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Abstract 

This paper presents the calculation of the state matrix A 

of the power system through a program developed under 

MATLAB. This program is called SIAM (Sistema 

Informático para Análisis Modal - Computational System 

for Modal Analysis). The state matrix is obtained from 

the load flow solution data and from the dynamic model 

parameters employed. The detailed models of 

synchronous machines, automatic voltage regulators and 

power system stabilizers are linearized for the 

calculation. To evaluate the method proposed, there is a 

comparison of results between SIAM and a commercial 

program for a reference case published. 
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1. Introduction 

The modal Analysis determines the eigenvalues or modes 

of oscillation of the system, expressed in terms of their 

frequency and damping. For modal analysis, the system 

state matrix A is required. This matrix is composed by the 

partial derivatives of the state variables referred to each 

other [1]. 

In studies carried out over the Argentinean 

interconnected power system (SADI-SIP), the state 

matrix is obtained from the same nonlinear models used 

for transient stability studies [2]-[3]. The dynamic model 

database is managed by the transmission system operator 

(CAMMESA) and is available only for the commercial 

program PSS/E (hereinafter referred as Commercial 

Program - CP). This implies some limitations to perform 

specific analysis on the power system. 

For more flexibility, a program under MATLAB was 

developed to build and to process the state matrix, instead 

of the specific module on the CP package. This program 

was called SIAM. 

SIAM was developed to obtain a more versatile tool for 

studies of small signal stability. This tool can be used not 

only to calculate the eigenvalues and eigenvectors, but 

also to obtain the participation factors, mode shape, 

controllability and observability indices such as the 

residues. These features allow the design of different 

control strategies to avoid instabilities. 

This program has the additional advantage of being able 

to perform the analysis based on a load flow solution 

without the need to migrate all data to any new software. 

In this case it is used a specific CP, but it could be used 

with any other. Additionally to the load flow solution 

data, it only needs to know the dynamic model 

parameters employed. The SIAM contains more than 100 

types of standard and user developed models to represent 

the synchronous machine (SM), Automatic Voltage 

Regulator (AVR) and Power System Stabilizer (PSS). 

Another advantage of the SIAM is the analytical method 

of derivative calculation, which allows the use of highly 

nonlinear models with a bounded mistake. When the 

incremental method is used (step-type disturbance on the 

state variables for the derivative computation), there are 

greater errors which could spoil the analysis. 

2. Differential-Algebraic Model 

A. Description 

The dynamic behavior of a power system can be 

described by a set of nonlinear differential equations 

called Differential-Algebraic Equations (DAE) shown in 

(1): 
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where f represents the dynamic characteristic of the 

system components, while g represents the nonlinear 

network equations. The state variables xd belong to 

generator models and control elements in the system, 

such as AVR and PSS. For this analysis, the algebraic 

variables xa are the injected currents (Îg) by the generators 

and the voltages on each node (Û=Ue
jθ

). 

The h function represents the output behavior and u are 

the independent inputs. Both, h and u are considered null 

for this first analysis. At the same time, g consists of two 

functions, one describing the link between the generator 

stator and the grid (g1) and another corresponding to the 

relations between network nodes (g2). These two 

functions are call Stator Equations and Network 
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Equations respectively [4]. With these assumptions, (1) 

can be described as (2): 
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were g1 and g2 are given for the i-th bus by: 
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where ψ”d and ψ”q are the dq components of sub-

transient flux, ω is the rotor speed, R is the stator 

resistance, X” is the sub-transient reactance, Id and Iq are 

the dq components of the current, δ is the rotor angle, 

PGi+jQGi = Ui e 
jθi

(Idi-jIqi)e 
-j(δi-π/2)

 is the power injected by 

the generator in the i-th bus, Yike
jαik is the i-k element 

from the admittance matrix of the system, and n is the 

number of buses. PLi and QLi are the active and reactive 

load power demanded in the i-th bus, which could be 

nonlinear functions of the bus voltage. 

B. System Linearization 

If (2) is linearized for a given operating point, and written 

in matrix form, the DAE full matrix result: 
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Full matrix is formed by sub-matrices. The first row of 

(5) represents the linearized expression of the f funtion 

from (2). The sub-matrices A, B1 and B2 describe how the 

state variables and algebraic variables affect the 

derivatives for each state variable. Those are computed 

analytically based on each specific model. At the same 

time, each of these matrices is composed of m sub-

matrices, independent from each other, which represent 

the linearized models used for the dynamic representation 

of each plant [4]-[6]. A and B1 are diagonal matrices 

while B2 is an sparse matrix. The sub-matrices shape of 

A, B1 and B2 are shown in (6). 
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The second and third row of (5) represent the linearized 

expressions of the functions g1 and g2 from (2), 

respectively. The matrices C1 and D1 are diagonal while 

C2, D3 and D2 are sparse matrices. The matrix D4 is 

known as the Jacobian of the network and its elements 

are the derivative expressions of the active and reactive 

power, respect to the module and voltage angle. 

The system state matrix (Asyst) is obtained from (5) by 

eliminating the algebraic variables. The mathematic 

model is reduced to (7): 

 
systx A x     (7) 

The modal analysis is performed based on the system 

state matrix (Asyst) from which the eigenvalues (λ) and 

eigenvectors (right eigenvector V and left eigenvector W) 

can be calculated. 

3. Computational Implementation 

In order to calculate the coefficients of the different sub-

matrices, it is necessary to have information regarding 

the load flow solution of the case under analysis. These 

results are obtained in the CP environment. Prior to data 

collection, all generators must be converted to current 

sources with output impedance equal to the stator 

impedance. The loads must be converted, considering the 

voltage value of the node, to constant admittance, 

constant current or constant power loads in whichever 

proportion. 

The general structure of the calculation method of the 

DAE full matrix is described in Figure 1. 

Data from the CP is entered to SIAM. In the first step the 

program sorts the data from the load flow solution and 

incorporates the dynamic model parameters for each SM 

and the control elements, such as AVR and PSS. At this 

point ,  SIAM already has  al l  data  necessary for  

 

Figure 1: General structure of the calculation method. 



constructing the DAE full matrix. The assembly of this is 

done by computing the sub-matrices: A, B1, B2, C1, C2, 

D1, D2, D3 corresponding to the m generation buses. Also, 

the Jacobian (matrix D4) of the network is calculated. 

When the DAE full matrix is ready, the state matrix 

(Asyst) is obtained from this. The eigenvalues (λ) and 

eigenvectors are calculated, as well as the frequency and 

damping of the modes obtained. 

4. Mode Shape, Participation Factors and 

Controllability Index 

A. Mode shape 

The right eigenvector vi is known as mode shape 

corresponding to λi. For a given eigenvalue, the mode 

shape is very useful for identifying a group of coherent 

generators in a multi-machine system [1], [6]. 

B. Participation Factor 

Any arbitrary element vki in V can be seen as contribution 

of the i-th mode in the k-th state variable, i.e. activity of 

the i-th mode in the k-th state variable. On the other hand 

wik corresponds to the weight of the contribution of the k-

th sate variable to i-th mode. The product of vik and wki is, 

however, a dimensionless measure known as 

participation factor [1]. The most generic definition of 

participation factor is given as: 

 ki ki ikp v w   (8) 

C. Controllability index 

When the system has independent input such as FACTS 

or other devices outputs [6]-[7], the reduced model (7) 

result: 

 
systx A x F u       (9) 

Substituting Δx=VΔz in (9), result: 

 systz WA V z WF u       (10) 

Expression (10) can be written for the k-th mode as: 
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where wk is the left eigenvector corresponding to the k-th 

mode, fi is the i-th column vector of matrix F and l is the 

total number of independent inputs. The controllability 

index (CI) of the i-th input to the k-th mode is defined as: 

 T

i k iCI w f   (12) 

For the case of an SVC, with susceptance Bsvc, which is 

placed at bus i, the reactive power injected into de bus 

(Qsvc), the most basic model is given by: 

 2

svci svci iQ B U   (13) 

Considering only variations of Bsvci and linearizing (13), 

it is obtained: 

 2

svci i svciQ U B     (14) 

If (5) is reduced by elimination of the algebraic variable 

Îg, it can be rewritten as: 
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The second equation of (15) represents the power 

balances of the system, combining this with (14) 

provides: 

 ˆ0 svcC x D U H B        (16) 

where matrix H contains partial derivatives of power 

balances equation at all the buses with respect to the 

susceptance of the SVC. Substituting (16) into (15) and 

eliminating the algebraic variables ΔÛ, result: 
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The controllability index of SVC placed at the i-th bus to 

the k-th mode can be defined as given in (12). 

 'T

i k iCI w h   (18) 

where wk is the left eigenvector of matrix A’ 

corresponding to the k-th mode. 

5. Numerical example 

The effectiveness of the proposed method was tested on 

16-machines and 68-buses system [5]-[6]. This is a 

reduced order equivalent of New England Transmission 

System (NETS) and the New York Power System 

(NYPS). There are nine generators in NETS area and 

three in NYPS area. The three neighboring utilities are 

represented as three equivalent large generators #14, #15 

and #16. Single line diagram of this system is shown in 

Figure 2. 

This system was analyzed using the proposed method and 

its results were compared with those obtained from the 

commercial program, which is widely recognized 

worldwide. 

Each SM was modeled to have three damper windings 

and one field winding. The first eight generators have DC 

excitation, while machine #9 was equipped with fast 

excitation. Machine #9 has also a speed input PSS. 

These model characteristics were implemented using the 

generator model GENROU (IEEE Generator Model 2.2) 

[8], DC exciter model IEEET1 (IEEE Type DC1A), static 

exciter model ESST1A (IEEE Type ST1A) and PSS 

model IEEEST (IEEE Type PSS1A), all from CP IEEE 

standard library [9]-[10].All loads are considered of 

constant power. 

A. Oscillation modes 

A 700 MW flow between NETS and NYPS was 

assumed. This was performed by adjusting the load and 

generation in both areas. 

As it was explained before, the resolution of the load 

flow is performed in the CP environment. 



 
Figure 2. 16-machines and 68-buses system. 

Subsequently, the state matrix was calculated by two 

methods, using SIAM and the activity ASTR through 

module program for dynamic studies from CP. 

SIAM provides directly the eigenvalues of the system, 

while the matrix obtained by the CP must be post-

processed using another module, which is included in the 

CP package. 

The activity ASTR calculates the state matrix by 

applying a percentage perturbation to each state variable 

to obtain its derivative. When the models are nonlinear, 

this method is very sensitive to the amplitude chosen for 

the perturbation. 

According to the experience obtained in different studies 

carried out over the Argentinean power system, a value 

of 1% results adequate. This value prevents large 

excursions of the state variables, or very small excursions 

that are lost in the numerical noise. 

Figure 3 shows the eigenvalues obtained by the analytical 

method in the SIAM and by the incremental method in 

the CP. 

The oscillation frequency and damping of the most 

important modes (damping < 10%) obtained by both 

programs are shown in Table I. 

The greatest percentage error in frequency appear for 

mode 1 (1.49 %) and for damping in mode 2 (9.8 %). 

Despite the percentage damping error is high, the 

absolute error is just about 0.0047. 

As it can be seen from the numerical example, when it is 

used the state matrix obtained from SIAM, the results 

obtained are similar to those achieved with the 

commercial program CP. The small differences in the 

results of both programs are due to the method used to 

obtain the state matrix, analytical versus incremental. 

B. Participation Factor 

The participation factors for all modes listed in Table I 

were computed using the expression (8). Also, the 

participation factors for the same modes were obtained 

from the CP. The results are shown in Table II. The 

values were normalized to the major. 
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Figure 3. Eigenvalues obtained by both method. 

Table I. Modes with damping  10%. 

Real Imag Damping Freq. (Hz) Real Imag Damping Freq. (Hz)

1 -0.1422 ±2.2934 0.0619 0.3650 -0.1465 2.3281 0.0628 0.3705

2 -0.1439 ±3.3439 0.0430 0.5322 -0.1596 3.3394 0.0477 0.5315

3 -0.2494 ±4.0917 0.0608 0.6512 -0.2454 4.1312 0.0593 0.6575

4 -0.2627 ±4.9838 0.0526 0.7932 -0.2645 4.9827 0.0530 0.7930

5 -0.4957 ±6.7708 0.0730 1.0776 -0.4892 6.7494 0.0723 1.0742

6 -0.4650 ±7.2444 0.0641 1.1530 -0.4661 7.2331 0.0643 1.1512

7 -0.6940 ±7.6313 0.0906 1.2146 -0.6868 7.6159 0.0898 1.2121

8 -0.6400 ±7.9420 0.0803 1.2640 -0.6346 7.9228 0.0798 1.2610

9 -0.4972 ±8.3489 0.0594 1.3288 -0.4991 8.3337 0.0598 1.3264

10 -0.9935 ±9.6801 0.1021 1.5406 -0.9882 9.6646 0.1017 1.5382

11 -0.6877 ±9.6951 0.0708 1.5430 -0.6837 9.6876 0.0704 1.5418

12 -0.9437 ±9.8245 0.0956 1.5636 -0.9408 9.8098 0.0955 1.5613

13 -0.8142 ±11.8188 0.0687 1.8810 -0.8119 11.802 0.0686 1.8784

Mode
CPSIAM

 

Table II: Participation Factors. 

 

1

2

3

4

5

6

7

8

9

10

11

12

13

1.00, 0.63, 0.22, 0.14 7, 6, 4, 5

1.00, 0.92 1, 8

1.00, 0.38, 0.27 4, 5, 7

1.00 11

1.00, 0.93 1, 8

1.00, 0.38, 0.28 4, 5, 7

1.00 11

1.00, 0.58, 0.53, 0.30, 

0.14
13, 15, 14, 16, 12

1.00, 0.69 16, 14

1.00, 0.53, 0.40, 0.39, 

0.38, 0.38, 0.28, 0.17, 

0.17

13, 6, 5, 7, 3, 4, 2, 

9, 1

1.00, 0.43, 0.15 15, 14, 16

1.00, 0.97, 0.40, 0.29, 

0.17, 0.16
2, 3, 5, 6, 4, 7

1.00, 0.15 12, 13

1.00, 0.78, 0.34, 0.19 5, 6, 7, 4

1.00, 0.98 3, 2

1.00, 0.17, 0.14, 0.10 10, 8, 1, 9

1.00, 0.15 12, 13

1.00, 0.78, 0.33, 0.18 5, 6, 7, 4

1.00, 0.98 2, 3

1.00, 0.17, 0.14, 0.10 10, 8, 1, 9

1.00, 0.63, 0.23, 0.14 7, 6, 4, 5

1.00, 0.69, 0.61, 0.35, 

0.14
13, 15, 14, 16, 12

1.00, 0.69 16, 14

1.00, 0.49, 0.38, 0.36, 

0.35, 0.35, 0.25, 0.15, 

0.15

13, 6, 5, 7, 4, 3, 2, 

9, 1

1.00, 0.43, 0.15 15, 14, 16

1.00, 0.97, 0.41, 0.28, 

0.17, 0.15
2, 3, 5, 6, 4, 7

Mode
SIAM CP

Participation Factor Participation FactorMachine Machine

 



C. Mode shape 

The mode shape of the mode 1 (0.365 Hz) was obtained 

from its right eigenvector. The eigenvector elements 

corresponding to machine angle are shown in Figure 4-a. 

This shows two clusters of generators oscillating against 

each other. The first group corresponds to all generators 

from NEST and NYPS areas and the second group 

corresponds to the equivalent generators #14, #15 and 

#16. This is an inter-area oscillation and the major 

participants are the machines #13, #15, #14 and #16 as is 

shown in Table II. 

Figure 4-b shows the mode shape of the mode 5 

(1.0776 Hz). The eigenvector elements corresponding to 

machine angle. There are two clusters of generators 

oscillating against each other. The first group 

corresponds to the generators #2 and #3 from NEST and 

the second group corresponds to the generators #4, #5, #6 

and #7 from the same area. This is an inter-unit 

oscillation. 

The mode shape of the mode 13 (1.881 Hz) was obtained 

from its right eigenvector. The eigenvector elements 

corresponding to machine angle are shown in Figure 4-c. 

This shows the #11 generator oscillating against the rest 

of the system. This is a local oscillation. 

Observing the Table II and the mode shape of each mode 

it is possible to determine that: the modes 1, 2, 3,4 and 9 

are inter-area oscillations, the modes 5, 6, 7, 8, 10, 11 and 

12 are inter-unit oscillations and the mode 13 are local 

oscillations [11]. 

D. Controllability Index 

The controllability indices are performed for all modes 

listed in the Table II. Those are computed for an SVC in 

all bus locations of the study system, which is normalized 

with respect to the highest index. 

The highest indices for each mode are shown in the 

Table III. For mode 1, it can be seen that the highest 

index corresponds to the bus 40. This bus is the arrival of 

the tie line that links NYPS with Area 3. If the indices are 

analyzed, the bus 40 has higher indices too for mode 2 

(2nd) and mode 4 (1st). This means that an SVC located 

in this bus could help to control these three modes. 

Table III: Controllability Index for an SVC. 

 

1

2

3

4

5

6

7

8

9

10

11

12

13

Mode
SIAM

Controllability Index Bus

1.000, 0.837, 0.816, 0.785 40, 48, 50, 51

1.000, 0.842, 0.881 50, 40, 51

1.000, 0.920, 0.910, 0.903 64, 22, 23, 21

1.000, 0.784 40, 48

1.000, 0.928, 0.895, 0.841 2, 3, 64, 62

1.000 12

1.000, 0.979, 0.958, 0.944 6, 22, 23, 7

1.000, 0.973 2, 3

1.000, 0.834, 0.743 9, 29, 28

1.000 7

1.000, 0.734 8, 25

1.000 4

1.000, 0.870, 0.828 32, 11, 33  

 

 

 
Figure 4-a. Mode shape of mode 1. Inter-area oscillations. 

 

Figure 4-b. Mode shape of mode 5. Inter-unit oscillations 

 

Figure 4-c. Mode shape of mode 13. Local oscillations 

6. Conclusions 

SIAM was developed to compute the DAE system full 

matrix of a power system and to obtain its eigenvalues 

and eigenvectors with this matrix. 

SIAM only need as input the data from load flow solution 

and the dynamic model parameters. These inputs can be 

obtained from any commercial program used for stability 

studies. 

SIAM was tested with a well known benchmark (16-

machines and 68-buses system). 

The differences between result obtained from a 

commercial program and SIAM are negligible, not only 

in the mode frequency but also in its damping. 

Additionally, the availability of the DAE system full 

matrix in SIAM environment allows additional 

calculations such as controllability and observability 

indices. This availability is very important to formulate 



control strategies and to find optimal location of devices 

such as FACTS. 
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