.  

 

 



Approach 3: Complex broad-band spectral peak and   its time signal 

Therefore, we have to somehow “randomize” the time-domain representation of 

the noise spectral peaks. A way to achieve this is to describe spectral peaks by general 

broad-band, rather than narrow-band processes, i.e. the peak bandwidth is close to the 

Nyquist frequency. With this approach, the time-domain representations of spectral 

peaks would include many frequencies. 

This is particularly beneficial for the noise peaks because this would allow to 

correctly describing randomness. For the sinusoidal peaks this approach is also good, 

because the deterministic signals are always correctly represented, either the model is 

narrow-band or broadband process. 

A practical implementation of the above approach can be carried out by simply 

considering a spectral peak as a whole DFT, i.e. neglecting the presence of the rest of 

the bins in the spectrum. Then, we calculate the IDFT only over the bins in the peak 

and take its real part as 

a data set for the lag plot. 

If we take a look at Figure 4 we observe that the transitions between the contiguous 

samples in the real IDFTs of the noise peaks are abrupt, that is, the patterns are more 

“random”. As a consequence, the corresponding lag plots show no apparent point 

clustering and the SD 

will thus have a wide range of values. Unfortunately, the same effect is detected in 

the sinusoidal peaks. As an illustration, compare Figure 4 with Figure 5, where 

various spectral peaks belonging to our worst-case sinusoidal signal for the carrier 

frequency equal to 1.5 kHz are dealt with. 

 

 
Approach 4: Complex broad-band spectral peak and its time envelope 

Hence, we now have to assure smoother transitions between the contiguous 

samples in thesinusoidal time-domain patterns, while preserving the randomness in 



the noise patterns. One way to do it is to deal with the envelope of the analytical 

signal, rather then its real part. 

Namely, an isolated spectral peak can be considered unilateral spectrum of an 

analytical sequence (we recall that any real sequence will give a conjugated even 

absolute spectrum, while analytical sequences produce unilateral absolute spectra). 

Then, the IDFT of a complex broadband spectral peak is an analytical sequence which 

may be written as: 

y(n) = x(n)+ jxˆ(n) , (3) 

where xˆ(n) is the Hilbert transform of real sequence x(n). The expression (3) can 

also be written in the polar form: 

 
The term A(n) is the low-pass component or envelope of the analytical signal i.e. it 

varies more slowly than the original signal x(n). In fact, this approach is similar to 

Approach 2 in the sense that the carrier is suppressed and the resulting pattern is a 

low-pass sequence. The difference is that herein the computational resolution of the 

IDFT is much smaller (the size of the IDFT), because we consider only the bins in the 

spectral peak. Therefore, we can say that the envelope has been sampled at a very low 

rate. How is this fact related to the lag plot? 

A lag plot describes deterministic signals properly only if the sample rate is high 

enough to assure smooth transitions between adjacent samples. If this condition is 

satisfied, all the points in the lag plot will be clustered along the diagonal. If the 

sampling rate is reduced, the lag plot will exhibit a number of outliers and thus the 

slope of the linear model is reduced. According to the lag plot the signal is less 

deterministic, but this is not true! It is simply that we have fewer points per sinusoidal 

cycle and the transitions between the samples in the data set are more abrupt. 

An extreme example would be a cosine sampled at exactly Nyquist frequency, that 

is, 2 samples per cycle. In this case all the points in the lag plot are concentrated in 

only 2 outliers: (-1, 1) and (1, -1). Figure 6 illustrates this trend for a sinusoidal signal 

sampled at different rates. 

 
Returning now to the issue of the time envelope, we may say that a low sampling 

rate will definitely randomize it up to some point. This sampling rate reduction affects 



principally the noise peaks, because they are in general narrower than the sinusoidal 

peaks and consequently the size of the corresponding IDFT is smaller. Therefore, the 

IDFT from a noise peak will put 

fewer points on the corresponding time envelope. The sinusoidal peaks are in 

general broader, so the IDFT from a sinusoidal peak will put more samples on the 

corresponding envelope, thus rendering it smoother and more deterministic in the 

sense of the lag plot. Figures 7 and 8 illustrate the benefits of this approach for the 

same noise and sinusoidal peaks as those in Figure 4 and 5. 

In spite of the advantages of this approach, there is a shortcoming that must be 

dealt with. While the values of the SD for sinusoidal peaks are close to one, the values 

for the noise peaks may be greater or lesser than one. As a consequence, we may thus 

expect some overlap between the sinusoidal and noise classes in the SD domain. 

Therefore, we still need to improve the data set in order to best separate the peak 

classes. 

 

 
 

Approach 5: Real broad-band spectral peak and its  time envelope 

Regarding Approach 4, we need to tighten the range of values of the SD for the 

noise peaks in order to reduce as much as possible the overlap between the peak 

classes. In fact, if we can reduce the variety of A(n) shapes for the noise peaks, it 

would automatically reduce the range of possible corresponding SD values. That is to 

say, we would let A(n) vary from peak to peak but always within some general 

pattern. 

One way to do it is to process only the modulus of the spectral peak disregarding 

its spectral phase. As the spectral modulus is a real sequence, its IDFT will yield a 

complex sequence whose A(n) is conjugate even. The sequence A(n) is now periodic 

with period equal to the size of the IDFT. This periodicity will emphasize the 



deterministic aspect of the timedomain representation for the noise peaks and 

consequently the range of possible values for the SD reduces. If we compare the SD 

values from Figures 7 and 9 for the same noise peaks, we see how efficiently this 

approach delimits the SD values to a small range close to zero. Initially, we might 

have thought that this approach would put the noise peaks closer to the sinusoidal 

peaks in the SD domain. Recall, however, Approach 4 where we saw that due to 

larger IDFT the sinusoidal peaks yield smoother A(n) and thus more deterministic lag 

plots. Hence, the sinusoidal peaks will still have larger SD values (as an illustration, 

compare Figures 8 and 10) although the range of values is somewhat enlarged. 

In view of the aforementioned discussion, we choose this approach as a reference 

for generating the data sets for the spectral peaks’ lag plots. In the following sections 

we will prove analytically the hypothesis posed herein and show the benefits of this 

approach for the peak classification. 

 

 
 

4. THE SLOPE DESCRIPTOR AND THE PARAMETERS BWrms AND L 

 

Let us first recall the nomenclature we used in the previous research, because we 

are going to apply it herein too. The parameter BWrms was referred to as the root 

mean square bandwidth of a spectral peak expressed in bins. We called the parameter 

L the absolute bandwidth of a peak, being equal to the number of bins in the peak. We 

can now proceed to the discussion about the relationship between the SD and these 

spectral peak parameters. 

The SD is the slope of a linear regression model which we have already defined in 

Section 2. For the sake of clarity we repeat herein the equation (1): 

x(n) = ax(n -1)+ b + e(n) , a = SD . (5) 



The expression (5) represents a first order linear predictor i.e. a first order AR model. 

Recalling the origin of x(n), we may say that a real broad-band spectral peak is the spectral 

estimate of the following LTI constant coefficient model H(z): 

 
In the frequency domain the expression (6) becomes: 

 
The last expression says that a real broad-band spectral peak can be represented as a LTI 

lowpass system with one real pole which can be inside (a < 1), outside (a > 1) or onto the 

unitary circle (a = 1). The parameter a determines the sharpness of the peak and thus the 

bandwidth of the system. Therefore, we may expect the smallest bandwidth when the pole is on 

the unitary circle. 

In order to estimate the bandwidth BWrms of the system, we can use the well-know 3dB 

criterion: 

 

where is the cut-off frequency. From (8) we can express the cut-off frequency 

as: 

 

 
 

If we put (9) then we get straightforwardly an 

approximate relationship between the bandwidth and slope descriptor of a spectral peak. The 

expression (9) is plotted on Figure 11 showing the dependence of a on Wc. We observe that, 

according to our expectations, for a = 1 the bandwidth is theoretically zero while otherwise the 

bandwidth increases as the pole steps off the unitary circle. For small a the bandwidth spreads 

out of the Nyquist interval, giving rise to the aliasing effect. So, how is all this related to the 

peak classification? 

Let us recall that in order to yield a deterministic characterization from the lag plot, the 

transitions between the contiguous samples in a time sequence must be smooth enough. We 

have already seen in the previous section that this condition can be met by having the sampling 

rate (the size of the IDFT) large enough. According to Approach 5, it means that larger peaks         

(L large) will have large SD independently of the shape of its time envelope. 

However, a large SD can also be achieved with smaller L but larger time envelope, if we 

recall from the Fourier theory that a small BWrms correspond to a large time response and vice 



versa. This is conceptually similar to the process of decimating. For example, if a time 

sequence is decimated with a factor 2, then its bandwidth enlarges two times. But at the same 

time this enlargement is compensated by cutting down the number of bins in the DFT by two 

(assuming that we don’t use zero padding). As a result, the number of DFT bins within the 

bandwidth remains the same. 

We may now take a look at Figure 12 where various real broadband spectral peaks from the 

worst case signal and the corresponding time envelopes are shown. The envelopes are 

represented versus the normalized length, so that the effect of L is suppressed and only the 

effect of BWrms remains. We observe that both small BWrms and L produce almost the same 

shape of the envelope as larger BWrms and L, thus yielding similar SD. This issue is very 

important for the description of the sinusoids, because this approach always tends to compress 

the sinusoidal class by reducing the SD of the larger peaks (more modulation) and enlarging the 

SD of the narrower peaks (less modulation). 

 
 
However, this trend is also present in the noise peaks, because for any peak in general a 

large L corresponds to a large BWrms and the other way around. Fortunately, the relationship 

between those parameters is quite different for sinusoids and noise. Figure 13 shows the joint 

BWrms-L histograms for both peak classes (the axis are the same in both plots in order to 

facilitate the visual comparison). 

We see that the noise histogram exhibit very strong correlation between the parameters, 

because the dependence region follows a steep linear trend and thus the parameters change 

proportionally. This is in fact very beneficial for the peak classification, because it will not 

allow the noise peaks go beyond a certain value of the SD. Regarding the sinusoidal peaks, the 

correlation is much weaker and doesn’t seem to obey a linear trend. As a consequence, the 

beneficial trend (increments in L) is much more emphasized than the non-beneficial trend 

(increments in BWrms). Having in mind that the sinusoidal peaks are in general larger than the 

noise peaks, this approach will tend to push the sinusoidal peaks towards larger values of SD, 

that is, away from the noise peaks. In the next section we will show the histograms for the peak 

classes in the SD domain and establish a comparison between the SD and NBD. 



 

6. CONCLUSIONS 
We have presented in this report a new peak descriptor SD based on the lag plot and 

discussed its relationship to the NBD. The SD, defined as the slope of a linear regression model 

constructed through the data samples belonging to a time sequence, shows to be a good 

candidate for describing sinusoidal and noise peak classes. 

A proper choice of data set is crucial for discerning correctly between the peak classes. The 

SD makes use only of the spectral peak shape and consequently this information can be 

explained by just two parameters, namely the root mean square BWrms and absolute bandwidth 

L. This is similar to the way the shape factor explains the filter spectral shape in the circuit 

theory. We have shown that BWrms and L, initially defined in the spectrum domain, hold 

relationship to the time duration of the data set and its sampling rate respectively. 

We have next shown that the mutual action of those parameters determines the smoothness 

of the data set and consequently its lag plot interpretation. In order to yield a deterministic 

interpretation, BWrms should be as small as possible and L as large as possible. This however 

does not correspond to a realistic scenario because those parameters are mutually coupled. 

However, this relationship is less strict for the sinusoidal peaks and thanks to this fact the 

sinusoidal class can be well distinguished from the noise. 

Finally, we have shown that, regarding BWrms and L, the NBD behaves in a similar way 

the SD does but in the opposite direction. By inverting the roles of the parameters in the NBD 

we obtain a new description of the peak classes that resembles the SD. This shows that two 

apparently very different spectral peak descriptors, depending on the same parameters in a 

similar way, provide for a similar description of the peak classes. Their dependence on BWrms 

and L is of course not the same but it follows the same trends. 
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