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Abstract. The diffusion of wireless communication services (telephone,
internet, etc.) is continuously growing these days. Unfortunately, the cost
of the equipment to provide the service with the appropriate quality is
high. Thus, selecting a set of geographical points allowing optimum cov-
erage of a radio frequency signal by minimizing the use of resources is es-
sential. The above task is called the Radio Network Design (RND) and is
a NP-hard problem, i.e., this can be approached by using metaheuristics
techniques. Metaheuristics are methods comprising local improvement
procedures and high-level strategies for a robust search in the problem
space. In this work, different versions of the CHC algorithm with a fit-
ness function based on the efficiency of resource use are proposed. The
achieved results are encouraging in terms of efficiency and quality in all
the analysed scenarios.

1 Introduction

Nowadays wireless media are perhaps the largest generators of the growth
in communications. A message is encoding using electromagnetic waves between
the transmitter and the receiver in order to let the messages exchange. Waves
are subject to noise through the free space (attenuation, reflection, refraction,
and diffraction) caused by atmospheric phenomena and obstacles [13]. Conse-
quently there are losses in the signal level and the receiver may not be able to
decode the message. The focus of this work is based on radio frequency, allow-
ing to extend the application of metaheuristics to any service (radio, television,
Internet, cell phone, etc.) [8]. Hence is a paramount challenge to achieve posi-
tioning the antennas where the most of the receivers can have an unobstructed
line of sight and thus, ensuring as much as possible a high quality signal level
during the whole transmission time. The task for solving this problem in the
traditional method is called RND [7]. In this work we propose to analyze and
evaluate population-based metaheuristics, more precisely a variant of Genetic
Algorithms (GAs) [5] to find an acceptable solution for the RND problem. For-
mer versions of GAs are implemented with one cut point, two cut point and
uniform recombination operators. The CHC Algorithm (Crossover elitism popu-
lation, Half uniform crossover combination, Cataclysm mutation) is a variant of
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a GA proposed in [4]. Our proposed CHC Algorithm consists of the implemen-
tation of three alternative methods for the “Cataclysm mutation” which used
in CHC for breaking a local optimum convergence: (1) the classical mutation
method, (2) retaining a proportion of bits of the best individual method, and
(3) a local search iterated hybridization [6]. Besides we introduce a variation
mechanism of the Hamming distance for incest prevention and also a fitness
function based on the efficiency of surface coverage with respect to the radiated
signal. In this way, each installed resources (e.g., antennas) will be used to its
full potential, and consequently minimize the amount of them necessary to fulfill
the objective. This paper is organized as follows: Section 2 contains the problem
definition and explains the proposed fitness function. Section 3 describes the pro-
posed algorithms and develop alternative mechanism to detect the population
convergence. Section 4 presents the experimental study and the achieved results,
and finally in Section 5, the conclusions of this work are given.

2 Problem Definition

According to [3] the problem of positioning antennas can be described as:
given a set of candidate sites, a discretized geographic area, and a set of points
that need to intercommunicate with each other; the objective is to select a subset
of sites from the set of candidate sites that maximize the coverage by using a
minimum number of resources and satisfying the traffic estimation and threshold
signal reception between points. The signal level between the transmitter and
receiver [15] determines the available bandwidth, being the indicator to satisfy
the estimated traffic and threshold reception. This is regardless of the equipment
capacity, technology or service to provide (e.g., radio, television, mobile phone,
Internet, etc.). In order to discretize the ground surface, a matrix M of f × c is
used, relating the latitude and longitude with the subscripts i, j of the cells in
the matrix. Then, the height of each point at sea level is stored in each cell in
M . This form of discretization responds to the raster model used in geographic
information systems (GIS) and has been used in [9] and [10] to solve the RND
problem. The candidates for the installation of antennas sites are represented as
a subset of cells belonging to the matrix M . For this problem, omnidirectional
antennas (radiating in all directions) are used and a ground plane is considered.
Figure 1 shows the achieved coverage by a possible radio network. The value 1 in
a cell indicates that the site is covered by a single antenna brand, the value −1
indicates that the site is covered by more than one cell; therefore, an interference
is produced. Finally, a value 0 means that the site is not covered by any antenna.
Each possible radio network is modeled by the activation or not of each of the
candidate sites. The problem search space is determined by 2n where n is the
number of candidate sites.

The fitness function uses the values in the ground matrix M and assigns a
unique numerical value to each solution. This value is a measure of the quality of
the radio network evaluated and leads to different search algorithms on the radio
network to maximize coverage, and minimize interference and use of resources.
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Fig. 1. Discretized ground by a matrix with possible covering values for a candidate
network radio

The amount of 1s, 0s, and −1s indicate respectively the total number of covered
sites, uncovered sites, and illuminated sites by more than one antenna. Equation
1 displays the fitness function using the values obtained, the first factor deter-
mines the degree of covering ground and the second factor determines the quality
of the covering ground. When the factors tend to one, the maximization of the
covered area and the minimization of the use of resource is satisfied. Finally,
the closer to 1 is the fitness value, the better is the solution (i.e., the maximum
coverage with minimum use of resources).

f(x) = (1− #UncoveredPoints

#GroundPoints
)× (1− #InterferedPoints

#CoveredPoints
) (1)

3 CHC Algorithm

The CHC Algorithm combines a conservative selection strategy that preserves
the best individuals found [4],[14]. The recombination operator generates off-
spring that maximizes their genetic differences from their parents. Reproduction
occurs only if the Hamming distance (genetic difference between the parents) is
greater than the threshold of incest (1/4 the size of the chromosome). The half
uniform crossover scheme (HUX) is used to maximize the genetic distance be-
tween individuals. The new population is generated with a selection of the best
individuals between parents and children. For each not improving generation,
the genetic distance is decreased if the number of bits different from the selected
parents is less than a threshold, i.e., the individuals are too similar. This deter-
mines that the population has converged, so that the population is restarted by
triggering a cataclysm method[2]. Algorithm 1 shows the pseudo-code of CHC.

3.1 Proposed CHC Algorithms

For the RND problem with large chains bits (e.g., 200 or more bits) incest
threshold for restarting the population demands a large computational effort
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Algorithm 1 CHC pseudo-code

1: t = 0 // time generation
2: Initialize (Pa, incestThreshold)
3: while not (endCondition(t, Pa)) do
4: parents=parentsSelection(Pa,incestThreshold)
5: offspring=HUX(P(t))
6: evaluate(offspring, parents)
7: Pn = elitismSelection(offspring, parents)
8: if not (improvement(Pa,Pn))
9: incestThreshold=incestThreshold-1

10: if incestThreshold <= k
11: Pn = cataclysm(Pa)
12: end if
13: endif
14: t = t+1
15: Pa = Pn
16: end while
17: return best solution

and number of iterations. The proposed method uses the genetic variability of
the population to measure the level of diversity of the individuals. It is based
on the probability of acceptance of the Simulated Annealing (SA)[1], but in
reverse way as the temperature increases with the number of iterations and
therefore increasing the chance of a cataclysm. For each unimproved iteration,
the variability of the generated population is compared against a variability
pattern. The difference between these two variability patterns must always be
lower than the environment centered on the pattern variability and the radius
must always be equal to the probability of acceptance. As iterations progress,
the environment is reduced and if the variability of the generated population is
outside of the environment, then the cataclysm is triggered. The variability v is
defined by:

v =

n∑
i=1

(
c∑

j=1

xij

)
n× c

where x ∈ (0, 1), v is the population variability, c the chromosome size and n
the number of individuals in the population.sThe acceptance environment ea is
defined by:

ea = 1− e

(
(f(x′)−1)

T

)

where f(x′) is the local optimum value and T the number of iterations without
improvements. The proposed based CHC algorithm is obtained by replacing the
lines 9 to 13 of Algorithm 1 by the pseudo-code displayed in Algorithm 2. The
parameter “method” in line 5 varies from values 1 to 3 (see explanation below)
giving rise to the three CHC versions proposed here.
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Algorithm 2 Pseudo-code for detecting population convergence

1: varPattern =0.5 // variability pattern
2: standingPopulationVariability(Pa)
3: acceptationRadius(T, fitnessUnimprovedValue)
4: if variability is out of range
5: Cataclysm(Pa, method)
6: else
7: T = T+1 // T increases and decreases acceptance range
8: end if

The restart operators proposed for this work are: (1) Random Method (RM),
the new population keeps a copy of the best individual and the rest individu-
als are obtained by mutating the best individual [11]; (2) Bits Conservation
Method (BCM), the new population is generated retaining the best individual
and varying only a percentage of bits of the original string [12]; (3) hybridization
with Iterated Local Search (ILS). The proposed CHC versions differ from the
canonical CHC in the mechanism to escape from suboptimal regions, so they
are called QCHC (Quasi CHC). To identify the method used in each version we
call QCHC-RM for method (1), QCHC-BCM for method (2), and QCHC-ILS
for method (3).

4 Experiments and Analysis of Results

To analyze the performance of the proposed CHC Algorithms (QCHC-RM,
QCHC-BCM, and QCHC-ILS) we additionally considered a set of GAs with dif-
ferent crossover operators: one-point crossover (GA-OPX), two-point crossover
(GA-TPX), and uniform crossover (GA-UX). For each problem instance (i.e.,
matrix) the number of candidate sites was varied. The configuration of the seven
instances used are shown in Table 1. Column Instance displays the name of each
instance, column Matrix shows the matrix size used to discretize the respective
ground scenery. Column size indicates the number of cells of each ground matrix
as a result of product of the #rows by #columns. Column Sites indicates the
number of candidates for each instance. The behavior of the studied algorithms
is analyzed using various degrees of complexity related to the matrix dimensions
and number of sites conforming the optimal solution. The antennas used for each
site are omnisdirectional and they cover nine cells per antenna on the ground
matrix, i.e., if placed in cij the covering radius is one cell on all directions.

The GAs use a population of 100 individuals and 5,000 iterations with a
probability of crossover and mutation of 0.9 and 0.001, respectively. For the
QCHC-RM Algorithm the mutation probability is set to 0.05; for QCHC-BCM
was used a template pattern of 95%, varying only 5% of the bits of the best
solution. All the QCHCs algorithms used a population of 500 individuals and
2, 500 iterations. In all cases, the best individual was always kept in the new
population. For each of the instances of the experiment, 30 independent runs
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Table 1. Description of the set of instances considered

Instance Matrix Size Sites
Inst 01 12x12 144 32
Inst 02 15x15 225 50
Inst 03 18x18 324 72
Inst 04 21x21 441 98
Inst 05 24x24 576 128
Inst 06 27x27 729 162
Inst 07 30x30 900 200

were performed to ensure statistical significance. Windows 8 is used as a plat-
form running on an Intel Core a© processor i7-3630QM 12 GB RAM and 1 TB
hard disk. To analyze the performance of the proposed algorithms, only are
compared those which obtain the 100% of success in reaching the ideal coverage.
Also, the appropriate statistical tests are applied to the following performance
variables: number of evaluations and execution time. Table 2 shows the rate
success obtained by each of the algorithms in the seven instances. Column In-
stance contains the reference of the various configurations described in Table 1.
The remaining columns have the name of each used algorithm and the success
rate obtained on each instance. The displayed values indicate the percentage of
success obtained by each algorithm. Row average shows a first approximation
on the efficiency of each algorithm according to the complexity of each instance.
We can observe that the proposed QCHC-ILS Algorithm achieves 100% success
over the all instances. QCHC-RM achieves 100% success in five of the seven
instances. On the side of the classical GAs, we can see that GA-TPX obtains
the highest percentage (81.90%) of success (Inst 01, Inst 02, and Inst 03) with
respect to GA-UX and GA-OPX.

Table 2. Success rate obtained by GA-UX, GA-OPX, GA-TPX, QCHC-RM, QCHC-
BCM and QCHC-ILS Algorithms

Instance GA-UX GA-OPX GA-TPX QCHC-RM QCHC-BCM QCHC-ILS
Inst 01 100% 100% 100% 100% 100% 100%
Inst 02 93.33% 70% 100% 100% 100% 100%
Inst 03 66.7% 66.7% 100% 100% 90% 100%
Inst 04 100% 100% 86.67% 100% 90% 100%
Inst 05 90.00% 80.00% 70.00% 100% 93.33% 100%
Inst 06 63.33% 66.67% 86.67% 90% 93.33% 100%
Inst 07 26.67% 33.33% 30% 43.33% 86.67% 100%
Average 77.41% 73.81% 81.90% 90.48% 93.33% 100%
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A significance level of α = 0.05 was used for all the applied statical tests.
Due to the nature of the experiments, the values obtained by the algorithms
satisfy the condition of independence, thus Kolgomorov-Smirnov test is applied
to determine whether the data fit a normal distribution and the Levene test is
applied to verify whether the data have homoscedasticity. As the results obtained
by the algorithms do not meet the conditions of normality and homoscedasticity,
non-parametric test (Kruskal-Wallis) was used for the algorithms on instances
Inst 01 to Inst 04. The Wilcoxon test is applied to the algorithms on the Inst 05
since only two algorithms are compared: QCHC-RM and QCHC-ILS.

Tables 3 and 4 show the results obtained by the statistical tests for perfor-
mance variables of time and number of function evaluations to achieve the best
solution. For both tables, column Instance indicates the scenario configuration,
columns GA-UX, GA-OPX, GA-TPX, QCHC-RM, QCHC-BCM, and QCHC-
ILS show respectively the average values obtained for each evaluated algorithm
on the instances that achieved 100% of success. N/A (Not Available) indicates
that the algorithm does not meet this condition. Column KW/W represents the
initials of the Kruskal-Wallis and Wilcoxon test respectively. The symbols (+)
and (−) stand respectively for there are and there are not statistical difference.
The symbol ∗ indicates that the Wilcoxon test was applied. Tukey’s test applies
in all cases where statistically significant differences are detected to identify the
best performing algorithm.

Table 3. Average values for the performance variable time and the statistically signif-
icant differences obtained in each test

Instance GA-UX GA-OPX GA-TPX QCHC-RM QCHC-BCM QCHC-ILS KW/W

Inst 01 1.710 2.808 1.953 0.424 1.020 0.405 (+)
Inst 02 N/A N/A 3.317 18.219 7.639 0.754 (+)
Inst 03 N/A N/A 5.674 3.634 N/A 1.127 (+)
Inst 04 9.878 17.528 N/A 6.664 N/A 1.806 (+)
Inst 05 N/A N/A N/A 12.562 N/A 2.527 *(+)

Table 4. Average values for the performance variable number of evaluations and the
statistically significant differences obtained in each test

Instance GA-UX GA-OPX GA-TPX QCHC-RM QCHC-BCM QCHC-ILS KW/W

Inst 01 17023 28217 19663 6550 16167 6417 (+)
Inst 02 N/A N/A 32307 298033 107733 10550 (+)
Inst 03 N/A N/A 52793 40650 N/A 13183 (-)
Inst 04 86247 153673 N/A 67000 N/A 18333 (+)
Inst 05 N/A N/A N/A 112133 N/A 22100 (+)
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We can see in Table 3 that the results obtained by QCHC-ILS in terms of
performance time variable are lower than the remaining studied algorithms. The
statistical test applied to the results obtained by the algorithms in terms of this
performance variable indicate that there are statistically significant differences
between the results. In all analyzed cases the differences arise between QCHC-
ILS with respect to the other algorithms. In Table 4 we can observe that in the
number of evaluations required to achieve the best solution, again the QCHC-ILS
algorithm is one that requires the fewest number of evaluations in all instances
tested. In this case, the algorithms present differences statistically significant
in four of five instances. Here again statistically significant differences occur
between QCHC-ILS with respect to the other algorithms. Figure 2 represents
the number of instances with 100% of the hits obtained by each algorithm.
We can observe that the proposed QCHC-ILS algorithm is the only one in all
instances obtaining 100% success reaching the optimum value.

Fig. 2. Number of instances solved by the evaluated Algorithms

5 Conclusions

Three GAs called respectively GA-UX, GA-OPX, and GA-TPX analyzed,
and three versions of the CHC algorithms called respectively QCHC-RM, QCHC-
BCM, and QCHC-ILS are proposed and analyzed in this work. New incest pre-
vention mechanism based on population variability and a fitness function con-
sidering coverage efficiency of signal was used in the scenarios. The proposed
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mechanism can detect incest prevention to avoid premature convergence at a
low computational cost. All the CHC versions used the HUX operator and the
elitist selection as usually applied in the former CHC algorithm. The QCHC-
RM, QCHC-CBM and QCHC-ILS algorithms use the best individual to generate
the new population. The QCHC-ILS algorithm, in addition, applies an iterated
local search procedure that intensifies the search around each newest generated
individual during the evolutionary process.

The first instance was solved by all competitors. However, as the complex-
ity/size of the instances increase several algorithms were not able to reach the
optimum in the 30 runs (i.e., a hit ratio less than 100%). From a statistical point
of view, the hybrid algorithm (QCHC-ILS) is the best performing algorithm with
respect to the complete set of studied algorithms. This is the only algorithm that
achieves the optimal for all the instances considered. In addition to the perfor-
mance variables of time and number of evaluations, the hybrid approach has
the best performance with 95 % confidence level for the statistical test applied.
This means that this version of the CHC Algorithm is an effective improvement
over the competitors and the other QCHC versions. Future studies will address
different size of problems in order to study scalability properties for large di-
mensional search spaces. Also, other aspects of the CHC improvements will be
analyzed such as the selection mechanism and the use of parallel architectures.
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