
Capturing relational NEXPTIME
with a Fragment of

Existential Third Order Logic

Turull-Torres José Maria1,2

1 Depto. de Ingenieŕıa e Investigaciones Tecnológicas
Universidad Nacional de La Matanza

2 and Massey University, New Zealand
J.M.Turull@massey.ac.nz

Abstract. We prove that the existential fragment Σ2,ω
1 of the third or-

der logic TOω captures the relational complexity class non deterministic
exponential time. As a Corollary we have that relational machines can
simulate third order relational machines.

1 Introduction

Relational machines (RM) were introduced in [AV,91] (there called loosely cou-
pled generic machines) as abstract machines that compute queries to (finite)
relational structures, or relational database instances (dbi’s) as functions from
such structures to relations, that are generic (i.e., that preserve isomorphisms),
and hence are more appropriate than Turing machines (TM) for query com-
putation. RM’s are TM’s endowed with a relational store that hold the input
structure, as well as work relations, and that can be accessed through first or-
der logic (FO) queries (sentences) and updates (formulas with free variables).
As the set of those FO formulas for a given machine is fixed, an RM can only
distinguish between tuples (i.e., sequences of elements in the domain of the dbi)
when the differences between them can be expressed with FO formulas with k
variables, where k is the maximum number of variables in any formula in the
finite control of the given RM. Note that the same is true for FO queries (i.e.,
relational calculus), or equivalently relational algebra queries.

On the other hand, it has been proved that RM’s have the same computation,
or expressive power, as the (effective fragment of the) well known infinitary logic
with finitely many variables Lω∞ω ([AVV,95]), (in the context of Finite Model
Theory, i.e., with sentences interpreted by finite relational structures or database
instances - dbi’s). This logic extends FO with conjunctions and disjunctions of
sets of formulas of arbitrary (infinite) cardinality, while restricting the number of
variables in each (infinitary) formula to be finite. This is a very important logic
in descriptive complexity theory, in which among other properties, equivalence
is characterized by pebble (Ehrenfeucht-Fraissee) games, and on ordered dbi’s it
can express all computable queries (see [Lib,04], among others). Hence, a nice
characterization of the discerning power of RM’s is also given by those games.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301067181?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Consequently, k-ary RM’s are incapable of computing the size of the input
structure though, however, they can compute its sizek. A k-ary RM, for a pos-
itive integer k, is an RM in which the FO formulas in its finite control have at
most k different variables, and the sizek of a structure (or dbi) is the number
of equivalence classes in the relation ≡k of equality of FOk types in the set of
k-tuples of the structure, for 1 ≤ k.

Then, it was a natural consequence to define a new notion of complexity suit-
able for RM’s. Relational complexity was introduced in [AV,91] as a complexity
theory where the (finite relational) input structureA to an algorithm is measured
as its sizek, for some k ≥ 1, instead of the size of its encoding, as in computa-
tional complexity. Roughly, two k-tuples in A have the same FOk types if they
both satisfy in A exactly the same FO formulas with up to k variables, r of them
being free, for all 0 ≤ r ≤ k. That is, if the two tuples have the same properties
in the structure A, considering only the properties that can be expressed in FOk.
In that way, relational complexity classes mirroring computational complexity
classes like P , NP , PSPACE, EXPTIME and NEXPTIME, etc., have been
defined ([AV,91],[AVV,97]), and denoted as Pr, NPr, PSPACEr, EXPTIMEr
and NEXPTIMEr, respectively (the class NEXPTIMEr is actually defined
later in this article).

Beyond the study of RM’s as a model of computation for queries to relational
databases, relational complexity turned out to be a theoretical framework in
which we can characterize exactly the expressive power of the well known fixed
point quantifiers (FP) of a wide range of types. Those quantifiers are typically
added to first order logic, thus forming the so called fixed point logics, where the
different types of fixed point quantifiers add to FO different kinds of iterations
of first-order operators ([Lib,04], [AVV,97]).

In [AVV,97], S. Abiteboul, M. Vardi and V. Vianu introduced new fixed
point quantifiers, and organized a wide range of them as either deterministic
(det), non deterministic (ndet), or alternating (alt), and either inflationary (inf)
or non inflationary (ninf), according to the type of iteration implied by the
semantics of each such quantifier. In the same article they proved the following
equivalences: det-inf-FP = Pr, ndet-inf-FP = NPr, alt-inf-FP = det-ninf-FP
= ndet-ninf-FP = PSPACEr, and alt-ninf-FP = EXPTIMEr (in the case of
ndet FP no negation affecting an FP quantifier is allowed).

Those characterizations of relational complexity classes are actually very
interesting and meaningful, given that it was already known that if we restrict the
input to only ordered structures, the following equivalences with computational
complexity classes hold: det-inf-FP = P , ndet-inf-FP = NP , det-ninf-FP = ndet-
ninf-FP = alt-inf-FP = PSPACE, and alt-ninf-FP = EXPTIME ([Lib,04],
[AVV,97]).

Regarding the characterization of relational complexity classes with other
logics, A. Dawar introduced in [Daw,98] the logic SOω, defining it as a semantic
restriction of second order logic (SO) where the valuating relations for the quan-
tified second order variables are “unions” of complete FOk types for r-tuples for

some constants k ≥ r ≥ 1, that depend on the quantifiers3. That is, the relations
are closed under the relation ≡k of equality of FOk types in the set of r-tuples
of the structure.

In [Daw,98] it was also proved that the existential fragment of SOω, Σ1,ω
1 ,

characterizes exactly the non deterministic fixed point logic (FO + NFP), and
hence, by the equivalences mentioned above, it turned out that Σ1,ω

1 captured
NPr, analogously to the well known relationssip Σ1

1 = NP ([Fag,74]). Continu-
ing the analogy, the characterization of the relational polynomial time hierarchy
PHr with full SOω was stated without proof in [Daw,98], and later proved by
the second author jointly with F. Ferrarotti in [FT,08].

In [AT,14], aiming to characterize higher relational complexity classes, and
as a natural continuation of the study of the logic SOω, we defined a variation of
third order logic (TO) denoted as TOω, under finite interpretations. We defined
it as a semantic restriction of TO where the (second order) relations which form
the tuples in the third order relations that valuate the quantified third order
variables are closed under the relation ≡k as above. In [AT,14] we also introduced
a variation of the non deterministic relational machine, which we denoted 3-NRM
(for third order NRM), where we allow TO relations in the relational store of the
machine. We defined the class NEXPTIME3,r as the class of 3-NRM’s that work
in time exponential in the sizek (see above) of the input dbi. We then proved
that the existential fragment of TOω, denoted Σ2,ω

1 , captures NEXPTIME3,r.

In the present article, we prove a stronger result: we show that the existential
fragment of TOω also captures the relational complexity class NEXPTIMEr.
Then, adding the result proved in this article, we have the following picture
regarding the known characterizations of relational complexity classes up to now:
Pr = (FO + det-inf-FP), NPr = (FO + ndet-inf-FP) = Σ1,ω

1 , PHr = SOω,
PSPACEr = (FO + alt-inf-FP) = (FO + det-ninf-FP) = (FO + ndet-ninf-
FP), EXPTIMEr = (FO + alt-ninf-FP), and NEXPTIMEr = Σ2,ω

1 .
Then, as it turned out that NEXPTIMEr = NEXPTIME3,r, an inter-

esting consequence of our result is that RM’s in their original formulation are
strong enough as to simulate the existence of TO relations in their relational
store and, hence, to also simulate the existence of TOω formulas in their finite
control (without TOω or SOω quantifiers, as in 3-NRM’s in [AT,14], see below).

That is, for every 3-NRM that works in time NEXPTIME3,r, i.e., relational
third order exponential time, in the sizek of their input, there is an NRM that
computes the same query, and that works in time NEXPTIMEr, i.e., relational
exponential time in the sizek of their input.

2 Preliminaries

We assume a basic knowledge of Logic and Model Theory (refer to [Lib,04]). We
only consider vocabularies of the form σ = 〈R1, . . . , Rs〉 (i.e., purely relational),
where the arities of the relation symbols are r1, . . . , rs ≥ 1, respectively. We

3 in the sense of [FPT,10] these relations are redundant relations

assume that they also contain equality. And we consider only finite σ-structures,
denoted as A = 〈A,RA

1 , . . . , R
A
s 〉, where A is the domain, also denoted dom(A),

and RA
1 , . . . , R

A
s are (second order) relations in Ar1 , . . . , Ars , respectively. If

γ(x1, . . . , xl) is a formula of some logic with free FO variables {x1, . . . , xl}, for
some l ≥ 1, with γA we denote the l-ary relation defined by γ in A, i.e., the
set {(a1, . . . , al) : a1, . . . , al ∈ A∧A |= γ(x1, . . . , xl)[a1, . . . , al]}. For any l-tuple
ā = (a1, . . . , al) of elements in A, with 1 ≤ l ≤ k, we define the FOk type
of ā, denoted Typek(A, ā), to be the set of FOk formulas ϕ ∈ FOk with free
variables among x1, . . . , xl, such that A |= ϕ[a1, . . . , al]. If τ is an FOk type,
we say that the tuple ā realizes τ in A, if and only if, τ = Typek(A, ā). Let A
and B be σ-structures and let ā and b̄ be two l-tuples on A and B respectively,
we write (A, ā) ≡k (B, b̄), to denote that Typek(A, ā) = Typek(B, b̄). If A =
B, we also write ā ≡k b̄. We denote as sizek(A) the number of equivalence
classes in ≡k in A. An l-ary relation R in A is closed under ≡k if for any
two l-tuples ā, b̄ in Al, ā ∈ R ∧ ā ≡k b̄ ⇒ b̄ ∈ R. Let S be a set, a binary
relation R is a pre-order on S if it satisfies: 1) ∀a ∈ S (a, a) ∈ R (reflexive).
2) ∀a, b, c ∈ S (a, b) ∈ R ∧ (b, c) ∈ R ⇒ (a, c) ∈ R (transitive). 3) ∀a, b ∈ S
(a, b) ∈ R ∨ (b, a) ∈ R (conex). A pre-order � on S induces an equivalence
relation ≡ on S (i.e., a ≡ b⇔ a � b∧ b � a), and also induces a total order over
the set of equivalence classes of ≡. When the equivalence classes induced by a
pre-order on k-tuples from some structure A agree with the equivalence classes
of ≡k, then the pre-order establishes a total order over the FOk types for k-tuples
which are realized on A . We denote by Σ1,ω

m [σ] the class of formulas of the form

∃k11Y r11,k1111 . . . ∃k1l1Y r1l1 ,k1l11l1
∀k21Y r21,k2121 . . . ∀k2l2Y r2l2 ,k2l22l2

. . . Qkt1Y rt1,kt1t1 . . .

QktltY
rtlt ,ktlt
tlt

(φ), where the quantifiers Qkt1 , . . . , Qktlt are ∀kt1 , . . . ,∀ktlt , if t

is even, or ∃kt1 , . . . ,∃ktlt , if t is odd, φ is an FO formula in the vocabulary

σ ∪ {Y r11,k1111 , . . . , Y
rtlt ,ktlt
tlt

}, with r11 ≤ k11, . . ., rtlt ≤ ktlt , respectively. We

define SOω =
⋃
m≥1Σ

1,ω
m . The second order quantifier ∃k has the following

semantics: let I be a σ-structure; then I |= ∃kY r,kϕ if there is an r-ary (second
order) relation Rr,k on I that is closed under the relation ≡k in I, and (I, R) |= ϕ.

3 The Restricted Third-Order Logic TOw and 3-NRM’s

A third order relation type is a w-tuple τ = (r1, . . . , rw) where w, r1, . . . , rw ≥ 1.
In addition to the symbols of SOω, the alphabet of TOω ([AT,14]) contains for
every k ≥ 1, a third-order quantifier ∃k, and for every relation type τ such
that r1, . . . , rw ≤ k a countably infinite set of third order variables, denoted
as X τ,k1 ,X τ,k2 , . . ., and called TOω variables. We use upper case Roman letters

Xr,k
i for SOω variables (in this article we will often drop the superindex k,

when it is clear from the context), where r is their arity, and lower case Ro-
man letters for individual (i.e., FO) variables. Let σ be a relational vocabulary.
A TOω atomic formula of vocabulary σ, on the TOω variable X τ,k is a for-
mula of the form X τ,k(V1, . . . , Vw), where V1, . . . , Vw are either second order

variables of the form Xri,k
i , or relation symbols in σ, and whose arities are re-

spectively r1, . . . , rw ≤ k. Note that all the relations that form a σ-structure are
closed under ≡k, since k is ≥ than all the arities in σ (see above, and Fact 9
in [FT,08]). Let m ≥ 1. We denote by Σ2,ω

m [σ] the class of formulas of the form

∃k3,11X τ11,k3,1111 . . . ∃k3,1s1X τ1s1 ,k3,1s11s1
∀k3,21X τ21,k3,2121 . . . ∀k3,2s2X τ2s2 ,k3,2s22s2

. . . Qk3,m1

X τm1,k3,m1

m1 . . . Qk3,msmX τmsm ,k3,msmmsm (ψ), where for i, j ≥ 1, with τij = (rij,1, . . . ,
rij,wij), it is rij,1, . . . , rij,wij ≤ k3,ij , Q is either ∃k or ∀k, for some k, depending
on whether m is odd or even, respectively, and ψ is an SOω formula with the ad-
dition of TOω atomic formulas. As usual, ∀kX τ,k(ψ) abbreviates ¬∃kX τ,k(¬ψ).
We define TOω =

⋃
m≥1Σ

2,ω
m .

A TOω relation Rτ,k of type τ and closed under ≡k on a σ structure I is a
set of w tuples (Rr1,k1 , . . . , Rrw,kw) of (second order) relations on I with respective
arities r1, . . . , rw ≤ k, closed under ≡k. The third order quantifier ∃k has the
following semantics: let I be a σ-structure; then I |= ∃kX τ,kϕ if there is a TOω

relation Rτ,k of type τ on I closed under the relation ≡k in I, such that (I,R) |=
ϕ. Here (I,R) is the third order (σ∪{X τ,k}) structure expanding I, in which X is
interpreted as R. Note that a valuation in this setting also assigns to each second
order variable Xr,k a (second order) relation on I of arity r that is closed under
≡k in I, and to each third order variable X τ,k a third order relation Rτ,k on I of
type τ , closed under ≡k in I. We don’t allow free second or third order variables
in the logics SOω and TOω. Note that allowing elements (from the domain of
the structure) in a third order relation type would change the semantics of TOω,
since we could use a third order relation of such type to simulate a second order
relation not closed under ≡k. See [AT,14] for an example of a non trivial query
in Σ2,ω

1 .
A third order non-deterministic relational machine ([AT,14]), denoted as 3-

NRM, of arity k, for k ≥ 1, is a 11-tuple 〈Q,Σ, δ, q0, b, F, σ, τ, T,Ω, Φ〉 where: Q
is the finite set of internal states; q0 ∈ Q is the initial state; Σ is the finite tape
alphabet; b ∈ Σ is the symbol denoting blank; F ⊆ Q is the set of accepting
states; τ is the finite vocabulary of the rs (its relational store), with finitely

many TOω relation symbols Rτi,k
′

i of any arbitrary type τi = (ri1, . . . , riw),

with 1 ≤ ri1, . . . , riw ≤ k′ = k, and finitely many SOω relation symbols Rri,k
′′

i of
arities ri ≤ k′′ = k; T ∈ τ is the output relation; σ is the vocabulary of the input
structure; Ω is a finite set of TOω formulas with up to k FO variables, with
no SOω or TOω quantifiers, and with no free variables of any order (i.e., all the
SOω and TOω relation symbols are in τ); Φ is a finite set of TOω formulas with
up to k FO variables, that are not sentences, with no SOω or TOω quantifiers,
and where the free variables are either all FO variables, or all SOω variables;
δ : Q×Σ ×Ω → P(Σ ×Q× {R,L} × Φ× τ) is the transition function. In any
pair in δ, if ϕ, S occur in the 5-tuple of its second component, for Φ and τ , then

either S is a TOω relation symbol Rτi,k
′

i in rs and ϕ has |τi| SOω free variables

Xr1,k
′′

1 , . . . , X
r|τi|,k

′′

|τi| with arities according to τi, and 1 ≤ r1, . . . , r|τi| ≤ k′′ =

k′ = k, or S is an SOω relation symbol Rri,k
′′

i in rs and ϕ has 1 ≤ ri ≤ k′′ = k
FO free variables. At any stage of the computation of a 3-NRM on an input
σ-structure I, there is one relation in its rs of the corresponding relation type

(or arity) in I for each relation symbol in τ , so that in each transition there is a
(finite) τ -structure A in the rs, which we can query and/or update through the
formulas in Ω and Φ, respectively, and a finite Σ string in its tape, which we can
access as in Turing machines. The concept of computation is analogous to that in
the Turing machine. We define the complexity class NEXPTIME3,r as the class
of the relational languages or Boolean queries (i.e., sets of finite structures of a
given relational vocabulary, closed under isomorphisms) that are decidable by 3-
NRM machines of some arity k′, that work in non deterministic exponential time
in the number of equivalence classes in ≡k′ of the input structure. In symbols:
NEXPTIME3,r =

⋃
c∈N NTIME3,r(2

c·(sizek)) (as usual, this notation does
not mean that the arity of the 3-NRM must be k).

A non-deterministic relational machine, i.e., an NRM in its classical formu-
lation, denoted as NRM, of arity k, for k ≥ 1, is a 11-tuple as above, where
the formulas in Ω and Φ are FO formulas with up to k FO variables, in the
vocabulary τ , and where all the relations in the relational store are second or-
der relations of arity at most k. The relational complexity class NEXPTIMEr
is the class of the relational languages or Boolean queries that are decidable by
NRM machines of some arity k′, that work in non deterministic exponential time
in the number of equivalence classes in ≡k′ of the input structure. In symbols:
NEXPTIMEr =

⋃
c∈N NTIMEr(2

c·(sizek)).

In [AT,14] we proved the following results:

Theorem 1. ([AT,14]) NEXPTIME3,r ⊆ Σ2,ω
1 . That is, given a 3-NRM M

in NTIME3,r(2
c·(sizek)), for some positive integer c, and with input vocabulary

σ that computes a Boolean query q we can build a formula ϕM ∈ Σ2,ω
1 such that,

for every σ-structure I, M accepts I iff I |= ϕM .

Theorem 2. ([AT,14]) Σ2,ω
1 ⊆ NEXPTIME3,r. That is, every class of rela-

tional structures definable in Σ2,ω
1 is in

⋃
c∈N NTIME3,r(2

c·(sizek)).

4 Existential TOω captures NEXPTIMEr

Corollary 3 NEXPTIMEr ⊆ Σ2,ω
1 . That is, given an NRM M that works in

NTIMEr(2
c·(sizek)), for some positive integer c, and with input vocabulary σ

that computes a Boolean query q we can build a formula ϕM ∈ Σ2,ω
1 such that,

for every σ-structure I, M accepts I iff I |= ϕM .

Proof. This is a consequence of Theorem 1 by the following two immediate
facts: 1) an NRM is a special case of a 3-NRM, with no third order relations
in its rs, and 2) an NRM M is in NEXPTIMEr iff M , as a 3-NRM, it is in
NEXPTIME3,r. 2

Theorem 4. Σ2,ω
1 ⊆ NEXPTIMEr. That is, every class of relational struc-

tures definable in Σ2,ω
1 is in

⋃
c∈N NTIMEr(2

c·(sizek)).

Proof. Let σ be a relational vocabulary, let ϕ be a Σ2,ω
1 [σ] sentence of the form

∃k3,1X τ1,k3,11 . . . ∃k3,sX τs,k3,ss (ψ), where ψ is a Σ1,ω
t formula, for some t ≥ 1, with

atomic TOω formulas formed with the TOω variables X1, . . . ,Xs. For the sake
of a simpler presentation we assume w.l.o.g. that for 1 ≤ i ≤ s the type of the
relation Xi is τi = (r3,i, ..., r3,i) of cardinality r3,i, with r3,i ≤ k3,i.

Suppose the Σ1,ω
t formula ψ is of the form ∃k2,11Y r2,11,k2,1111 . . . ∃k2,1l1Y r2,1l1 ,k2,1l11l1

∀k2,21Y r2,21,k2,2121 . . . ∀k2,2l2Y r2,2l2 ,k2,2l22l2
. . . Qk2,t1Y

r2,t1,k2,t1
t1 . . . Qk2,tltY

r2,tlt ,k2,tlt
tlt

(φ)

, where the quantifiers Qk2,t1 , . . . , Qk2,tlt are ∀k2,t1 , . . . ,∀k2,tlt , if t is even, or

∃k2,t1 , . . . ,∃k2,tlt , if t is odd, φ is an FO formula in the vocabulary σ∪{Y r2,11,k2,1111 ,

. . . , Y
r2,tlt ,k2,tlt
tlt

}, with atomic TOω formulas, and r2,11 ≤ k2,11, . . ., r2,tlt ≤ k2,tlt ,
respectively. We now build an NRM Mϕ which accepts a given σ structure I iff
I |= ϕ. It is known that for every σ, and every k ≥ 1, a formula γ(x̄, ȳ) with
k′′ ≥ 2k variables of the fixed point logic (FO + LFP) can be built s. t. on
any σ structure J, γ defines a pre-order �k in the set of k-tuples of J, whose
induced equivalence relation is ≡k (see T.11.20 in [Lib,04]). On the other hand,
it is known that (FO+LFP) captures relational polynomial time Pr ([AVV,97]).
Hence, an RM M�k of some arity k′ ≥ 2k can be built, that constructs, on
input J, the pre-order �k in J, in time polynomial in sizek′(J). We define the
arity of Mϕ as k = max ({k′3,1, . . . , k′3,s, k′2,11, . . . , k

′
2,tlt
}), where the k′ij ’s are the

arities of the RM ’s M�k3,1 , . . ., M�k2,tlt
, respectively.

Let I be the input structure. Mϕ works as follows: 1):Mϕ simulates the RM ’s
M�k3,1 , . . ., M�k2,tlt

, to build the pre-orders �k3,1 , . . ., �k2,tlt , respectively. Mϕ

builds those pre-orders in time polynomial in sizek′3,1(I), . . . , sizek′2,tlt
(I), respec-

tively. As all these arities are ≤ k (see above), that time is also polynomial in
sizek(I) (see [FT,08]). 2): By stepping through the equivalence classes of the
relation ≡k3,1 in the order given by �k3,1 , Mϕ computes sizek3,1(I), and the
same process is followed to compute sizek3,2(I), . . ., sizek2,tlt (I) by using the
equivalence relations ≡k3,2 , . . ., ≡k2,tlt , and the pre-orders �k3,2 , . . ., �k2,tlt , re-
spectively (recall that the pre-orders �k3,1 , . . ., �k2,tlt , induce total orders in the
equivalence classes of the corresponding equivalence relations ≡k3,1 , . . ., ≡k2,tlt).
Note that by the choice of k, all these computations are done by Mϕ in time
polynomial in sizek(I). 3): Mϕ needs to guess the TOω relations Sτ11 , . . . ,Sτss ,

as interpretations of the TOω variables X τ1,k3,11 , . . . ,X τs,k3,ss respectively. Each
Sτii is a set of r3,i-tuples of r3,i-ary (SO) relations closed under ≡k3,i . To rep-
resent Sτii we use three sorts of bit strings as follows: a) each bit string of sort
b3
Rr3,i,k3,i

of size sizek3,i(I) represents one of the possible r3,i-ary (SO) relations
on I, closed under ≡k3,i ; note that each bit represents one equivalence class in
≡k3,i , following from left to right the total order induced by �k3,i ; b) each bit
string of sort b2

R̄r3,i,k3,i
of size r3,i · sizek3,i(I) represents one of the possible r3,i-

tuples of r3,i-ary (SO) relations on I, closed under ≡k3,i ; c) each bit string of

sort b1
S
τi,k3,i
i

of size 2r3,i·sizek3,i (I) represents one of the possible sets of r3,i-tuples

of r3,i-ary (SO) relations on I, closed under ≡k3,i , i.e., one of the possible TOω

relations on I of type τi, closed under ≡k3,i . Let b be a bit string of sort b1.

Each bit in b represents one of the possible bit strings of sort b2
R̄r3,i,k3,i

of size

r3,i ·sizek3,i(I). The leftmost bit in b represents a bit string of type b2
R̄r3,i,k3,i

that
has all its bits 0, i.e., it is the bit string that corresponds to the r3,i-tuple formed
by r3,i empty r3,i-ary relations. The following bits in b represent the bit strings
of sort b2

R̄r3,i,k3,i
that correspond to the order in all the possible bit strings of

sort b2
R̄r3,i,k3,i

according to their binary value. And so on, up to the rightmost

bit in b, which represents a bit string of sort b2
R̄r3,i,k3,i

that has all its bits 1 (i.e.,
it is the bit string that corresponds to the r3,i-tuple formed by r3,i copies of the
r3,i-ary relation that has the r3,i-tuples in all the equivalence classes in the rela-

tion ≡k3,i). Then, Mϕ guesses s bit strings of sort b1Sτii
of size 2r3,i·sizek3,i (I), one

for each one of the relations Sτii . Note that this is done in time 2c·sizek3,i (I), and
hence also in time 2d·sizek(I), since k3,i ≤ k (see above), for some constants c, d.

4): Regarding the SOω variables quantified in the Σ1,ω
t formula ψ, to interpret

each of them we build all the possible SOω relations of the corresponding arity
and closed under the corresponding equivalence class in the the rs of Mϕ. We
build those relations by stepping in the equivalence classes of tuples ≡k2,ij ac-
cording to the total orders induced by the corresponding pre-orders �k2,ij . The
details on how to do that are equal to the algorithm used in [FT,08] to prove
Σ1,ω

1 ⊆ NTIMEr((sizek)c). Note that we can afford to do that because for each

variable Y
r2,ij ,k2,ij
ij the number of such relations is bounded by 2d·sizek2,ij (I), and

hence also by 2d·sizek(I), since k2,ij ≤ k (see above), for some constant d that

depends on the arity. Then, for each SOω variable Y
r2,ij ,k2,ij
ij we will require that

either for all the generated relations, or for at least one of them, depending on
the corresponding quantifier being ∀ or ∃, respectively, the formula φ is true. 5):
Evaluation of φ: Recall that φ is an FO formula with atomic TOω formulas.
To evaluate φ we consider the syntax tree of φ, Tφ, and evaluate one node of it
at a time in the finite control of Mϕ, in a bottom up direction. To that end, for
every node α in Tφ, that represents a sub-formula with r ≥ 1 free FO variables,
we define in the rs an r-ary relation variable Rα. And for every node α in Tφ,
that represents a sub-formula with no free FO variables, we define in the rs a
1-ary relation variable Bα that represents a Boolean variable, which we interpret
as True if Bα = dom(I), and as False if Bα = ∅. Note that all the SOω relations
that appear in the nodes in Tφ are in the rs of Mϕ. Every node in Tφ is of one of
the following kinds: i) an atomic FO formula with a relation symbol either in σ or
quantified by an SOω quantifier in ψ, ii) a ∨ connective, iii) a ∧ connective, iv) a
¬ connective, v) an existential FO quantifier, or vi) an atomic TOω formula with
a relation symbol quantified by a TOω quantifier in ϕ. We omit the details on
how to evaluate the nodes of the first 5 kinds, since they are straightforward, and
focus on the nodes that correspond to atomic TOω formulas. Suppose a given

node α in Tφ corresponds to the sub-formula X τi,k3,ii (V
r3,i,k3,i
1 , . . . , V

r3,i,k3,i
r3,i)

with τi = (r3,i, ..., r3,i) of cardinality r3,i, with r3,i ≤ k3,i as stated in the begin-

ning of the proof, and where V
r3,i,k3,i
1 , . . . , V

r3,i,k3,i
r3,i are either relation symbols in

σ or quantified by an SOω quantifier in ψ. We check whether or not the r3,i-tuple

of relations (V
r3,i,k3,i
1 , . . . , V

r3,i,k3,i
r3,i) is in the TOω relation Sτi,k3,ii guessed above

for the variable X τi,k3,ii , using the (guessed) bit string b1
S
τi,k3,i
i

that represents

Sτi,k3,ii , with the following algorithm, that clearly runs in time 2c·sizek3,i (I), and
hence also in time 2d·sizek(I), since k3,i ≤ k (see above), for some constants c, d:

- Bα ← ∅ (i.e., Bα ← FALSE);
- for all bit strings of sort b2

R̄r3,i,k3,i
, (a1, . . . , a

2
(r3,i·sizek3,i (I))

), counting in binary,

varying n from 1 through 2r3,i·sizek3,i (I) (i.e., for all r3,i-tuples of r3,i-ary (SO)
relations closed under ≡k3,i);

- for j = 1 through r3,i (i.e., the j-th component in the tuple of (SO) rel.);

- S
r3,i,k3,i
i,j ← ∅;

- for l = 1 through sizek3,i(I) (i.e., bit l in bit substring of sort b3
R
r3,i,k3,i
j

);

- if bit m of bit string an is 1, where m = (j− 1) · sizek3,i(I) + l, (i.e.,
bit m in a bit string of sort b2

R̄r3,i,k3,i
)

- add to S
r3,i,k3,i
i,j the l-th equivalence class in ≡k3,i , according to

pre-order �k3,i (i.e., all the r3,i-tuples of elements in that class);
- end l;

- end j;
- if bit n in bit string b1

S
τi,k3,i
i

= 1

- if (V
r3,i,k3,i
1 = S

r3,i,k3,i
i,1 ∧ . . . ∧ V r3,i,k3,ir3,i = S

r3,i,k3,i
i,r3,i

)

- Bα ← dom(I) (i.e., Bα ← TRUE);
- end all; 2

5 Conclusions

From Theorems 1, 2, 4, and Corollary 3, we have the following result:

Corollary 5 Let M3 be a 3-NRM that works in NTIME3,r(2
c·(sizek)), for some

positive integer c, that computes a Boolean query q. Then, there is a NRM M2

that works in NTIMEr(2
d·(sizek)), for some positive integer d, that also com-

putes q. 2

This is very interesting, since in the general case it is much easier to define an
NRM using TO relations in its rs, and TO formulas to access it, than restricting
the machine to SO relations in its rs, and SO formulas. Then, to prove that a
given query is computable by an NRM it is enough with showing that it can be
computed by a 3-NRM. Note however, that we think that we still need 3-NRM’s
as well as the third order relational complexity class NEXPTIME3,r, if we need
to work with oracle NRM’s with third order relations, since as the oracle cannot
access the tape of the base machine (see [FT,08]), there seems to be no way to
pass the bit strings that represent TO relations from the base to the oracle.

Recall that it has been proved that RM’s have the same computation, or
expressive power, as the (effective fragment of the) well known infinitary logic

with finitely many variables Lω∞ω ([AVV,95]). On the other hand, analogously
to the well known result that states that the computation power of deterministic
and non deterministic Turing machines is the same, it is straightforward to see
that any NRM Mn can be simulated by a (deterministic) RM Md working in
relational time exponentially higher, just by checking in Md all possible tran-
sitions instead of guessing one in each non deterministic step of the transition
relation of Mn. Then, the following is immediate:

Corollary 6 Σ2,ω
1 ⊆ (effective fragment of) Lω∞ω. 2

Finally, in [GT,10], the logic SOF was introduced and defined as a seman-
tic restriction of SO where the valuating r-ary relations for the quantified SO
variables are closed under the relation ≡F of equality of FO types in the set of
r-tuples of the structure. It was shown there that its existential fragment Σ1,F

1 is
not included in Lω∞ω, as opposite to Σ1,ω

1 which is. Then, we have the following
result:

Corollary 7 Σ1,F
1 (Σ2,ω

1 . 2

References

1. [AT,14] J. Arroyuelo, J. M. Turull-Torres, “The Existential Fragment of Third Order
Logic and Third Order Relational Machines”, in Proceedings of the XIX Argentine
Conference on Computer Science CACIC 2014”, ISBN 978-987-3806-05-6, Buenos
Aires, October 20-24, p. 324-333, 2014.

2. [AV,91] Abiteboul, S., Vianu, V., “Generic Computation and its Complexity”,
STOC 1991.

3. [AVV,95] Abiteboul, S., Vardi, M., Vianu, V., “Computing with Infinitary Logic”,
Theoretical Computer Science 149, 1, pp. 101-128, 1995.

4. [AVV,97] Abiteboul, S., Vardi, M. Y., Vianu, V., “Fixpoint logics, relational ma-
chines, and computational complexity”, JACM 44 (1997) 30-56.

5. [Daw,98] Dawar, A., “A restricted second order logic for finite structures”. Informa-
tion and Computation 143 (1998) 154-174.

6. [Fag,74] Fagin, R., “Generalized First-Order Spectra and Polynomial-Time Recog-
nizable Sets”, in “Complexity of Computations”, edited by R. Karp, SIAM-AMS
Proc., American Mathematical Society, Providence, RI, pp. 27–41, 1974.

7. [FPT,10] F. A. Ferrarotti, A. L. Paoletti, J. M. Turull-Torres, “Redundant
Relations in Relational Databases: A Model Theoretic Perspective”, Jour-
nal of Universal Computer Science, Vol. 16, No. 20, pp. 2934-2955, 2010.
http://www.jucs.org/jucs 16 20/redundant relations in relational

8. [FT,08] Ferrarotti, F. A., Turull-Torres, J. M., “The Relational Polynomial-Time
Hierarchy and Second-Order Logic”, invited for “Semantics in Databases”, edited
by K-D. Schewe and B. Thalheim, Springer LNCS 4925, 29 pages, 2008.

9. [GT,10] Grosso, A. L., Turul-Torres J. M., “A Second-Order Logic in which Variables
Range over Relations with Complete First-Order Types”, 2010 XXIX International
Conference of the Chilean Computer Science Society (SCCC) IEEE, p. 270-279,
2010.

10. [Lib,04] Libkin, L., “Elements of Finite Model Theory”, Springer, 2004.
11. [Tur,06] J. M. Turull-Torres, “Relational Databases and Homogeneity in Logics

with Counting”, Acta Cybernetica, Vol 17, number 3, pp. 485-511, 2006.

