
Parameter Tuning of a Parallel Hierarchical
Island Based Model?

Maŕıa Laura Tardivo1,2,3, Paola Caymes-Scutari2,3,
Miguel Méndez-Garabetti2,3 and Germán Bianchini2

1 Departamento de Computación, Universidad Nacional de Ŕıo Cuarto.
(X5804BYA) Ŕıo Cuarto, Córdoba, Argentina

lauratardivo@dc.exa.unrc.edu.ar
2 Laboratorio de Investigación en Cómputo Paralelo/Distribuido (LICPaD)

Departamento de Ingenieŕıa en Sistemas de Información, Facultad Regional Mendoza
Universidad Tecnológica Nacional. (M5502AJE) Mendoza, Argentina

{pcaymesscutari,gbianchini}@frm.utn.edu.ar
miguelmendezgarabetti@gmail.com

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET)

Abstract. One of the major drawbacks of using Evolutionary Algo-
rithms is the determination of the input parameters, since they have an
important influence in the effectiveness of the search. When using Par-
allel Evolutionary Algorithms, such drawbacks are magnified, since they
incorporates new parameters needed to configure the inherent charac-
teristics of the parallel model. Achieving an adequate configuration can
mean an optimization problem itself. This research group has developed a
parallel distributed model characterized by a hierarchy of processes com-
munication organized in islands that cooperate in the search process. In
this work we present a study of calibration for some input parameters
that determines good results quality, with the aim of tuning them taking
into account different configurations applied globally to the model, or
locally to each island.

1 Introduction

During the 80’ years computer scientists were inspired by the theory of evolution
proposed by Charles Darwin, developing algorithms that attempt to simulate the
species creation and evolution. These methods, called Evolutionary Algorithms
(EAs), are based on the evolution of sets individuals, also known as populations,
and on the notion of competition, since only those individuals with the most
favourable variations will survive [6]. Considering a sample of the search space
(the population of individuals) the main characteristic of this methods is to
guide the search towards an acceptable individual (or the best one) allowing for
a considerable reduction of the search time. At present, there is a broad spectrum
of EAs including the well known Genetic Algorithms (GA) proposed in 1975, Ant

? This work has been supported by UTN under project EIUTNME0002170, and by
ANPCyT under project PRH PICT-2008-00242.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301060558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Colonies Optimization (ACO) proposed in 1992 and Differential Evolution (DE)
developed in 1995, between others, and hybrid methods formed by a combination
of two or more algorithms, including other optimization methods.

In their conception, the EAs where formulated using a sequential processing
scheme. However, these methods are naturally prone to parallelism, since most
variation operations can be undertaken in parallel [1]. Furthermore, the opti-
mization problems become even more complex, and their resource requirements
are also increased. The parallel nature of EAs and the need for more powerful
calculation capacity led researchers to the development of techniques that in-
volve high performance computing tools with the aim of reducing the execution
time or exploiting the search capabilities of the algorithms, giving rise to the
Parallel Evolutionary Algorithms (PEAs).

The effectiveness and efficiency of the search process has a direct relation
with the values for the parameters needed by the algorithm [6]. These values
are provided by the user, and their establishment is not a trivial task. In some
cases, they can be taken from literature, in other cases from some previous
experimentation under similar scenarios may allow for adopting those known
values. When the results quality is not the optimal, a calibration for the input
parameters may lead to much better results. But when a PEA is used, in addition
to provide the input values for the classical EA, it is necessary to consider those
parameters inherent to the parallel model. In this sense, the PEAs may require
greater effort for the establishment of the initial configuration.

In this work we present an off-line parameter tuning of some crucial input pa-
rameters for a parallel distributed model, called Hierarchical Island Based Model
for Differential Evolution (HIBM-DE). It is based on islands, it is characterized
by a double level of information exchange and for the usage of the Differential
Evolution algorithm as EA. The processes involved are associated with a certain
level of cooperation, allowing them to explore in a more comprehensive way the
search space of the problem and favouring the maintenance of the population
diversity. With this work, we attempt to determine how is the influence of the
input parameters when de configuration is applied globally to the islands or lo-
cally inside each island. This work also constitutes a first step from the study of
different strategies for automatic tuning techniques.

This paper is organized as follows: section 2 describes the main characteristics
of the EAs, and give some details of the processing scheme of the Differential
Evolution algorithm. Section 3 presents the parallel model used in this work.
Section 4 shows the experiments carried out and the analysis of results. Finally,
we present the conclusions and future work.

2 Evolutionary Algorithms

The Evolutionary Algorithms are stochastic population based metaheuristics de-
veloped on the basis of the evolutionary theories that describes the creation and
evolution of species [6]. They are iterative algorithms that start with an initial
population of individuals, which is a sample of the search space. Every individ-



ual represent a possible solution of the problem to be addressed, and belongs
to a generation or epoch. An objective function associates a fitness value with
each individual, indicating its worth. In each generation, a new population will
be obtained based on the current population: the individuals are selected from
the current population following a selection criterion, and are reproduced using
variation operators (eg. mutation, crossover). Finally, some individuals from the
current population are replaced by the newly ones generated, following some
replacement criteria. This new individuals will be part of the new population,
that will be part of the next generation.

Algorithm 1: Template of an Evolutionary Algorithm
Generate(P(0)); /* Initial population */
t=0;
while not Termination Criterion(P(t)) do

Evaluate(P(t));
P’ (t)= Selection(P(t));
P’ (t)= Reproduction(P’ (t));
Evaluate(P’ (t));
P(t+1 )= Replace(P(t), P’ (t));
t=t+1 ;

endwhile
Output: Best individual or best population found.

Algorithm 1 illustrates the template for an Evolutionary Algorithm. Usually
the initial population is generated with random values. The selection operator
embodies the competition process, given that it responds to the principle “the
better is an individual, the higher is its chance of being parent” [6]. This drive the
population to better solutions. An individual is better than other if its evaluation
under the objective function has less or equal value than the other individual
(for minimization problems). However, worst individuals may contribute with
their genetic material and have some chance to be selected. The reproduction
phase is characterized by generation of new individuals through the application
of two operators, such as the mutation operator and the crossover operator. The
mutation consist in the generation of small changes of the selected individuals,
this represents a movement in the landscape of the problem under consideration.
The role of recombination or crossover operator is to generate new descendant
individuals (offspring) which inherit some characteristics from the two parents.
A crossover rate (Cr) controls the portion of the inherited characteristics from
each parent. The termination criterion of the algorithm can be reaching a certain
value (mean error, mean standard deviation, etc.), reaching a certain number of
function evaluations (NFE) or reaching a predefined number of generations.

There are different approaches to parallelize the EAs [6, 5]. In general, they
constitute different instances of the master/worker model [3] with an operator
of cooperation between the workers called migration. The master process ini-
tializes the population and can distribute portions of it between the workers,
or can retain the whole population and only send to the workers an individual



to be evaluated with the fitness function. The idea of island arises with these
concepts, an island is considered to be a logical entity composed by individuals
that are evolved by a process or a group of processes. In the migration phase,
some individuals may move from one island to another target island in order
to integrate the destination population. An algorithm that involves islands and
migration, is said to be an algorithm that follows the Island Model.

2.1 Differential Evolution

The EA considered in this work is Differential Evolution [5], a population based
metaheuristic that starts with an initial solution, usually randomly generated
within the whole search space, which is evolved using three main operator: mu-
tation, crossover and selection. Each individual is represented as a D-dimensional
vector and belongs to a generation g.

The mutation operator generates new individuals for each target vector using
the formula Vi,g+1 = Xbest,g + (Xr1,g–Xr2,g)F . The constant F is used to avoid
stagnation in the search process. Xbest,g is the best individual, i.e., it has the
best value of the objective function evaluation among all individuals of current
generation g. There are other mutation strategies, but they are out of scope of
this work. After the mutation phase, each perturbed individual Vi,g+1 and the
individual Xi,g are involved in the crossover operation, generating a new vector
Ui,g+1, denominated “trial vector”. A crossover factor Cr ∈ (0, 1) and is used
to control the values fraction that are copied from the mutant vector V . The
selection phase determines which element will be part of the next generation.
The objective function of each trial vector Ui,g+1 is evaluated and compared with
the objective function value for its counterpart Xi,g in the current population. If
the trial vector has less or equal objective function target value (for minimization
problems) it will replace the vector Xi,g in the next generation.

Researchers have proposed different approaches to parallelize DE, depending
on the purpose to be achieved. In [11] is presented a proposal for solving the
Pareto front problem. An individual in the population can be migrated with
a certain probability to a random position in a random subpopulation. In [8],
the model uses a ring interconnection topology and random migration rate con-
trolled by a parameter of the algorithm. The aim of that work is to study the
implications of a controlled migration constant. In [2], a parallel DE version is
proposed and applied to solve biological problems. It also follows a ring inter-
connection topology. The analysis was carried out with different migration rates
and they conclude by identifying the best of them.

3 Island Based Model for Differential Evolution

Following, we will describe the Hierarchical Island Based Parallel Model for Dif-
ferential Evolution. It is based in two different parallel alternatives for Differ-
ential Evolution, called Classic Island Based Differential Evolution (CIBM-DE)
and Subpopulation Island Based Differential Evolution (SIBM-DE) [7].



In CIBM-DE multiple islands cooperate in the search process. Each island
is composed by a worker who initializes and evolves its own population. This
model promotes a broader coverage of the problem under consideration since
each island is initialized with a different seed, but the execution time is similar
or even higher to the sequential version, considering each single island having
a population configuration with the same size as the sequential version. The
migration phase in this model is characterized by sending some individuals from
an island to another neighbour island.

In SIBM-DE a master process initializes the population and distributes some
individuals between the islands. In each island a worker process evolve its sub-
population, and communicates with other islands in the migration phase to send
some individuals. Is clear that this model promotes a reduction of the execution
time, since the initial population is partitioned into smaller parts. In conse-
quence, each island has a subpopulation composed by a few individuals and the
workers collaborate evolving them. Although this model achieves a considerable
reduction of the execution time, it has been found that it does not achieve a good
quality of results compared with the sequential version or with the CIBM-DE
model, and the results quality get worse as the subpopulation size gets smaller.

As can be seen, each model has a particular characteristic making it ap-
propriate to an specific scenario. In order to achieve a balance between those
characteristics, we have proposed HIBM-DE, trying to combine the benefits of
each model mentioned above. The Hierarchical Island Based Model (HIBM-DE)
provides two levels of parallelism. One level can enhance the computational speed
(SIBM-DE), whilst the other can lead to a broader coverage of the problem do-
main to be addressed (CIBM-DE).

Monitor

Island 1 Island 2

Island N Island 3...

Master 3

W 1 W 2

W 3W j

Hierarchy 1:
global inter-island view

Hierarchy 2:
intra-island view

...

node a

node f node g

node hnode i

node k

Fig. 1: HIBM-DE: Two hierarchy levels.

Figure 1 describes HIMB-DE. As can be seen, it comprises two levels of hier-
archy. The hierarchy 1 is composed by a global inter-island view. The processes
are organized in islands, they are interconnected following a ring topology. A
monitor process, located into a separate computing node, is in charge of co-
ordinating the islands actions. Each island evolve a unique population, each
one initialized with a different seed. Between successive pair of islands, and af-
ter certain number of generations, a inter-island migration phase is launched.
Each island sends some individuals to its corresponding neighbour island, in the



topological order. This action promotes diversity of the population, because the
individuals migrated are integrated in the destination populations.

Inside each island the model follows a local intra-island view, or hierarchy 2.
A master process is the responsible of coordinating the workers actions, which
are connected to each other also following a ring topology and each one is located
into a different computing node. The evolutionary process begins in the masters,
which initializes the population and distributes it between the workers. They
evolve their subpopulations and periodically communicate each other to share
some individuals. This intra-island migration phase promotes a local diversity
inside an island. The amount of individuals sent by the workers is a certain
percentage of the population, calculated proportionally to the number of workers
in the island. The replacement policy is semi-elitist, since the individuals to be
sent are the best of the population an the rest is completed by means of a
random selection. When the worker receives the individuals, it integrates them
into its subpopulation replacing the worst ones (but only if the fitness value of
the received individuals is better than the worst individuals).

It is important to remark that the migration phase of the hierarchy 1 and
2 are overlapped one from another. Once the workers of an island send to the
master the individuals to be migrated, they continue evolving their subpopula-
tions until some posterior generation in which they expect to receive individuals
that provides from another islands. While the evolutionary process in the work-
ers continues, the masters take some time to collect all the individuals from the
workers, to send them to the next island, and to receive the new individuals
to be integrated into each worker subpopulation. In this way, the inter-island
migration is a non blocking operation for the workers and they remain active
evolving their subpopulations, and minimizing idle periods.

The model comprises the characteristics of CIBM-DE, since each island has
a whole population initialized with a different seed. But instead of having a
unique worker responsible for evolving the population (such as in CIBM-DE),
HIBM-DE proposes a group of processes collaborating in this task, such as in
SIMB-DE, with the aim of accelerating the evolutionary process in each island. In
consequence, HIBM-DE integrates both parallel models, and provides a flexible
configuration in which the islands can be composed by the amount of workers
needed to achieve the time reduction desired, and the user may instantiate the
number of islands needed to also achieve the results quality desired. The models
CIBM, SIBM and HIBM can be applied to other EAs, in this work we focus on
the Differential Evolution algorithm as the main EA for them.

4 Test cases and analysis of results

In the following, we describe the experiments carried out in order to test HIBM-
DE with different configurations. The performance of the model was tested with
a set of scalable functions, obtained from [9]. For each of them, 30 executions
were carried out with different seeds. The size of the problems considered have
dimension 1000, the population was made up with 400 individuals. The function



used for the test where Shifted Sphere (unimodal, search range in [-100,100], bias
value of -450), and Shifted Rosenbrock (multimodal, search range in [-100,100],
bias value of 390). The average error is defined as the difference between the
current value of the global optimum and the value obtained by the algorithm.
If the error is zero indicates that it has been found the global optimum. For the
problems considered, the best results are those that are closer to zero error. In the
codification we use the MPICH library [4] for message passing communication
between participating nodes. All tests were made on a cluster with 32 CPUs
distributed between 8 nodes Intel Q9550 Quad Core (Debian 5 Lenny, Ethernet
and switch Linksys SLM2048 of 1Gb).

The experiments carried out in this work are within the off-line parameter
tuning. In this type of calibration the initialization of the values of different
parameters are fixed before the execution of the algorithm [6]. We propose the
calibration of the Crossover probability (Cr) and the Mutation factor (F), since
they are crucial in the evolutionary process, because they determine the char-
acteristics of the individuals in each generation. Our intention is to determine
the influence of these parameters for HIBM-DE when the calibration is applied
globally to each island or locally inside the islands. The first case, is related with
the first hierarchy level, since each island of the model will behave in a unique
way exploring the search space. In the second case, the hierarchy two is affected
because each worker of an island will operate in a different way, with their own
parameter values. Following, we provide a brief description of the test cases. For
each of them we considered both types of configuration: the global configuration
that affects the hierarchy 1 (we consider a coarse grain, and each entity is com-
posed by an island), and the local or intra-island configuration that affects the
hierarchy 2 (we consider a fine grain, and each entity is composed by a worker):

- Case 1: All the islands have the same configuration, Cr was setted to 0.3
and F to 0.5. These initial values were taken from literature. They are well known
for their effectiveness with functions similar to those used in this work [10]. This
case will obtain the same results both with a global or local configuration.

- Case 2: We carried out a previous off-line calibration of Cr and F. We
conclude on executing this experiment using Cr=0.45 and F=0.5 as the best
values found for these parameters and we apply them to all the islands. As in
case 1 the results obtained with a global or local configuration will be the same.

- Case 3: This experiment consisted in setting the half of the entities consid-
ered with the best values for the mutation and crossover probabilities (Cr=0.45,
F=0.5), and the other half of the entities used random values for Cr and F, but
considering a range within ±0.2 points from each one. Then, Cr uses random
values from the interval [0.25, 0.65] and F was in the range [0.3, 0.7].

- Case 4: In this experiment all the entities used random values for Cr
and F in the range within ±0.2 points from each one (Cr ∈ [0.25, 0.65] and F
∈ [0.3, 0.7]).

- Case 5: In this experiment only the value of Cr was altered. All the entities
used F=0.5 but half of them used random values for Cr within ±0.2 points from
each one (Cr ∈ [0.25, 0.65]).



- Case 6: In this experiment, as in the previous case, only the value of Cr was
altered, the entities used F=0.5 and random values only for Cr ∈ [0.25, 0.65].

Summarizing, in the first two cases all the islands and workers have the same
values for Cr and F. Case 3 and 4 alters the values for Cr and F, affecting the
hierarchy 1 and 2 in a half or in the total of islands, respectively. Cases 5 and
6 only alters the value of Cr, affecting the hierarchy 1 and 2 in a half or in the
total of islands, also respectively.

Figures 2 and 3 shows the obtained results. In each graph the mean error
obtained with different configurations of islands and workers per island is shown.
The notation HIBM-DE-X Y means that the experiment was carried out using
X number of islands, each one composed by Y workers. In the test we use a
configuration of two and four islands, and two or four workers per island.

1 2 3 4 5 6
1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

HIBM-DE-2_2 - Sphere

Test case

M
ea

n 
er

ro
r

1 2 3 4 5 6
1.00E-04

3.16E-04

1.00E-03

3.16E-03

1.00E-02

3.16E-02

1.00E-01

3.16E-01

1.00E+00

HIBM-DE-2_4 - Sphere

Local

Global

Test case

M
ea

n 
er

ro
r

1 2 3 4 5 6
1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

HIBM-DE-4_2 - Sphere

Test case

M
ea

n 
er

ro
r

1 2 3 4 5 6
1.00E-04

3.16E-04

1.00E-03

3.16E-03

1.00E-02

3.16E-02

1.00E-01
HIBM-DE-4_4 - Sphere

Local

Global

Test case

M
ea

n 
er

ro
r

Fig. 2: HIBM-DE 2-2, HIBM-DE 2-4, HIBM-DE 4-2 and HIBM-DE 4-4 for Sphere.

As can be seen from figures, the cases 1 and 2 obtains the same mean error
for a local or global configuration, since all the islands and workers use the
fixed values. Also, better values are found in case 2, this is consequent with the
preliminary calibration made on the parameters. Comparing the results of cases 3
and 4, especially in the test cases of Sphere function, it can be noticed that using
random values for the parameters is not the best option. The worst of the six
cases was the case 4 using a local configuration. In the rest of the cases the best
results are generally found using a global configuration, i.e. when the hierarchy 1
is affected. This shows that the model explores in a more comprehensive way the
search space of the problem when all the islands operate applying the mutation
and crossover operator working as a uniform entity.

Comparing the results respect to the number of islands, it can be seen that
when the number of islands is increased the results are better for each test case.
For example, the results obtained with Sphere using HIBM-DE-4 2 are better



than using HIBM-DE-2 2. This is a characteristic of the model, when the number
of islands is duplicated, the search space of the problem is augmented, since each
island is initialized by a different seed.

1 2 3 4 5 6
1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

HIBM-DE-2_2 - Rosenbrock

Test case

M
ea

n 
er

ro
r

1 2 3 4 5 6
1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

HIBM-DE-2_4 - Rosenbrock

Local

Global

Test case

M
ea

n 
er

ro
r

1 2 3 4 5 6
1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

HIBM-DE-4_2 - Rosenbrock

Test case

M
ea

n 
er

ro
r

1 2 3 4 5 6
1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

HIBM-DE-4_4 - Rosenbrock

Local

Global

Test case

M
ea

n 
er

ro
r

Fig. 3: HIBM-DE 2-2, HIBM-DE 2-4, HIBM-DE 4-2 and HIBM-DE 4-4 for Rosenbrock.

Table 1 shows the mean time for each test case. As it is expected, inde-
pendently from a global or local configuration, the execution time for the same
amount of islands and workers per islands obtains similar execution times.

Table 1: Average runtime for all the test cases (in seconds).

HIBM-DE 2-2 HIBM-DE 2-4 HIBM-DE 4-2 HIBM-DE 4-4
intra global intra global intra global intra global

Sphere

case 1 63.34s 63.16s 28.86s 32.86s 61.64s 63.11s 33.44s 32.73s
case 2 64.59s 64.74s 33.85s 33.79s 64.22s 63.87s 35.56s 35.13s
case 3 65.65s 68.84s 32.63s 33.02s 62.57s 63.38s 34.53s 34.36s
case 4 63.01s 62.64s 32.83s 32.72s 63.96s 61.72s 34.47s 34.13s
case 5 61.05s 60.27s 30.72s 30.26s 62.06s 62.34s 32.19s 31.90s
case 6 62.91s 62.06s 31.02s 30.87s 63.23s 63.36s 32.79s 31.71s

Rosenbrock

case 1 73.34s 72.40s 38.41s 37.78s 71.02s 73.63s 39.03s 38.67s
case 2 74.30s 74.04s 38.97s 38.90s 72.98s 73.02s 40.44s 39.93s
case 3 72.98s 72.84s 38.10s 37.52s 73.21s 73.24s 38.92s 39.36s
case 4 72.06s 73.22s 38.12s 37.71s 72.93s 70.98s 38.71s 39.03s
case 5 69.60s 69.98s 35.12s 35.07s 71.79s 71.90s 37.41s 37.19s
case 6 77.72s 73.06s 36.03s 36.03s 72.89s 72.60s 37.98s 36.88s

It can be observed that HIBM-DE-2 2 obtains for both local or global config-
uration, execution times about 60 seconds for Sphere and 70 seconds for Rosen-
brock. As a characteristic of the model, when the number of workers per island
is duplicated, the execution time is reduced in approximately the half. HIBM-
DE-2 4 obtains means execution times of about 30 s. for Sphere and 37 s. for
Rosenbrock.



5 Conclusions

In this paper we have described an off-line parameter tuning of two crucial pa-
rameters for the Differential Evolution algorithm. The parameters under consid-
eration for the calibration were the crossover probability (Cr) and the mutation
factor (F ), since they are crucial for the population determination in each gener-
ation. This work is focussed in HIBM-DE, a parallel model characterized by two
levels of hierarchy. Our main goal is to determine the behaviour of the model
when the parameters are configured with different values, applied locally inside
each island or globally to each island. We have proposed six test cases, and on
its hand, each one is unfolded in two different configurations related with the
two hierarchies. From the results analysis it was found that the model explores
in a more comprehensive way the search space of the problem when a global
configuration is used, that is, setting all the islands with the specific input value.
Also, the results showed that the execution time of the test cases are similar,
independently of a global or local configuration, but when the number of work-
ers per island is duplicated, the execution time is reduced in approximately a
half. This experimentation is a preliminary study for other type of static and
dynamic calibration experiments, in order to develop a self-adaptable parallel
environment for solving hard optimization problems.

References

1. Alba, E., Tomassini M.: Parallelism and Evolutionary Algorithms. Proc. of the IEEE
Trans. on Evol. Comp. 6 (5) (2002) 443–462

2. Kozlov, K., Samsonov A.: New Migration Scheme for Parallel Differential Evolution.
Proc. Int. Conf. on Bioinf. of Genome Reg. and Structure. 2 (2006) 141-144

3. Mattson T., Sanders B., Massingill B.: Patterns for Parallel Programming. Addison-
Wesley. 5 (2004) 143-152

4. MPICH Message Passing Interface, http://www.mpich.org/
5. Price, K., Stron R., Lampinen J.: Differential Evolution: A Practical Approach to

Global Optimization. Springer. New York (2005)
6. Talbi, E.: Metaheuristics: From Design to Implementation. John Wiley & Sons,

Hoboken, New Jersey (2009)
7. M.L. Tardivo, P. Caymes-Scutari, M. Méndez-Garabetti, G. Bianchini, Two Models

for Parallel Differential Evolution. Proc. of the High Performance Computing Latin
American Symposium, Mendoza, Argentina. (2013) 26-36

8. Tasoulis, D., Pavlidis, N., Plagianakos, V., Vrahatis, M.: Parallel Differential Evo-
lution. Proc. of the Congr. Evol. Comp. 2 (2004) 2023-2029

9. Tang, K., Yao, X., Suganthan, P. N., MacNish, C., Chen, Y. P., Chen, C. M., Yang,
Z.: Benchmark Functions for the CEC’2008 Special Session and Competition on
Large Scale Global Optimization. Technical Report. Nature Inspired Comp. and
Applications Lab. USTC. China. (2007) 4-31

10. Yang, Z., Tang, K., Yao, X.: Self-adaptive Differential Evolution with Neighbor-
hood Search. Proc. of the IEEE Congr. on Evol. Comp. (2008) 1110-1116

11. Zaharie, D., Petcu, D.: Adaptive Pareto Differential Evolution and Its Paralleliza-
tion. Proc. of the 5th Int. Conf. Parallel Processing and Applied Mathematics. 3019
(2004) 261-268


