
BATMAN Adv. Mesh network emulator

José Daniel Britos1, Silvia Arias1, Nicolás Echániz3, Guido Iribarren3, Lucas
Aimaretto1, Gisela Hirschfeld2

1 Laboratorio de Redes y Comunicaciones (LaRyC) Facultad de Ciencias Exactas,
F́ısicas y Naturales, Universidad Nacional de Córdoba Av. Vélez Sarsfield 1611 -

Ciudad Universitaria - CP: X5016GCA Córdoba.
2 Departamento Universitario de Informática, Universidad Nacional de Córdoba,

Valparáıso s/n - Ciudad Universitaria - CP: X5016GCA
3 Asociación Civil AlterMundi, José de la Quintana, Córdoba.

Resumen We introduce a new network emulator environment, develo-
ped by our research group, called the BAMNE. Our emulator is designed
specifically to allow working with BATMAN Adv. mesh protocols. This
mesh network emulator facilitates doing tests with BATMAN Adv. pro-
tocol and evaluate and debug mesh networks. The emulated wireless
equipment runs in virtual machines using VirtualBox, and the wireless
links are simulated with Vde-switch. Vde-switch allows simulating impe-
diments in the link transmission like loss of bits, packet loss, delay. To
construct the emulation environment, python language was used.

1. Introduction

The purpose of this network emulator is to test, evaluate and debug mesh
network protocols like the BATMAN Adv. protocol. This network emulator is
a front end for VirtualBox OpenWrt machines connected through a Vde-switch
and Wirefilter, emulating a wireless link. This is able to emulate delays, noise
factors, channel bandwidth and packet loss on virtual wireless channel. The front
end is written in python with “pygtk” graphics user interface (GUI). The python
program doesn’t introduce latency overhead in emulation because the only pur-
pose of this python software is to set up the emulation environment, parameters
and monitor the OpenWrt machines with Simple Network Management Proto-
col (SNMP), showing in the main screen transmitted packets for each interface,
and originators details for BATMAN Adv. protocol. The Vde-switches have tap
interfaces connected with the host machine, this allows to monitor the packet
traffic with the Wireshark program [13]. The eth0 interface of the OpenWrt ma-
chines are connected to the host via the Vboxnet interface of the host, in this
way it is possible to access the OpenWrt console for management purpose. This
paper is structured as follows: we start in Section 2 with a background on the
BATMAN Adv. protocols. Section 3 describes the architecture of the emulation
system. This is followed by Section 4 which describes the use of the emulator.
Finally conclusions are drawn in Section 5.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301067208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. BATMAN Adv.

BATMAN Adv. [12] is a proactive routing protocol for Wireless Mesh Net-
works (WMNs). It uses a distance-vector approach and a routing metric which in-
corporates the reliability of the radio links. Despite being developed and publicly
available since 2006, BATMAN, especially its newer BATMAN Adv. variant, has
received sparse attention in the scientific community. BATMAN is a simple and
robust algorithm for establishing multi-hop routes in ad-hoc networks. As ex-
plained by Johnson, D., et al. [15] BATMAN does not maintain tables with full
routes to the destination, instead each node along the route only maintains the
information about the next link through which the node can find the best route.
The objective is to maximize the probability of delivering a message. BATMAN
does not check the quality of each link, it checks its existence. The protocol does
these checks by periodically broadcasting hello packets to its neighbours, these
packets are known as originator messages (OGM). Broadcasting is when a single
source sends messages to all available nodes in the broadcast domain/network.
This is in contrast to unicast where a node sends messages to one specific node
in the network. The structure of the OGM packet periodically sent is presented
here:

Originator address
Sending node address: This is changed by receiving nodes and then the
packet is re-broadcasted
Unique sequence number: The sequence number is used to check the concu-
rrency of the message
Bidirectional link flag: Used when the OGM packet received is its own and
the sender is someone else
Time to live (TTL)

When a node receives an OGM packet there are two possibilities: either the
originator is, or is not already in its routing table. If the originator is not in
the routing table, then a new entry is made for it and the sender node is added
as a one hop neighbour to it and its count incremented. If the originator is al-
ready in the routing table but the sender is new, the sender is added as a one
hop neighbour to the originator and count incremented. If the originator is in
the routing table and the sender is not new, the sender’s count is incremented.
The count is the amount of received OGMs packets of an originator through a
specific one hop neighbour. The links are compared in terms of the number of
originator messages that have been received within the current sliding window;
this value is called the transmission quality (TQ) and is the routing metric used
by BATMAN. The sliding window is a fixed value that defines a range of the
unique sequence numbers seen in each OGM packet sent by a node [11]. BAT-
MAN advanced (BATMAN Adv.) [2] only uses the MAC address for addressing
it neighbours. The result of working in layer 2 is that BATMAN Adv. is able
to emulate an Ethernet bridge, so that all nodes appear to be connected by a
direct link. This causes all protocols above layer two be unaware of multi hop
links. BATMAN’s routing technique causes low processing and traffic cost. This

makes it an attractive option for use on devices with scarce resources. In this
work we focus on BATMAN Adv. routers that have small processors such as the
MP.

3. Architecture

The emulator architecture is basically composed of two elements: Nodes
(OpenWrt) and Links (Wirefilter) [3] as shown in the figure 1. Each node is
composed as shown in figure 2, a complex diagram that has the following ele-
ments:

OpenWrt, trunk version for x86 with minimal modifications (see below)
VirtualBox (unmodified), the version must support Vde-switch [5].
Vde switch must be able to run two instances, in order to support 2.4 GHz
and 5.0 GHz networks interface. Thus, Vde-switch is patched with colourful,
see below [14].

Node

Wire Filter

NodeNode

Node

Node Node

Node

Wire Filter

Wire Filter

Wire Filter

Wire Filter

Wire Filter

Wire Filter

Wire Filter

Wire Filter

Node

Wire Filter

Node

Node

Wire Filter

Wire Filter

Wire Filter

Figura 1. Network architecture

3.1. OpenWrt

A standard OpenWrt can be downloaded and configured for X86 [1]. On-
ce that the virtual machine is running some packages must be downloaded (ip,
snmpd, tcpdump, netcat, kmod-batman-adv, batctl). For an automatic configu-
ration of the network interfaces and devices, a boot script must be used, such as
the following script (saved as /files/etc/rc.local) in your OpenWrt.

Color =1

Color=0Color=0

Color=0

Color=0

Color=0

Color =1

Color=2

Color=0Color=0

Color=0

Color=0

Color=0

Color=2

OPENWRT
ETH0

VBOXNET
ETH2

TAP2TAP1
HOST

ETH1

VDE SWITCH VDE SWITCH
WIRE FILTER

WIRE FILTER

WIRE FILTER

WIRE FILTER

WIRE FILTER

WIRE FILTER

WIRE FILTER

WIRE FILTER

WIRE FILTER

WIRE FILTER

Figura 2. Node Diagram

#!/bin/sh

pass IP config trough ethernet mac address

RED=$(ifconfig eth1 | sed ’1,1!d’ | sed ’s/.*HWaddr //’| sed

’s/.\{11\}://’| sed ’s/.\{5\}$//’)

NUM=$(ifconfig eth1 | sed ’1,1!d’ | sed ’s/.*HWaddr //’| sed

’s/.*://’| sed ’s/[\n\].*//’)

ip link delete eth0

ip addr add 192.168.100.$NUM/24 dev eth0

ip link set dev eth1 mtu 1532 up

ip link set dev eth2 mtu 1532 up

batctl -m bat0 interface add eth1

batctl -m bat0 interface add eth2

ip addr add 192.168.$RED.$NUM/24 dev bat0

ip link set dev bat0 address 90:$NUM:$NUM:$NUM:$NUM:$NUM

ip link set dev bat0 up

batctl -m bat0 originators

In VirtualBox it is difficult to learn the IP address for the interfaces of the virtual
machines; this is solved by setting the MAC address in VirtualBox and in the
“rc.local” script read the MAC address to set an according IP address for the
interfaces.

3.2. SNMPD

After the “SNMP” is installed in the OpenWrt machine, we proceed to setup
the MIB for BATMAN Adv.. To add custom records to the BATMAN Adv.
MIB a series of shell scripts are run and return their output to stdout, which is
captured by SNMP [6]. To request originators table the next script was made:
Script name batctl o.sh (for originator list)

#!/bin/sh

BAT=$(batctl o | sed -n ’s/^\(..:..:..:..:..:..\).*/\1/p’)

echo $BAT

Then add entries for the SNMPD configuration file /etc/snmp/snmpd.conf using
the uci command in a terminal.

uci add snmpd exec

uci set snmpd.@exec[-1].name=.1.3.6.1.4.1.32.1.1

uci set snmpd.@exec[-1].prog=batctlo

uci set snmpd.@exec[-1].args=/batctl_o.sh

uci commit snmpd

/etc/init.d/snmpd restart

And append the following line to the file /etc/snmp/snmp.conf

exec .1.3.6.1.4.1.32.1.1 batctl_o /batctl_o.sh

From the host the snmp can be tested with the followings command.

$ snmpget -v 1 -c public 192.168.100.11 iso.3.6.1.4.1.32.1.1.101

.1iso.3.6.1.4.1.32.1.1.101.1 = STRING: "80:03:00:00:07:41 80:03:

00:00:07:31 80:02:00:00:07:31 80:02:00:00:07:21 80:03:00:00:07:21"

We repeat the same for the next SNMP commands.
In the GitHub (https://github.com/dbritos/Network-mesh-emulator/blob/ mas-
ter/openwrt.ova) repository there is a fully configured virtual machine. Down-
load openwrt.ova in VirtualBox go to:

File menu -> Import Appliance

3.3. Ip assignations in OpenWrt

For assigning the IP address to the VM, first a MAC address is assigned to
the VM. Each VM has three interfaces: nic1, nic2 and nic3. This interfaces in
OpenWrt appear as eth0, eth1 and eth2.

nic1 (eth0) mac 80:01:00:00:07 + nodenumber(nn)

nic2 (eth1) mac 80:02:00:00:07 + nodenumber(nn) the 2 for 2.4GHz)

nic3 (eth2) mac 80:05:00:00:07 + nodenumber(nn) the 5 for 5.0GHz)

For configuring the VM with this MAC address the following commands are
used:

VBoxManage modifyvm openwrtnn --nic1 generic --nicgenericdrv1 VDE

--nicproperty1 network=/tmp/c24GHznn[2] --macaddress1 8001000007nn

VBoxManage modifyvm openwrtnn --nic2 generic --nicgenericdrv2 VDE

--nicproperty2 network=/tmp/c24GHznn[2] --macaddress2 8001000007nn

VBoxManage modifyvm openwrtnn --nic3 generic --nicgenericdrv3 VDE

--nicproperty3 network=/tmp/c24GHznn[2] --macaddress3 8001000007nn

Where: nn is the Node number.
The script in OpenWrt in /etc/rc.local reads the MAC address of the interface
eth1 and configures the IP of the interfaces:

IP Address eth0 = 192.168.100.nn

IP Address bat0 = 192.168.7.nn

MAC Address bat0 = 90:nn:nn:nn:nn:nn

Whit this convention of IP Address and MAC address it’s easy to follow the
packets trough the nodes. With the eth0 interface it’s possible to access the nodes
via ssh to the IP address 192.168.100.nn. The host has the vboxnet0 interface
with the IP address 192.168.100.1. Each Vde-switch has a tap interface, and
through “Wireshark” we can sniff the packets that traverse the Vde-switch.

3.4. VirtualBox

The VirtualBox version must by 4.3 or higher [4]. To verify VDE-Switch
support, go to the Network configuration window, select Attached to: ”Generic
Driver”, and then verify in the Name: box that VDE is listed. In VirtualBox it
is difficult to learn the IP address for the interfaces of the virtual machines; this
is solved by setting the MAC address in VirtualBox and in the “rc.local” script
read the MAC address to set an according IP address for the interfaces.

3.5. Vde-switch

The main advantage of Vde-switch [8,14] over UML switch is that any clients
can be attached to this virtual switch: VirtualBox, UML, tap interfaces, virtual
interconnections, and not just UML instances. If the Vde-switches were just
connected with Wirefilter [10] “patch cables” without modification, we would
end up creating a single broadcast domain and unwanted switch loops: The
goal is to allow the packets to travel only from one host to it’s neighborhood,
not farther. To accomplish this, the Vde-switch needs to be modified to have
“coloured” ports. The idea is that each port has a “colour” (an integer number)
and packets are only passed from ports to others with different colours. Packets
are dropped on outgoing ports if it has the same colour (same number) as the
incoming port. In this concept, the host port can have colour 1, the TAP port
colour 2, while the interconnection ports have colour 0. In this way, packets
can only travel from the host to (all of) the interconnection ports, or from one
interconnection port to the host port. However packets can not travel between
the interconnection ports, thus only allowing “one hop” connections and avoiding
switch loops and shared broadcast domains. The concept is illustrated in figure
2.

The patch against vde2-2.3.2 (current latest stable version) to add this colour
patch can be found here:

(http://www.open-mesh.org/attachments/download/152/vde2-2.3.2_

colour.patch).

The patched vde-switch can be download from here:

(https://github.com/dbritos/Network-mesh-emulator/blob/master/

vde2-2.3.2-patch.tar).

3.6. Wirefilter

The Wirefilter program [7] is a tool where it’s possible to simulate various link
defects and limits as example: packet loss, burst loss, delay, duplicates, band-
width, Interface speed, Channel capacity, Noise (damage to packets) and MTU

However as the links are only set up bidirectional, interferences can unfor-
tunately not be simulated with this system. For advanced testing it might be
necessary to apply the aforementioned link defects to some packets only, whereas
other packets are able to traverse the emulated environment unharmed. Once
you applied the “ethertype” patch you can specify an ethertype which Wire-
filter will simply forward. To apply a packet loss of 50% to all packets except
BATMAN adv packets, run:

wirefilter --ether 0x4305 -l 50

This patch also allows to filter BATMAN Adv. packet types. To apply a packet
loss of 50% to all packets except BATMAN Adv. ICMP packets, run:

wirefilter --ether 0x4305:02 -l 50

You can specify up to 10 packet types (separated by colon). The patch against
vde2-2.3.1 (current latest stable version) can be found here:

http://www.open-mesh.org/attachments/download/106

4. Using BAMNE

In this section, we present a simple example of using BAMNE to create a
topology of five groups of nine nodes each. This example of BAMNE emulation
is shown in figure 3, and discussed in detail. In this emulation, there are 45 nodes
running BATMAN Adv. protocol in a computer with an Intel i7 CPU and 16GB
of RAM.
The software have two modes of operation, when we run the program it begins
in edition mode. In this mode we can build the network topology. To switch
to emulation mode, in the main menu we can choose “RUN” mode and the
emulation runs until we choose “STOP” from main menu to finish the emulation.
In Execution mode we can’t create nodes, but we can destroy nodes or links to
see how the BATMAN protocol reacts to the case of nodes or links failures.
The information shown in the main window is the following: In the first line of
the screen we can see the transmitted and received packets of each interfaces of
the highlighted node: lo, eth0, eth1, eth2 and bat0 interface. The second and third

Figura 3. Emulator screen

line shows the properties of the links wire filter, packets loss, channel capacity,
damage packets, delay, bandwidth of the channel, duplicate packets and channel
frequency for each frequency 2,4 and 5GHz respectively . Above each node it’s
shown the number of transmitted and received packets. Inside the green circle
of each node is shown the node number. The links between nodes in red are
2,4GHz links and the links in green are in 5GHz.
In the top right of the screen there are the originators and next hop list for the
node number of the highlighted node, 66 in this example.
When the virtual machine of the OpenWrt is created, a console of this machine
appears in the main window. From there, a run test can be started, for example
in the figure 4 the console of VM node 66 is making a ping to VM node number
71, with five hops the delay is acceptable, below 150ms and the jitter is below
30ms showing that the network can support VoIP as the values fall well within
the boundaries recommended by the ITU-Recommendation G. 114 [9]. In the
figure 5 is shown the CPU and memory usage for 45 nodes running all together,
in this chart it is possible to see that the CPU usage is less than 35% and the
memory usage is less than a 35% of 16GB.

5. Conclusions

In this paper we propose an emulator for BATMAN Adv. protocol, with the
capacity to evaluate the performance and the convergence in building the next

Figura 4. Delay with ping

Figura 5. CPU usage

hop table of the protocol for many topology of the network. One of the improve-
ments introduced by this emulator is the graphical interface allowing easy and
fast deployment of network topology and interact with that, building and des-
troying links or changing their properties with rapid movements of the mouse
and see the results in graphical form.The program fulfilled the expectations pro-
posals, it can emulate various impediments on the transmissions links such as
lost packets, delay, bandwidth, showing good performance with up to 90 nodes
running on an Intel i7 processor with 16 GBs. of RAM. The principal goal to
add to this program is to show graphically the trace route at level two of the
OSI model.

Referencias

1. Batman-adv-openwrt-config - batman-adv - Open Mesh, http://www.open-mesh.
org/projects/batman-adv/wiki/Batman-adv-openwrt-config

2. Doc-overview - batman-adv - Open Mesh, http://www.open-mesh.org/projects/
batman-adv/wiki/Doc-overview

3. Emulation - Open-mesh - Open Mesh, http://www.open-mesh.org/projects/

open-mesh/wiki/Emulation

4. OpenWrt in VirtualBox [OpenWrt Wiki], http://wiki.openwrt.org/doc/howto/
virtualbox

5. Oracle VM VirtualBox, https://www.virtualbox.org/
6. SNMPD [OpenWrt Wiki], http://wiki.openwrt.org/doc/howto/snmp.server
7. Ubuntu Manpage: wirefilter - Wire packet filter for Virtual Distributed Ethernet,

http://manpages.ubuntu.com/manpages/natty/man1/wirefilter.1.html

8. VDE - Virtualsquare, http://wiki.virtualsquare.org/wiki/index.php/VDE
9. ITU T.: One-way transmission time. recommendation G.114 (Feb 1996)

10. Caini, C., Firrincieli, R., Davoli, R., Lacamera, D.: Virtual Integrated TCP Testbed
(VITT). In: Proceedings of the 4th International Conference on Testbeds and Re-
search Infrastructures for the Development of Networks & Communities. pp. 36:1–
36:6. TridentCom ’08, ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium (2008),
http://dl.acm.org/citation.cfm?id=1390576.1390620

11. Cerda-Alabern, L., Neumann, A., Escrich, P.: Experimental Evaluation of a Wi-
reless Community Mesh Network. In: Proceedings of the 16th ACM Interna-
tional Conference on Modeling, Analysis & Simulation of Wireless and Mobi-
le Systems. pp. 23–30. MSWiM ’13, ACM, New York, NY, USA (2013), http:
//doi.acm.org/10.1145/2507924.2507960

12. Chissungo, E., Blake, E., Le, H.: Investigation into Batman-adv Protocol Perfor-
mance in an Indoor Mesh Potato Testbed. In: 2011 Third International Conference
on Intelligent Networking and Collaborative Systems (INCoS). pp. 8–13 (Nov 2011)

13. Combs, G., et al.: Wireshark-network protocol analyzer. Version 0.99 5 (2008)
14. Davoli, R.: VDE: Virtual distributed Ethernet. In: First International Conference

on Testbeds and Research Infrastructures for the Development of Networks and
Communities, 2005. Tridentcom 2005. pp. 213–220 (Feb 2005)

15. Johnson, D., Ntlatlapa, N., Aichele, C.: Simple pragmatic approach to mesh rou-
ting using BATMAN (Oct 2008), http://researchspace.csir.co.za/dspace/

handle/10204/3035

