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Abstract. A key issue in the design of Belief-Desires-Intentions (BDI)
agents is that of finding an appropriate strategy for Intention Reconsider-
ation (IR). Traditional approaches to IR defines the policy in the agent’s
design stage, which makes impossible to modify it in execution time. This
is clearly not a practical solution for agents operating in dynamic and
changing environments. Besides, IR typically involves considering multi-
ple criteria. That is why, in this work, we propose a novel approach to
IR based on a dichotomous choice model. This approach allows changing
commitments to intentions depending on how the environment evolves
and involves multi-criteria aggregation for IR.

Keywords: Intention Reconsideration, BDI Architecture, Dichotomous
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1 Introduction

The BDI model, as a practical reasoning architecture aims at making decisions
about what to do based on cognitive notions as Beliefs, Desires and Intentions.
A very important design issue in BDI agents concerns defining the intention re-
consideration policy [1, 2]. This policy will define under which circumstances the
BDI agent will use computational resources to deliberate about its intentions. At
present there is no consensus on when or how an agent should reconsider its in-
tentions. Current proposals consider the agents’ commitment levels, which range
from cautious agents (which reconsider their intentions after each action exe-
cution) to bold agents (where no reconsideration is performed until the current
plan has been completely executed).

In [3], the efficiency of these policies in different kind of environments are
investigated, but the intention reconsideration policy is defined in the agent’s
design stage, which makes impossible to modify this policy in execution time.
It is clear that this is not a practical solution for agents operating in dynamic
and changing environments. In this respect, in [2], a framework is proposed that
allows the agent choosing by itself what policy to follow based on the current
state of the world. The main idea underlying this work is that an intention
reconsideration (IR) policy can be conceived as a meta-level control process
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which selects whether to deliberate or act. This proposal is based on the discrete
deliberation scheduling framework [4], where deliberations are treated as if they
were actions.

In [2], the proposed model incorporates decision making within the IR process
of a BDI agent. To determine the best possible action, the maximum expected
utility is considered; that is, only one criterion is taken into account to solve the
decision problem. However, IR typically involves considering multiple criteria.
In this respect, Sosa et al. [5] extends [2] by applying voting-based multi-criteria
decision making to choose whether to act or to deliberate. In [5], multi-criteria de-
cision making is applied to make background decisions at different stages within
BDI architecture, namely: choosing among conflicting desires, choosing between
plans and intentions reconsideration. In opposition, our work solely focuses on
posing IR as a multi-criteria voting-based approach, a very relevant step that
was not fully approached by Sosa et al.

It is worth mentioning, that voting sucessfully works on problems where het-
erogeneity in individual preferences exist. However, various problems associated
with the aggregation of individual decisions also arise when individuals share
identical preferences, but have to make decisions given their different decision
capabilities, i.e., the problem of aggregating individual decisions under an uncer-
tain dichotomous choice setting. When individuals sharing identical preferences
operate in an uncertain environment, the problem of preference aggregation is
no longer relevant, but the issue of choice aggregation is still pertinent. In an
uncertain environment individuals may have identical or different decision skills,
but in any case they might fail and make incorrect decisions. Therefore, in this
context, the aggregation problem is conceived as “What is the most appropriate
collective decision rule for implementing the common objective of the individ-
ual decision makers?”. The answer to this question is developed in Sect. 3.1, as
proposed by Nitzan and Paroush [6, 7].

We argue, that if IR is conceived as a meta-level control process which selects
whether to deliberate or act, and multiple criteria are involved, the IR strategy
can be modeled as an uncertain dichotomous choice setting [6]. This is the main
proposal of our work and it is formalized in Sect. 4.

Our model considers voting schemes whereby each voter is required to opt for
one of two available alternatives (to deliberate or to act, in the case of IR), and
assumes a set of individuals with identical objectives but whit possibly different
abilities to identify the alternative for the attainment of their common will (IR
being optimal). Since individual preferences are identical, one of the two alter-
natives is preferred by all of them, but in the current setting, the identification
of that alternative, “the correct alternative” or “the most preferred alternative”
is unknown.

The rest of the paper is organized as follows. Section 2, briefly introduces
the BDI model to provide the background concepts underlying intention recon-
sideration. Section 3, introduces the uncertain dichotomous choice model and
the optimal voting rule that will be applied within the IR mechanism (Sect. 4).
Finally, Sect. 5 draws the conclusions and briefly describes possible future work.
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2 BDI Model

Belief-Desires-Intentions (BDI) models have been inspired from the philosophi-
cal tradition on understanding practical reasoning and were originally proposed
by Bratman et al. [8]. This kind of reasoning can be conceived as the process
of deciding what action perform next to accomplish a certain goal. Practical
reasoning involves two important processes, namely: deciding what states of the
world to achieve and how to do it. The first process is known as deliberation
and its result is a set of intentions. The second process, so-called means-ends
reasoning involves generating actions sequences to achieve intentions.

The mental attitudes of a BDI agent on its beliefs, desires and intentions, rep-
resent its informational state, motivational state and decision state, respectively.
The BDI architecture defines its cognitive notions as follows:

– Beliefs: Partial knowledge the agent has about the world.
– Desires: The states of the world that the agent would ideally like to achieve.
– Intentions: Desires (states of the world) that the agent has been committed

(dedicated resources) to achieve.

These cognitive notions are implemented as data structures in the BDI archi-
tecture, which also has an interpreter that manipulates them to select the most
appropriate actions to be performed by the agent. This interpreter performs the
deliberation and means-ends reasoning processes aforementioned, and it is shown
in Algorithm 1 (as proposed in [1]). It assumes that an explicit representation
of desires (D), belief (B) and intentions (I) exist, within the agent. The agent’s
perceptions will be represented by ρ and regarding plans, they will be referred as
“recipes” to achieve intentions. Therefore, π will be used to denote plans. Lines
1−3 initialize beliefs, intentions and the plan. The main control loop comprises
lines 4−19. In lines 5−6, the agent perceives and updates its beliefs while in line
7 it decides whether to reconsider or not. In lines 8−12 it deliberates and in line
11, it generates a plan to achieve its intentions. Lines 14−17 show that an action
of the current plan is executed. Because the purpose of the functions in this loop
can be easily derived from their names, due to space constraints we omit their
formalizations but the interested reader should refer to [1].

2.1 Intention Reconsideration

Intentions can be adopted, maintained and modified. Intentions are maintained
by means of a commitment strategy. Intention maintenance concerns the commit-
ment to single intentions that have already been adopted; whether an intention
should be abandoned or maintained. Intention modification happens “in the light
of changing circumstances” through re-deliberation. Intentions resist change, but
there are conditions under which a rational agent must consider whether its in-
tentions are still worth committing to. That is, an agent should reconsider its
intentions when it is reasonable to do so. However, IR is a computationally
costly process, and is a kind of meta-level reasoning. It is therefore necessary to
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Algorithm 1 BDI Agent control loop
1: B ← B0

2: I ← I0
3: π ← null
4: while true do
5: get next percept ρ
6: update B on the basis of ρ
7: if reconsider(B,I) then
8: D ← options(B,I)
9: I ← filter(B,D,I)
10: if not sound(π,I,B) then
11: π ← plan(B,I)
12: end if
13: end if
14: if π ̸= ∅ then
15: α← hd(π)
16: execute(α)
17: π ← tail(π)
18: end if
19: end while

fix upon an IR strategy that makes optimal use of the available computational
resources. Whereas a commitment strategy says when an individual intention
should be kept or dropped, a reconsideration strategy says when to deliberate.
Reconsideration is equivalent to re-deliberation. That is, when an agent decides
to reconsider, it activates its deliberation process.1

Situation Chose to Changed Would’ve changed reconsider(·, ·)
number deliberate? intentions? intentions? optimal?

1 No - No Yes
2 No - Yes No
3 Yes No - No
4 Yes Yes - Yes

Table 1: Interactions between reconsider(·, ·) and deliberation.

To try capture trade-off between to deliberate or to act (continue with current
intentions), Algorithm 1 incorporates an explicit meta-level control component:
reconsider(·, ·) function. Possible interactions between deliberation and meta-
level control (whether to deliberate again)2 are summarized in Table 1. The
analysis elucidates when reconsideration is optimal([8, 9]). In situation 1, the
agent does not deliberate, but if it did, it would not have changed its intentions
anyway. This situation is desirable. In situation 2, the agent does not deliberate,
but if it did, it would have changed its intentions. Here the agent gets bad

1 In Algorithm 1, deliberation process is considered as composed by options(·, ·) and
filter(·, ·, ·) functions.

2 It is assumed that the cost of executing the reconsider function is much less than
the cost of the deliberation process itself.
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advice from reconsider(·, ·). The agent chooses to deliberate in situations 3 and
4. When it does not change its intentions in situation 3, the agent is wasting
time deliberating. The reconsider(·, ·) function is not behaving optimally. The
agent does change intentions in situation 4, which means it was a good idea
to deliberate, and reconsider(·, ·) has done well. In conclusion, the purpose of
reconsider(·, ·) function is to deliberate when it pays off to deliberate (i.e., when
deliberation will lead to change intentions), and otherwise not to deliberate, but
to act.

As mentioned above, our aim in this paper is to consider the question of when
to deliberate (i.e., to reconsider intentions) versus when to act (viz. continue to
execute its current intentions) like a dichotomous choice situation.

3 Uncertain dichotomous choice model

Nitzan and Paroush [6, 7] focus on dichotomous choice situations in which a set
of n individuals is required to select one of two alternatives such as “support”
or “reject” a certain proposal or answering “yes” or “no” to a certain question.
Let us consider two generic alternatives a and b. The choice of individual i is
represented by the decision variable xi, where xi = 1 means that individual i
chooses alternative a, and xi = −1 means that alternative b is chosen instead.
The decisions of the group members are represented by a decision profile x =
(x1, · · ·, xn). In the dichotomous setting, the collective decision rule f assigns to
any possible profile x one of the values {1,−1}, where f(x) = 1 or −1 means
that, given the profile x, the group chooses alternative a or b, respectively.

In the uncertain dichotomous choice model, there are two possible states of
nature: “1” the state of nature in which a is the correct alternative that should
be chosen, and “−1” the state of nature where b is the correct choice.3 We
denote by B(t; s) the utility from choosing t in state of nature s. The common
preferences of the individuals are thus represented by the payoff matrix B:[

B(a; 1) B(b; 1)
B(a,−1) B(b,−1)

]
Let α and 1−α, with 0 ≤ α ≤ 1, denote the a-priori probabilities of realization

of states of nature 1 and −1, respectively.4 Let pi denote the probability of the
i-th expert making the right choice.5 We assume that individuals are independent
in their choices and vector p = (p1, p2, · · ·, pn) is called the vector of abilities or
skills. Without loss of generality, we assume that if i < j, then pi ≥ pj . This
means that individual 1 can be referred to as the expert and individual n as the
least competent.

3 Given state of nature 1, a is the correct alternative if B(a; 1) > B(b; 1). Given state
of nature −1, b is the correct alternative if B(b;−1) > B(a;−1).

4 Notice that, α and 1 − α are the a-priori probabilities that a and b are the correct
alternatives.

5 We assume that this probability is equal in the two states of nature and pi > 1/2.
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3.1 The optimal decision rule

The optimal collective decision rule f∗ which maximizes the expected utility of
every individual i, given the decision profile x, the a-priori probabilities of the
two states of nature α and 1−α, the payoff matrix B, and the decision skills of
individuals, p = (p1, ..., pn), is:

f∗ = sign(
n∑

i=1

βixi + γ + δ) (1)

where δ = ln
B(1)

B(−1)
, γ = ln

α

1− α
, βi = ln

pi
1− pi

, sing(t) =

{
1 t > 0
−1 t < 0

B(1) = B(a; 1)−B(b; 1) is the net utility of making a correct decision in state of
nature 1 and B(−1) = B(b;−1)−B(a;−1) is the net utility of making a correct
decision in state of nature−1. The optimal decision rule f∗ is a weighted qualified
majority rule fq∗(function 2), such that q∗ = (γ + δ)/

∑n
i=1 βi.

fq∗(x) =

{
−1 (−

∑n
i=1 βixi/

∑n
i=1 βi) ≥ q∗

1 otherwise
(2)

The two parameters γ and δ determine the desirable bias in favor of one of the
alternatives (alternative a in this case). The parameter γ specifies the asymmetry
between the a-priori probabilities of the two states of nature. The parameter δ
specifies the asymmetry between the net utilities obtained when making a correct
decision in the two states of nature.

If individual decision skills are identical, then the optimal decision rule f∗ is a
qualified majority rule fk∗ (function 3) where N(b) is the number of individuals
choosing alternative b, and k∗ = 1

2 (1 +
γ+δ
nβ ) .

fk∗(x) =

{
−1 N(b) ≥ nk∗

1 otherwise
(3)

When there is symmetry between the states of nature, γ+δ = 0, the optimal
collective decision rule is the weighted majority rule (function 4). In addition, if
the individual decision skills are identical, the optimal collective decision rule is
the simple majority rule (function 5). When there is symmetry between the states
of nature, the expert rule (function 6) is optimal if and only if β1 > β2+ · · ·+βn.

f∗ = sign(

n∑
i=1

βixi) (4) f∗ = fm = sign(

n∑
i=1

xi) (5) fe(x) = x1 (6)

3.2 Partial information on the individual decision skills

The optimal decision rule (function 1) depends on several parameters, in partic-
ular, on the decision skills of individuals. These skills have been assumed to be
known, although quite often information on these skills is very hard to get and
skills estimation can be difficult. A more plausible assumption is that individual
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decision skills are only partly known. Thus we assume that the correctness prob-
abilities pi or, equivalently, the logarithmic expertise levels βi are independent
random variables, distributed according to some known distribution function. If
the ranking of the members in the group is known, then one can follow rules
based on this ranking. The extreme cases are the majority and expert rules
(functions 5 and 6).

A general comprehensive study of weighted majority rules is a very compli-
cated task, since the class of such rules becomes very large as the number of
group members increases.6 Table 2 provides the probabilities of weighted major-
ity rules to be optimal under the assumption of uniform distribution on [1/2; 1]
of the pi’s, obtained by Nitzan and Paroush [10]. Table 3 represents the optimal
probabilities of the same rules under the assumption of exponentially distributed
logarithmic expertise levels βi, as reported in [11]. In both cases the expert rule
is far more likely to be optimal than the majority rule. Note that for n = 5 the
“leader” was the expert rule, (1, 0, 0, 0, 0), for the exponential distribution while
for the uniform distribution, the “leader” was a rule “close” to the expert rule,
called balanced expert rule, (2, 1, 1, 1, 0). In both situations, the “loser” was the
majority rule, (1, 1, 1, 1, 1).

n Rule and corresponding probability

3 (1,0,0) (1,1,1) - - - - -
0.675 0.325 - - - - -

4 (1,0,0,0) - (1,1,1,0) - (2,1,1,1) - -
0.373 - 0.277 - 0.350 - -

5 (1,0,0,0,0) (1,1,1,1,1) (1,1,1,0,0) (3,1,1,1,1) (2,1,1,1,0) (3,2,2,1,1) (2,2,1,1,1)
0.199 0.022 0.175 0.107 0.229 0.194 0.074

Table 2: Optimality probabilities of all weighted majority rules for n ≤ 5 for pi ∼ U [ 1
2
; 1]

n Rule and corresponding probability

3 (1,0,0) (1,1,1) - - - - -
0.75 0.25 - - - - -

4 (1,0,0,0) - (1,1,1,0) - (2,1,1,1) - -
0.5 - 0.25 - 0.25 - -

5 (1,0,0,0,0) (1,1,1,1,1) (1,1,1,0,0) (3,1,1,1,1) (2,1,1,1,0) (3,2,2,1,1) (2,2,1,1,1)
0.312 0.010 0.157 0.104 0.208 0.157 0.052

Table 3: Optimality probabilities of all weighted majority rules for n ≤ 5 for βi ∼ E(λ)

The probabilities Pe(n) and Pm(n) of the expert and majority rules being
optimal, respectively, were calculated or estimated in a series of papers for a
variety of distributions (in [12] a summary is shown). The comparison of Pe(n)
and Pm(n) shows that typically (but not for any distribution) the expert rule
has a much better chance of being optimal than the majority rule, especially for
large n.

6 For example, for committee size n = 3 it includes 2 weighted majority rules; for
n = 4, 3 rules; for n = 5, 7 rules; for n = 6, 21 rules; for n = 7, 135 rules; for n = 8,
2470 rules and for n = 9, 172958 rules.
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Berend and Sapir [13] have
found the optimal probabilities
for the family of restricted ma-
jority rules, expert and major-
ity rules (extreme rules) as spe-
cial cases, and the family of bal-
anced expert rules. Then, the
two families are compared, the
rules within each family, and all
rules of the two families with the
extreme rules (Figure 1). In each
family, the rule is determined by
the number of group members
(x axis) having an influence on
the group decision.

Fig. 1: Comparing the two families

However, under the restricted majority rules, each of these members is equally
influential, the balanced expert rule gives the top member almost all the power,
and the top member is outvoted only if is opposed by all other influential mem-
bers. In [13], it is assumed that logarithmic expertise levels βi are independent
exponentially distributed random variables. Figure 1 provides a schematic draw-
ing of the graphs of the functions Pbe(n, k) and Prm(n, k−1

2 ) as functions of k
(number of group members) for large n. Here, Prm and Pbe are the probabilities
of the restricted simple majority rule and the balanced expert rule being opti-
mal, respectively. In particular, the probability of the expert rule being optimal
is higher than that of all other members of the family of restricted majority rules,
while that of the majority rule is smaller than that of all others. Moreover, for
n ≥ 3, Pbe(n, k) < Pe(n); and for sufficiently large n, Pbe(n, k) > Pm(n).

In [10] it was also shown that for three-member groups, under complete
ignorance (an extreme case of partial information) regarding individual compe-
tences, simple majority rule is always preferable to the expert rule (equivalent
to an even-chance lottery on individual skills).

4 Intention reconsideration like dichotomous voting

There are various mechanisms that an agent might use to decide when to recon-
sider its intentions. We shall call such a mechanism a reconsideration strategy.
Besides, the reconsideration of intentions can be seen as a decision-making be-
tween to deliberate and to act, consisting of several criteria when choosing one
of the alternatives (i.e., a multi-criteria decision problem).

Multi-criteria decision problems and collective decision making are similar. In
both cases multiple preference orders on the alternatives exist and it is necessary
to combine them into a unique global preference ordering. Therefore, techniques
from the field of collective decision making, as voting, can be used to make
multi-criteria decisions.

In this section, we propose to implement the agent’s reconsideration strategy
as dichotomous voting (uncertain dichotomous choice model). Given that we are
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interested in answering the question of whether to reconsider current intentions,
the model must choose between alternatives a = yes and b = no. The correct
alternative is the one that makes optimal reconsider(·, ·) function. Therefore,
the two states of nature correspond to the possible outputs of the deliberation
function. That is, we will denote by 1 the state of nature in which deliberate
process does modify its current intentions, and by −1 the state of nature in
which deliberate process does not change intentions. The common preferences
of individuals are presented in Table 4.

yes no
(a) (b)

changed intentions (1) 1 0
not changed intentions (-1) 0 1

Table 4: Payoff matrix for Intention Reconsideration

In this case, the net benefit from a correct decision is independent of the state
of nature (i.e., B(1) = B(−1)). That is, there is symmetry in the individual
utility in case of making a correct decision in the two possible states of nature,
hence δ = 0.

Let α denote the a-priori probability that reconsider(·, ·) chooses to recon-
sider intentions and deliberation process does change intentions (situation 4 of
Table 1). Conversely, 1−α denotes the a-priori probability that reconsider(·, ·)
function does not choose to deliberate, but if it did, it would not have changed
its intentions anyway (situation 1 of Table 1). Note that the label of an alterna-
tive, a or b, does not convey any indication as to which of the two is the correct
one. Consequently, alternatives might be considered a priori as equi-probable,
i.e., α = 1/2 and therefore γ = 0. In this way, under this assumption we get
that γ + δ = 0, so alternatives are perfectly symmetric, and function 4 is the
optimal rule to be applied for IR.

Our work applies multi-criteria decision making, so we assume that n individ-
uals correspond to the criteria C = {c1, · · ·, cn}, considered in decision making.
These criteria should include dynamism, determinism and accessibility of the
environment in which the agent is located, together with features of the current
intention. Each criterion has a threshold θi from which it votes “yes” or “no”
about reconsider intentions. Namely, if value of criteria vi is higher or equal than
θi then it votes “yes”, otherwise it votes “no”. Each pi represents the probability
of making the correct decision considering only the criterion ci. This probability
can be estimated or considered partially known, so that it could be applied to
the rule most likely to be the optimal for any distribution (see Sect. 3.2). In the
particular case that |C| = 3, we can assume complete ignorance about the vector
p and use rule 5.

5 Conclusion

In this work, we have presented an intention reconsideration strategy imple-
mented as an uncertain dichotomous choice model. This model allows us to
identify “the correct alternative”, i.e., the one that makes optimal reconsidera-
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tion of intentions. In contrast to fixed strategies [3], our approach changes com-
mitments to intentions depending on how the environment changes, and besides
environmental dynamism, other features such as determinism and accessibility,
are contemplated.

In [14], the performance of different reconsideration strategies are empirically
evaluated in complex environment with varying degrees of dynamism, accessi-
bility and non-determinism. Therefore, as future work, we intend to perform the
same analysis with the reconsideration strategy proposed in this work, to assess
its effectiveness.

Future work will also include research on the comparison of this model and
those utilized in [15] as intention reconsideration strategy within a BDI agent.
Moreover, we will study the optimality of the proposed reconsideration strategy
following the guidelines from [9].
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