
Cross Platform Networking Framework to Simplify
Mobile Application Development

Federico Cristina1, Sebastián Dapoto1, Pablo Thomas1, Patricia Pesado1,2

1

 Instituto de Investigación en Informática LIDI
Universidad Nacional de La Plata

2

Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
La Plata, Argentina

{fcristina, sdapoto, pthomas, ppesado}@lidi.info.unlp.edu.ar

Abstract. The need for sharing information among mobile devices exists in
many applications, and almost every data exchange between these devices
involve the same requirements: a means for discovering other mobile devices in
a wireless network, establishing logical connections, communicating
application data, and gathering information related to the physical connection.
This paper presents a cross platform open-source developer-oriented framework
that acts as a support layer for host discovery, data communication among
devices, and quality of service monitoring. Its purpose is to simplify the issues
related to networking for mobile application developers. Currently, the
framework is implemented for different platforms, such as Android, J2SE, and
J2ME.

Keywords: mobile devices, host discovery, communication, QoS, networking

1 Introduction

A currently increasing trend in mobile environments is the development of
applications in which several devices on a network share real time information. These
applications rely on some sort of connectivity support in order to achieve the proper
interaction among devices. This support can be grouped into three main categories or
services: (1) Host discovery, a means for searching other reachable devices ready to
communicate in a network, (2) Data communication, a service for handling the
specific exchange of information between devices, and (3) Quality of service, a
monitoring service that provides QoS related information. Since these services are
application-independent, a framework has been implemented in order to support
specific aids, simplifying the network-related aspects for developers. The main goal
of the proposed framework is to meet these requirements. The features provided
allow several types of implementations with different network configurations, such as
a typical client/server architecture or a centralized/decentralized peer-to-peer solution.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301060453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Even though there are several development frameworks [1, 2] none of them
propose an open source, cross platform solution with the proposed features in this
paper. Some of these frameworks refer to networking features as simply retrieve
wireless connection information, but no additional functionality is supported (e.g.
PhoneGap [3], Titanium [4]). Other frameworks cover these features, but as a part of
a complete solution for a specific domain like games development (e.g. Unity3D [5]).
Lastly, some frameworks are proprietary paid solutions for mobile-apps development
(e.g. Corona [6]).

The reason for choosing Android as the primary development target for the
proposed framework is based on its widespread use and popularity [7]. However, two
additional benefits should be mentioned. First, it is an open source software released
under the Apache License. This allowed several non-official versions such as Android
for x86, ARM, and MIPS architectures. Some examples given in the present paper
were tested on these versions running in a Virtual Machine, without the need for real
devices. Second, Android Java is functionally compatible with J2SE in matters of
network communication. This means that the framework Application Program
Interface (API) can be referenced from both types of Java projects. Given that one of
the purposes of the framework is to achieve cross platform compatibility, a J2ME
version was developed, allowing interoperability between the other platforms. The
current implementation of the project can be found at [8] hence the description in this
paper will be far from explaining the code (or code details).

The remainder of this paper is organized as follows. The next section describes the
proposed framework API. Afterwards, a general overview of the framework and how
applications interact with it is provided. The following section presents several
applications which make use of the framework features. Finally, the results and
benefits of using the framework and an outlook on future work are described.

2 API definition details

This section will present the main classes and interfaces of the framework from an
application developer point of view. The highest level of the API is directly focused
on application support features (e.g. initial framework configuration) and the lowest
level is divided into three main parts, as shown in Fig. 1:

• HostDiscovery, for handling the information related to hosts that are ready to

communicate to/from each device. As its name suggests, HostDiscovery
services/operations include searching for hosts and/or hosts status.

• NetworkCommunication, for handling the specific exchange of information
between applications. Basically, NetworkCommunication should include the
necessary send and receive services/operations for applications.

• QoSMonitor, for providing the user and/or programmer the necessary
information on signal quality as well as performance indexes such as
available network bandwidth.

The initial aim for each part is to achieve a very simple interface for the developer,
simplifying the API usage as well device programmability. As a general concept, the
framework is designed to support different implementations for each of the services
(Discovery, Communication, and QoS). Through an Abstract factory pattern [9], the
developer can specify which implementation should be used in each case. The details
explained in this section go beyond any implementation, covering the issues at a
higher level of abstraction.

Fig. 1. API Main Components

2.1 Application Data, Producer, Consumer

Generally, the framework will require a data producer, a data consumer, and the data
itself to be transferred among hosts. The three will be instances of user-developed
classes which extend/implement a specific class/interface. Based on Inversion of
Control [10, 11], these instances will be passed to the framework as arguments.
Specific methods of the instances will be called from the framework in order to
generate new data, process incoming data, handle a new host in the network, etc.

The base class for the application-level data is the abstract class
NetworkApplicationData. This class will be the superclass for any information to be
sent/received through the NetworkCommunication services. Subclasses must augment
the initial data structure as needed.

The producer class is in charge of generating the updated local information to be
sent to the other hosts. This class must implement the
NetworkApplicationDataProducer interface. This interface only requires one method
to be implemented, which returns an instance of a subclass of
NetworkApplicationData with the actual data. This method will be called periodically
if the periodic Broadcast feature from the NetworkCommunication service is active. If
this feature is not desired, then there is no real need for a Producer class to be
implemented. However, it is advisable to centralize the creation of data in a specific
class.

The consumer handles every type of incoming information, mainly related to
application data from other hosts as well as notifications of arrivals and departures of
hosts to/from the network. Every time a new message arrives, the framework will
invoke a specific method so that the application can act accordingly. A subclass of

NetworkApplicationData object is received as a parameter, containing the actual data.
When the HostDiscovery service identifies some network change related to hosts, the
corresponding method will be called. This allows applications to behave in a specific
way under these events (e.g. a host joining or leaving the network).

2.2 Host Discovery

As mentioned above, this service is responsible for searching new hosts in the
network as well as exchange host status periodically. The status of a host is simply an
online/offline flag in order to know if the host is ready to receive information at a
certain moment. The discovery service will make the framework to look/listen for/to
new hosts, calling a specific method each time a host joins or leaves the network. The
service can be stopped at any time, and this implies neither sending local status nor
receiving other hosts status anymore.

The periodicity a host sends its status can be set depending on the application
requirements. Support for deactivating discovery as well as the periodicity value are
necessary features for the programmer in order to have control on energy and
communication overhead/usage. The current list of hosts which are part of the
network can be accessed so that at any time, the application would be able to search
for specific hosts available and the total number of hosts with which could exchange
information.

2.3 Network Communication

Network communication services allow hosts to exchange application-level data in
different ways, depending on the specific needs of the application being developed.
Client/server, broadcast, and Producer/Consumer communication models are
available for the applications. Once started, the service waits for incoming
connections from other hosts. An established connection will be used for sending and
receiving the application-level data. When a message is received, a Consumer will be
able to process the incoming information.

Sending a message simply implies specifying the target host and the data to be sent
(using NetworkApplicationData, as mentioned above). Additionally, a host might
need to send information to every online host in the network. The service can be
stopped if it is not needed anymore, and this will close all currently established
connections.

Sending data to all hosts periodically is also supported. In this case, the framework
will require the updated local information in each sending. A Producer will have to
generate this information. This feature is useful in cases when a constant exchange of
data among hosts is needed at regular intervals, for instance in a network game. The
application-level periodic data broadcast can be stopped at any time. The periodicity a
host sends data can be set depending on the application requirements.

2.4 QoS Monitor

A useful set of QoS features were developed so that each application will be able to
decide if it is possible to run under the current network bandwidth, signal strength,
etc. At the lowest level of abstraction, an application should be able to ask for the
current available bandwidth, so that it will be possible to model the time required to
send a message of n data items. Also, some of these performance indexes would
depend on wifi signal strength, so it would be useful to provide the application with
the current signal strength as well as some previous values so that the tendency would
be able to be estimated [12, 13, 14].

From a higher level of abstraction, a method such as calculateMPS is desirable for
an estimation of the number of application-data messages per second would be able to
be exchanged. The key aspect of this feature is to obtain an almost real value based on
the network current status at an application-level, as opposed to the estimations
provided by the Android API which ignores upper software layers which implies an
overhead in communications.

In order to validate this feature, a testing application was developed which
calculates the maximum amount of messages per second that a host can exchange in
the current network. Fig. 2 shows the results of a series of tests using both alternatives
with a fixed size application-data message, considering changes in the signal strength
based on the distance of the device to the wireless access point. As expected, the
amount of messages per second decreases as the signal strength also decreases. In
average, the Android API returns too optimistic estimated values compared to the real
ones obtained with the implemented solution.

Fig. 2. QoS calculateMPS vs Android API bandwith funcion, depending on Signal Strength.

Values are normalized to Messages Per Second for a correct visual interpretation.

3 Framework interaction

This section will discuss in detail the interaction aspects of the proposed architecture.
In order to understand how applications interact with the framework, a simplified
example involving the main components of each part will be shown.

3.1 Framework configuration

Before starting any service, the framework requires a Producer (a subclass of
NetworkApplicationDataProducer), a Consumer (a subclass of
NetworkApplicationDataConsumer) and throughout the execution, the information to
be exchanged (a subclass of NetworkApplicationData).

Fig. 3 shows an example where an application implements the following three
main components:

• AppSpecific_DataProducer, implementing the
produceNetworkApplicationData() method.

• AppSpecific_DataConsumer, implementing methods such as newData(),
newHost(), byeHost().

• AppSpecific_NetworkData, where the default information to be exchanged is
augmented with member aValue.

Fig. 3. Framework (top row) and application (bottom row) main interaction components.

3.2 Framework interaction sequence

Fig 4. presents a sequence diagram for a typical scenario. The first stage represents a
new host joining the network. Discovery service will detect it and inform
AppSpecific_DataConsumer about this event so that it can work accordingly. In this
case, the application decides to establish a connection to this new host, and simply
involves calling a Connection service method. Afterwards, Communication service
will periodically ask Producer for new information to be sent to other host. The only

task for Producer is simply return an updated instance of AppSpecific_NetworkData.
This information will be handled by the framework, and once it reaches the
destination host, Communication will notify its consumer that new data has arrived
(through the newData() method). At some point, a host may leave the network and
Discovery will inform this situation to the Consumer.

Fig. 4. Sequence and interaction diagram. Discovery and Communication are components of

the framework. Consumer and Producer are application-level subclasses of
NetworkApplicationDataConsumer and NetworkApplicationDataProducer.

4 Examples

This section will present real examples in which the network requirements for each
application differs considerably, among other factors. The first one is a competitive
multiplayer Asteroids-like game (referred to as Asteroids, from now on). The second
one is a two players Tic-Tac-Toe game, both currently running in Android. The third
example is a simple chat application implemented both in Android and J2ME in order
to show cross platform communication. The fourth example is a Client/Server Wi-Fi
remote control running on Android for an image display server running on J2SE
(from now on, WiFiRemote), in order to show heterogeneous application interaction
from a platform point of view.

These projects are completely built on top of the framework project [8], i.e. there is
no access to other services beyond those provided by the framework. The complete
code of the first two examples can be found at [15] and [16] respectively. For the
third example, the J2ME version of the chat application is built on top of the J2ME
version of the framework project [17].

Fig. 5. Asteroids running on three Android x86 v2.2 virtual machines (top left), b) Tic-Tac-
Toe running on two Samsung Galaxy SII mobile devices with Android 4.0.3 (top right), c)

Chat application running on Android x86 and J2ME Emulator (bottom left), d) WiFiRemote,
server running on desktop J2SE and client running on Android 4.1.2 (bottom right).

4.1 Asteroids

Multiplayer Asteroids is a very simple game, in which a ship (controlled by a user)
must destroy enemy ships firing laser shots. Every ship corresponds to a user in a host
(e.g. mobile device, tablet) in the network, as shown in 5a. The local ship will be
rendered in green and remote ships will be rendered in blue. An example video of the
game can be found at [18], where it is also shown that the entire example is run on
virtual machines with Android.

Although very basic, the application is representative in terms of CPU and network
usage of a class of game applications: the game must continuously update its local
model, share local information among all hosts, receive and update remote hosts
information, and render the corresponding graphics. Considering an update rate
equivalent to 30 frames per second, the network consumption is considerably high
and grows proportionally to the number of players. Furthermore, the game uses the
Periodic Broadcast feature from the Communication service.

The data defined to be sent/received through the network includes ship position
and heading, as well as shots position and heading that the ship shoots when the user
triggers the fire action.

4.2 Tic-Tac-Toe

Tic-Tac-Toe has been selected as a representative example of a completely different
type of application, compared to the Asteroids game, since Tic-Tac-Toe is a two-
players game, turn-based and there is no need for a continuous sending of
information, specific events (players taking turns) trigger communications.

Fig. 5b shows a running example of the game on two Samsung Galaxy devices
with Android 4.0.3, and an example video of the game running on a virtual machine
and a Samsung Galaxy can be found at [19]. While the Tic-Tac-Toe game imposes a
very different usage of the network during the game (turns, non-periodic messages,
etc.) as compared to the Asteroids game, other service requirement such as those
related to host Discovery remain the same.

The data structure for this application is very simple: an action value representing
the possible states of the game: a) resolve who will start the game, b) set a cell with an
X or an O - in this case a position value is also needed, or c) restart the game. Since
there is no need for a periodic update of local host information, no Producer has to be
implemented.

4.3 Cross platform chat application

A simple chat application has been selected in order to show cross platform
networking capability, requiring only the communication features. By simply
specifying an IP address and a message, the chat-app sends the corresponding text to
the target host, the which shows its content on the display. Fig. 5c shows the
achieved interaction among two virtual devices, one running the application on
Android, and the other running on J2ME.

The biggest problem in this case is the serialization-deserialization issue. Each
platform implements (if it does) a specific serialization method, which can or cannot
be compatible with the other platforms. In order to solve this problem, the framework
defines a NetworkSerializable interface, containing the definition for the
networkSerialize and networkDeserialize methods. Applications must contain a class
which implements this interface in a consistent way on each platform. At run time, the
framework then delegates the serialization-deserialization work to these classes.

4.4 WiFiRemote

WiFiRemote is a Client/Server implementation using different application platforms.
It consist of a server application that displays images running on J2SE, and an

Android application that controls the slideshow (like a remote control) on the cliente
side, as shown in Fig. 5d.
Thus, a user can then control the images being displayed, for instance selecting the
previous or next image. For each image displayed, the server also sends to the client
the image metadata, which will be displayed in the Android device.
In this case, the required data structure is quite simple: an action code that goes from
the client to the server and the details of the image that returns to the client.
This is an example of how the framework is also useful in applications in which
implementation logic differs in each host.

5 Conclusions and future work

This paper presented the advances achieved in the implementation of a framework

designed for easily handling network-related issues in the development of mobile
applications, called NetworkDCQ [20].

The framework covers a wide range of features such as host discovery, data
communication and broadcasting, and QoS monitoring. It is designed to support
different implementations for each of these services, gaining flexibility, and
versatility. Its main goal is to fill a gap in the mobile development frameworks area,
where currently there is no open source, cross platform solution with the features
explained in this paper.

The proposed API and reference implementation is actually useful for several types
of applications, network requirements, and configurations. The examples shown cover
applications with a wide variety of network-related requirements like continuous data
broadcasting, event driven communication, and heterogeneous platforms. These
examples evidence the considerably small amount of effort needed in the
development of applications with networking capability, thanks to the features
included in the framework.

Although the framework is fully functional for Android and J2SE, currently there
is no available version for iOS. Completing this task is a short-term objective.
Implementing the complete set of features for Windows Mobile, and BlackBerry 10
are mid to long-term objectives.

References

1. Markus Falk, Mobile Frameworks Comparison Chart, http://www.markus-
falk.com/mobile-frameworks-comparison-chart/.

2. Digital Possibilities, Mobile Development Frameworks Overview, http://digital-
possibilities.com/mobile-development-frameworks-overview/.

3. PhoneGap, http://phonegap.com/.
4. Titanium, http://www.appcelerator.com/platform/titanium-platform/.
5. Unity3D, http://unity3d.com/.
6. Corona, http://www.coronalabs.com/products/corona-sdk/.

7. StatCounter, Top Mobile & Table Operating Systems from April 2013 to April 2014,
http://gs.statcounter.com/#mobile+tablet-os-ww-monthly-201304-201404.

8. NetworkDCQ for Android Project, https://code.google.com/p/networkdcq/.
9. Gamma E., Helm R. , Johnson R. , Vlissides J., Design Patterns: Elements of

Reusable Object-Oriented Software, 1994.
10. Martin, R. C., The Dependency Inversion Principle, 1996,

http://www.objectmentor.com/resources/articles/dip.pdf.
11. Fowler, M., Inversion of Control Containers and the Dependency Injection Pattern,

http://martinfowler.com/articles/injection.html.
12. Joel Gonçalves, Luis Lino Ferreira, A Framework for QoS-Aware Service-based

Mobile Systems, 2010, in press.
13. Rabia Ali, Dr. Fareeha Zafar, Bandwidth Estimation in Mobile Ad-hoc Network

(MANET), 2011, in press.
14. R.Sivaraman, V.R.Sarma Dhulipala, L.Sowbhagya, B.Vishnu Prabha, Comparative

Analysis of QoS Metrics in Mobile Ad Hoc Network Environment, 2009, in press.
15. Asteroids for Android Project, http://code.google.com/p/asteroidsa/.
16. Tic-Tac-Toe for Android Project, http://code.google.com/p/ticatacatoe/.
17. NetworkDCQ for J2ME Project, https://code.google.com/p/networkdcq-j2me/.
18. Asteroids for Android Example Video,

http://www.youtube.com/watch?v=HiRTk8daqi4.
19. Tic-Tac-Toe for Android example video,

http://www.youtube.com/watch?v=mrf01putSec.
20. Cristina F:, Dapoto S., Tinetti F., Encinas D., Thomas P, Pesado P., NetworkDCQ: A

Multi-platform Networking Framework For Mobile Applications, 2013, in press.

