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Abstract. We introduce a new sub logic of third order logic (TO), the
logic TOω, as a semantic restriction of TO. We focus on the existential
fragment of TOω, which we denote Σ2,ω

1 , and we study its relational
complexity by introducing a variation of the non deterministic relational
machine, which we denote 3-NRM, where we allow third order relations in
the relational store of the machine. We then prove that Σ2,ω

1 characterizes
exactly NEXPTIME3,r.

1 Introduction

With this article we initiate the study of a new sub logic of third order logic (TO),
the logic TOω, under finite interpretations. We introduce TOω and we define it
as a semantic restriction of TO where the (second order) relations which form
the tuples in the third order relations that valuate the quantified third order
variables are unions of complete FOk types for r-tuples (i.e., the relations are
closed under the relation ≡k of equality of FOk types in the set of r-tuples of the
structure), for some constants k ≥ r ≥ 1, that depend on the quantifiers. In the
sense of [FPT,10] these relations are redundant relations. This investigation is a
natural continuation of the study of the logic SOω (in the context of Finite Model
Theory, i.e., with sentences interpreted by finite relational structures or database
instances - dbi’s), a semantic restriction of second order logic (SO) where the
valuating relations for the quantified second order variables are closed under ≡k
as above. SOω was introduced by A. Dawar ([Daw,98]), and studied by him and
later by the second author jointly with F. Ferrarotti ([FT,08]). A. Dawar proved
that its existential fragment Σ1,ω

1 is characterized by the non deterministic fixed
point logic (FO+NFP ), that extends First Order logic with the NFP quantifier.
Previously, in [AVV,97], it was proved that (FO+NFP ) characterizes the class
of nondeterministic relational machines (NRM) working in relational polynomial
time (NPr). This is a complexity class in relational complexity, where the input
structure is measured as the number of equivalence classes in the relation ≡k
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mentioned above for the input dbi (called its sizek). Hence, it turned out that
Σ1,ω

1 characterizes the class NPr of relational complexity, analogously to the
well known relationship Σ1

1 = NP ([Fag,74]). Continuing the analogy, the char-
acterization of full SOω by the relational polynomial time hierarchy PHr was
stated without proof in [Daw,98], and proved in [FT,08]. Other known character-
izations are Pr = (FO+ IFP ), and PSPACEr = (FO+PFP ) (see [AVV,97]),
with the inflationary and partial fixed point quantifiers, respectively. In that
context, we introduce the logic TOω looking for the logical characterization of
higher relational time complexity classes. In the present article we focus on the
existential fragment of TOω, and we study its relational complexity. To that end,
we introduce a variation of the non deterministic relational machine, which we
denote 3-NRM (for third order NRM), where we allow third order relations in
the relational store of the machine. We define the class NEXPTIME3,r as the
class of 3-NRM’s that work in time exponential in the sizek of the input dbi.
We then prove that the existential fragment of TOω characterizes exactly third
order nondeterministic relational exponential time.

2 Preliminaries

We assume a basic knowledge of Logic and Model Theory (refer to [Lib,04]). We
only consider vocabularies of the form σ = 〈R1, . . . , Rs〉 (i.e., purely relational),
where the arities of the relation symbols are r1, . . . , rs ≥ 1, respectively. We
assume that they also contain equality. And we consider only finite σ-structures,
denoted as A = 〈A,RA

1 , . . . , R
A
s 〉, where A is the domain, also denoted dom(A),

and RA
1 , . . . , R

A
s are (second order) relations in Ar1 , . . . , Ars , respectively. If

γ(x1, . . . , xl) is a formula of some logic with free FO variables {x1, . . . , xl}, for
some l ≥ 1, with γA we denote the l-ary relation defined by γ in A, i.e., the
set {(a1, . . . , al) : a1, . . . , al ∈ A∧A |= γ(x1, . . . , xl)[a1, . . . , al]}. For any l-tuple
ā = (a1, . . . , al) of elements in A, with 1 ≤ l ≤ k, we define the FOk type of ā,
denoted Typek(A, ā), to be the set of FOk formulas ϕ ∈ FOk with free variables
among x1, . . . , xl, such that A |= ϕ[a1, . . . , al]. If τ is an FOk type, we say that
the tuple ā realizes τ in A, if and only if, τ = Typek(A, ā). Let A and B be
σ-structures and let ā and b̄ be two l-tuples on A and B respectively, we write
(A, ā) ≡k (B, b̄), to denote that Typek(A, ā) = Typek(B, b̄). If A = B, we also
write ā ≡k b̄. We denote as sizek(A) the number of equivalence classes in ≡k in
A. An l-ary relation R in A is closed under ≡k if for any two l-tuples ā, b̄ in Al,
ā ∈ R ∧ ā ≡k b̄⇒ b̄ ∈ R. Let S be a set, a binary relation R is a pre-order on S
if it satisfies: 1) ∀a ∈ S (a, a) ∈ R (reflexive). 2) ∀a, b, c ∈ S (a, b) ∈ R∧ (b, c) ∈
R ⇒ (a, c) ∈ R (transitive). 3) ∀a, b ∈ S (a, b) ∈ R ∨ (b, a) ∈ R (conex). A pre-
order � on S induces an equivalence relation ≡ on S (i.e., a ≡ b⇔ a � b∧b � a),
and also induces a total order over the set of equivalence classes of ≡. When the
equivalence classes induced by a pre-order on k-tuples from some structure A
agree with the equivalence classes of ≡k, then the pre-order establishes a total
order over the FOk types for k-tuples which are realized on A .



3 The Restricted Third-Order Logic TOw and 3-NRM’s

A third order relation type is a w-tuple τ = (r1, . . . , rw) where w, r1, . . . , rw ≥ 1.
In addition to the symbols of second-order logic, the alphabet of TOω con-
tains for every k ≥ 1, a third-order quantifier ∃k, and for every relation type
τ such that r1, . . . , rw ≤ k a countably infinite set of third order variables,
denoted as X τ1,k,X τ2,k, . . .. We use upper case Roman letters Xr,k

i for SOω

variables (in this article we will often drop the superindex k, when it is clear
from the context), where r is their arity, and lower case Roman letters for in-
dividual (i.e., FO) variables. Let σ be a relational vocabulary. A third order
atomic formula of vocabulary σ, on the third order variable X τ,k is a formula
of the form X τ,k(V1, . . . , Vw), where V1, . . . , Vw are either second order vari-

ables of the form Xri,k
i , or relation symbols in σ, and whose arities are respec-

tively r1, . . . , rw ≤ k. Note that all the relations that form a σ-structure are
closed under ≡k, since k is ≥ than all the arities in σ (see above, and Fact 9
in [FT,08]). Let m ≥ 1. We denote by Σ2,ω

m [σ] the class of formulas of the form
∃k3,11X τ1111 . . . ∃k3,1s1X τ1s11s1

∀k3,21X τ2121 . . . ∀k3,2s2X τ2s22s2
. . . Qk3,m1X τm1

m1 . . . Qk3,msm

X τmsmmsm (ψ), where for i, j ≥ 1, with τij = (rij,1, . . . , rij,wij ), we have rij,1, . . . , rij,wij
≤ k3,ij , Q is either ∃k or ∀k, for some k, depending on whether m is odd or even,
respectively, and ψ is an SOω formula with the addition of third order atomic for-
mulas. As usual, ∀kX (ψ) abbreviates ¬∃kX (¬ψ). We define TOω =

⋃
m≥1Σ

2,ω
m .

A third order relation R of type τ on a σ structure I is a set of w tuples
(R1, . . . , Rw) of (second order) relations on I with respective arities r1, . . . , rw.
The third order quantifier ∃k has the following semantics: let I be a σ-structure;
then I |= ∃kX τ,kϕ if there is a third order relation R of type τ on I such that all
the relations which form the tuples in R are closed under the relation ≡k in I,
and (I,R) |= ϕ. Here (I,R) is the third order (σ∪{X τ}) structure expanding I,
in which X is interpreted as R. Note that a valuation in this setting also assigns
to each second order variable Xr,k a (second order) relation on I of arity r that is
closed under ≡k in I, and to each third order variable X τ,k a third order relation
R on I of type τ , such that all the relations that form the tuples of R are closed
under ≡k in I. We don’t allow free second or third order variables in the logics
SOω and TOω.

As an example of a non trivial query in Σ2,ω
1 , consider the query “the graph

G is undirected, connected, with |V | ≥ 2, and its diameter is even”. We give
next a sketch of the formula. We quantify two third order relations X (2,2) and
�(2,2,2,2), that form a totally ordered set of pairs of (second order) relations,
where for 1 ≤ i ≤ m, in the first component of the i-th pair (R1, R2), we have
all the pairs of nodes (x, y) s. t. the minimum distance between them is i. Note
that all these relations are closed under ≡3 since with 3 variables we can say
in FO that there is a path of length d between two nodes, for every d ≥ 1
(see [Lib,04,11.3]). Then, if two pairs of nodes are ≡3, either they are both in
the relation or none of them are, which is correct since the set of distances of
all the paths between the two pairs of nodes is the same. We use the second
relation in each pair (S2 and R2) as Boolean flags, where ∅ means off and V ×V
means on. Then, along the sequence of pairs of relations we switch the flag on



and off, starting in on. Note that if the position of the last pair of relations in
the sequence is i (i.e., m), it means that the diameter of G is i, and if the flag
is off, then the diameter is even: ϕ ≡ ∃3X (2,2) �(2,2,2,2) ∀3R2

1R
2
2S

2
1S

2
2 [([“� is

a total order in X”]) ∧ ([“the succesor of (S1, S2) is (R1, R2)”] → [“R2 is the
complement of S2” ∧ “the pairs in R1 are formed by extending the pairs in S1

with the edges in E ]) ∧ ([“(S1, S2) ≺ (R1, R2)”] → [“no pair in R1 is in S1,
i.e., the distances at every stage are minimal”]) ∧ ([“(R1, R2) is the first pair in
≤”]→ [“the flag is on” ∧ “R1 = E”])∧([“(R1, R2) is the last pair in ≤”]→ [“the
flag is off ” ∧ “the pairs in R1 cannot be extended with edges in E, i.e., there are
no minimum distances bigger than the ones in R1”] )]∧ [“G is connected”]∧ [“G
is undirected”] ∧ [“|V | ≥ 2”]. Finally, note that “G is connected” is well known
to be in Pr, and hence in Σ1w

1 (see [FT,08]).
A third order non-deterministic relational machine, denoted as 3-NRM, of

arity k, for k ≥ 1, is a 11-tuple 〈Q,Σ, δ, q0, b, F, σ, τ, Rl, Ω, Φ〉 where: Q is the
finite set of internal states; q0 ∈ Q is the initial state; Σ is the finite tape
alphabet; b ∈ Σ is the symbol denoting blank; F ⊆ Q is the set of accepting
states; τ is the finite vocabulary of the rs (its relational store), with finitely
many third order relation symbols of any arbitrary type τ = (r1, . . . , rw), with
1 ≤ r1, . . . , rw ≤ k, and finitely many second order relation symbols of arities
≤ k; σ is the vocabulary of the input structure; Ω is a finite set of TOω formulas
with up to k FO variables, with no second or third order quantifiers, and with no
free variables of any order (i.e., all the SOω and TOω relation symbols are in τ); Φ
is a finite set of TOω formulas with up to k FO variables, that are not sentences,
with no second or third order quantifiers, and where the free variables are either
all FO variables, or all SOω variables; δ : Q×Σ×Ω → P(Σ×Q×{R,L}×Φ×τ)
is the transition function. At any stage of the computation of a 3-NRM on an
input σ-structure I, there is one relation in its rs of the corresponding relation
type (or arity) in I for each relation symbol in τ , so that in each transition there is
a (finite) τ -structure A in the rs, which we can query and/or update through the
formulas in Ω and Φ, respectively, and a finite Σ string in its tape, which we can
access as in Turing machines. The concept of computation is analogous to that in
the Turing machine. We define the complexity class NEXPTIME3,r as the class
of the relational languages or Boolean queries (i.e., sets of finite structures of a
given relational vocabulary, closed under isomorphisms) that are decidable by 3-
NRM machines of some arity k′, that work in non deterministic exponential time
in the number of equivalence classes in ≡k′ of the input structure. In symbols:
NEXPTIME3,r =

⋃
c∈N NTIME3,r(2

c·(sizek)) (as usual, this notation does not
mean that the arity of the 3-NRM must be k).

4 TOω captures NEXPTIME3,r

Theorem 1. NTIME3,r(2
c·(sizek)) ⊆ Σ2,ω

1 . That is, given a 3-NRM M in
NTIME3,r(2

c·(sizek)), for some positive integer c, and with input vocabulary

σ, that computes a Boolean query q, we can build a formula ϕM ∈ Σ2,ω
1 such

that, for every σ-structure I, M accepts I iff I |= ϕM .



Proof. We follow a similar strategy to the one used in the proof of Proposition
4 in [FT,08] (i.e., NPr ⊆ Σ1,ω

1 ). Let q : Str[σ] → {0, 1} be a Boolean query
which is computed by a 3-NRM M in NEXPTIME3,r, of arity k. Here, Q =
{q0, . . . , qm}; q0 is the initial state; Σ = {0, 1, b}; F = {qm}; τ = {R0, . . . , Rl};
and σ = {R0, . . . , Ru}, where u ≤ l. We assume that the relations Ru+1, . . . , Rl2
in the rs of M are second order work relations (i.e., not in the input struc-
ture), and the relations Rl2+1, . . . , Rl2+1+l3 are third order work relations, with
l2 + 1 + l3 = l. For 0 ≤ i ≤ l2, the arity of the second order relation Ri
is r2,i, and the types of the third order relations Rl2+1, . . . , Rl2+1+l3 , are, re-
spectively, (r3,01, ..., r3,0w0

), ..., (r3,l31, ..., r3,l3wl3
). Also, Ω = {α0, . . . , αv}, and

Φ = {γ0, . . . , γw}.
We build now the Σ2,ω

1 formula ϕM according to the definition of M . Since
M runs in time 2c·(sizek(I)), and hence visits at most that many tape cells, we
can model time as well as position in the tape by c-tuples of k-ary relations
closed under ≡k (we will respectively use the tuples of relations T̄ and P̄ , see
below). Note that there are 2sizek(I) different such relations over I, and (2sizek(I))c

= 2c·(sizek(I)) different c-tuples of such relations.

Then we build the following formula: ∃kOτ0,1∃kT τ0,20 ∃kT τ0,31 ∃kT τ0,4b ∃kHτ0,5q0 . . .

∃kHτ0,5+mqm ∃kSτ3,030 . . . ∃kSτ3,l33l3
∃kSτ2,020 . . . ∃kSτ2,l22l2

(ψ) where the types of the third
order variables are as follows: τ0,1 = (k, k), τ0,2 = τ0,3 = τ0,4 = τ0,5 = . . . =
τ0,5+m = (k, ..., k) with cardinality 2c; τ3,0, . . . , τ3,l3 are the types of Rl2+1, . . . ,

Rl2+1+l3 , augmented with c second order relations of arity k; and τ2,0 = (r2,0, k,

. . . , k), . . . , τ2,l2 = (r2,l2 , k, . . . , k) with cardinality c + 1, are the types of the
third order variables that represent in ϕM R0, . . . , Rl2 augmented with c (sec-
ond order) relations of arity k; with ψ being an SOω formula (i.e., ψ ∈ Σ1,ω

j

for some j ≥ 1) of vocabulary σ augmented with second order variables that
we will quantify in the sub formulas below, and with free third order variables
Oτ0,1 , T τ0,20 , T τ0,31 , T τ0,4b ,Hτ0,5q0 , . . . ,Hτ0,5+mqm ,Sτ3,030 , . . . ,Sτ3,l33l3

,Sτ2,020 , . . . ,Sτ2,l22l2
. Note

that the third order variables Sτ2,020 , . . . ,Sτ2,l22l2
represent the contents of the second

order relations R0, . . . , Rl2 , and the third order variables Sτ3,030 , . . . ,Sτ3,l33l3
repre-

sent the contents of the third order relations Rl2+1, . . . , Rl2+1+l3 (see below). Let
P̄ = (P1, . . . , Pc), T̄ = (T1, . . . , Tc), and X̄ = (X1, . . . , Xc), where P1, . . . , Pc,
T1, . . . , Tc, X1, . . . , Xc are k-ary second order relation variables, closed under
≡k. The intended interpretation of these relation symbols is as follows: O is a
total order in the class of k-ary relations closed under ≡k; T0, T1, and Tb are
tape relations: for x ∈ {0, 1, b}, Tx(P̄ , T̄ ) indicates that position P̄ of the tape
at time T̄ contains symbol x; Hq’s are tape head relations: for q ∈ Q, Hq(P̄ , T̄ )
indicates that at time T̄ , the machine M is in state q, and its tape head is in
position P̄ ; Si’s are rs relations: for 0 ≤ i ≤ l3, S3i(Ā, T̄ ) indicates that at time
T̄ , the third-order relation Rl2+1+i in the rs contains the wi-tuple of second
order relations of the corresponding arities closed under ≡k, Ā; for 0 ≤ j ≤ l2,
S2j(B, T̄ ) indicates that at time T̄ , the r2,j-ary second order relation Rj closed
under ≡k, in the rs is equal to the r2,j-ary, second order relation B. Note that
as the arities of the relations in τ are ≤ k by definition of the 3-NRM, all the



relations R0, . . . , Rl2 are closed under ≡k, including the relations in σ (see Fact
9 in [FT,08]).

The sentence ϕM must now express that when M starts with an empty tape
and an input σ-structure I in the designated relations of its rs, the relations Tx’s,
Hq’s and Si’s encode its computation, and eventually M reaches an accepting
state. We define ϕM to be the conjunction of the following sentences:

1): A formula expressing that O2k defines a total order of k-ary relations
closed under ≡k: [∀kX(O(X,X))] ∧ [∀kXY Z((O(X,Y )∧O(Y, Z))→ O(X,Z))]
∧ [∀kXY ((O(X,Y ) ∧ O(Y,X))→ ”X = Y ”)] ∧ [∀kXY (O(X,Y ) ∨ O(Y,X))].

2): A formula defining the initial configuration of M : ∃kT̄∀kX̄∀kP̄ [(T̄ ≤
X̄) ∧H2ck

q0 (T̄ , T̄ ) ∧ T 2ck
b (P̄ , T̄ )] (that says “at time 0, M is in state q0, the head

is in the left-most position of the tape, and the tape contains only blanks”) ∧
∃kT̄ ∀kX̄ ∀kXr3,01

01 , . . . , X
r3,0w0
0w0

, . . . , X
r3,l31

l31 , . . . , X
r3,l3wl3
l3wl3

∃kY r2,00 . . . ∃kY r2,uu ∃kY r2,u+1

u+1

. . . ∃kY r2,l2l2

(
(T̄ ≤ X̄) ∧ ¬Sτ3,030 (X

r3,01
01 , . . . , X

r3,0w0
0w0

, T̄ ) ∧ . . . ∧ ¬Sτ3,l33l3
(X

r3,l31

l31 , . . . ,

X
r3,l3wl3
l3wl3

, T̄ ) ∧ [(S20(Y0, T̄ ) ∧ ∀x1 . . . xr2,0(Y0(x1, . . . , xr2,0)↔ R0(x1, . . . , xr2,0)

)) ∧ . . . ∧ (S2u(Yu, T̄ ) ∧ ∀x1 . . . xr2,u(Yu(x1, . . . , xr2,u)↔ Ru(x1, . . . , xr2,u)))] ∧
[(S2,u+1(Yu+1, T̄ )∧ ∀x1 . . . xr2,u+1

(¬Yu+1(x1, . . . , xr2,u+1
)))∧ ...∧ (S2,l2(Yl2 , T̄ )∧

∀x1 . . . xr2,l2 (¬Yl2(x1, . . . , xr2,l2 )))]
)

(that says “the relations in the rs hold a

τ -structure A which extends I with an empty relation for each relation symbol
Ri in τ − σ”).

Here, we say that X̄ ≤ Ȳ iff [O(X̄1, Ȳ1)∧¬(Ȳ1, X̄1)] ∨ [O(X̄1, Ȳ1)∧O(Ȳ1, X̄1)∧
O(X̄2, Ȳ2)∧¬O(Ȳ2, X̄2)] ∨ . . .∨ [O(X̄1, Ȳ1)∧O(Ȳ1, X̄1)∧ . . .∧O(X̄c−1, Ȳc−1)∧
O(Ȳc−1, X̄c−1) ∧ O(X̄c, Ȳc)∧¬O(Ȳc, X̄c)]∨ [X̄ ∼3 Ȳ ], where X̄ ∼3 Ȳ is simply:
O(X̄1, Ȳ1) ∧ O(Ȳ1, X̄1) ∧ . . . ∧ O(X̄c, Ȳc) ∧ O(Ȳc, X̄c).

3): A formula stating that in every configuration of M , each cell of the tape
contains exactly one element of Σ : ∀kP̄ T̄

(
[T0(P̄ , T̄ )↔ (¬T1(P̄ , T̄ )∧¬Tb(P̄ , T̄ ))]

∧[T1(P̄ , T̄ )↔ (¬T0(P̄ , T̄ )∧¬Tb(P̄ , T̄ ))]∧[Tb(P̄ , T̄ )↔ (¬T0(P̄ , T̄ )∧¬T1(P̄ , T̄ ))]
)
.

4): A formula stating that at any time the machine is in exactly one state:
∀kT̄∃kP̄∀kP̄ ′T̄ ′

[(∨
q∈QHq(P̄ , T̄ )

)
∧
(∧

q 6=q′,q,q′∈Q
(
¬Hq(P̄ ′, T̄ ′)∨¬Hq′(P̄ ′, T̄ ′)

))]
.

5): A formula stating that the variables S2j ’s, at any time hold at most one
relation (and hence, by the second sub formula above, exactly one relation):
∀kT̄Ar2,0Br2,0 [(S20(A, T̄ ) ∧ S20(B, T̄ ))→ “A = B”] ∧ . . . ∧ ∀kT̄Ar2,l2Br2,l2 [(
S2l2(A, T̄ ) ∧ S2l2(B, T̄ ))→ “A = B”].

6): A conjunction of formulas expressing that the relations Ti’s, Hq’s, S2j ’s
and S3j ’s respect the transitions of M . For every a ∈ Σ, q ∈ Q and α ∈ Ω
for which the transition function δ is defined, we have a sentence of the form:∨

(b,q′,m,γ,R)∈δ(q,a,α) χ(q, a, α, b, q′,m, γ,R), where χ(q, a, α, b, q′,m, γ,R) is the
sentence describing the corresponding transition. Assume that m = L, S3j is the
relation variable which encodes R (a third order relation) if the free variables of
γ are of second order (recall that, for 0 ≤ j ≤ l3, S3j encodes Rj+l2+1 of the rs
of M) and S2j is the relation variable which encodes R (a second order relation)
if the free variables of γ are individual. We write χ(q, a, α, b, q′,m, γ,R) as the
conjunction of two formulas; the first one is as follows:



∀kP̄ P̄−1P̄
′T̄+1T̄

′T̄ X̄∀kR
r2,h′1
h′
1

. . . R
r2,h′

t′
h′
t′

([
(P̄ ≤ X̄) ∨ ¬Ta(P̄ , T̄ ) ∨ ¬Hq(P̄ , T̄ )∨

¬[S2h′
1
(Rh′

1
, T̄ ) ∧ . . . ∧ S2h′

t′
(Rh′

t′
, T̄ ) ∧ α̂(T̄ )]

]
∨[

¬((P̄−1 ≤ P̄ ) ∧ (P̄−1 ≤ P̄ ′) ∧ (P̄ ′ ≤ P̄ ) ∧ ¬(P̄−1 ∼3 P̄ ) ∧ (P̄−1 ∼3 P̄ ′))∨
¬((T̄ ≤ T̄+1) ∧ (T̄ ′ ≤ T̄+1) ∧ (T̄ ≤ T̄ ′) ∧ ¬(T̄+1 ∼3 T̄ ) ∧ (T̄+1 ∼3 T̄ ′))

]
∨[

Tb(P̄ , T̄+1) ∧Hq′(P̄−1, T̄+1) ∧
(∧

0≤i≤l2 ∀
kZ

r2,i
i (S2i(Zi, T̄ )↔ S2i(Zi, T̄+1))

)
∧
(∧

0≤i≤l3 ∀
kZ

r3,i1
i1 ...Z

r3,iwi
iwi

(S3i(Zi1, ..., Ziwi , T̄ )↔ S3i(Zi1, ..., Ziwi , T̄+1))
)
∧β
])

Lines 3 and 4 in the formula above say that P̄−1 and T̄+1 are the predeces-
sor of P̄ , and the successor of T̄ in ≤, respectively. β is a sub formula which
says that the relation RA (i.e., the relation R in the rs of M) is replaced by
γA. In the formula ϕM , we represent that action by saying that the variable S
that represents R at different times, at the time T̄+1 holds the relation defined
by γ, where its relation symbols are interpreted with the contents of the corre-
sponding variables S, at time T̄ . The two sub formulas with the big conjunctions
immediately before β, say that the relations other than R are not altered in the
computation step from time T̄ to time T̄+1. We have two different cases: i): the
free variables in γ are only FO variables, and hence it defines a second order
relation, so that R is a second order relation; ii): the free variables in γ are
only second order variables, and hence it defines a third order relation, so that
R is a third order relation. Note that in the two cases, we should modify γ (as
well as α) in such a way that instead of using the different (second and third
order) relation symbols that correspond to relations in the rs of M , it should
use the third order variables that represent those relations, and in particular
its contents at the time T̄ . For second order relation symbols, we do that by
existentially quantifying a second order variable with the same name R (note
that in this case R ∈ {R0, . . . , Rl2}), and then by saying that that relation is
in the tuple for time T̄ in the corresponding variable S. In the formula below,
let Rh1 , . . . , Rht be the second order relation symbols that appear in γ, and let
Rh′

1
, . . . , Rh′

t′
be those that appear in α. For third order relation symbols, we

do that by building the formula γ̂ by replacing in γ every atomic formula of the
form Ri(W̄ ) (where l2 + 1 ≤ i ≤ l2 + 1 + l3) by S3(i−(l2+1))(W̄ , T̄ ). For case

(i): β ≡ ∃kV r2,jj

(
S2j(Vj , T̄+1) ∧ ∀x1...xr2,j

(
Vj(x1, ..., xr2,j ) ↔ ∃kR

r2,h1
h1

. . . R
r2,ht
ht

[S2h1
(Rh1

, T̄ ) ∧ . . . ∧ S2ht(Rht , T̄ ) ∧ γ̂(x1, ..., xr2,j , T̄ )]
))

. Note that the inner
∃k block above can be safely moved out of the big parenthesis (and hence to
the SOω quantifier prefix in ϕM ), since we want a single tuple of relations
Rh1 , . . . , Rht for the evaluation of all the possible tuples x1, ..., xr2,j . Also, in the
first of the two sub formulas with the big conjunctions immediately before β,
we must change the big conjunction from

∧
0≤i≤l2 to

∧
0≤i≤l2,i6=j . For case (ii):

β ≡ ∀kZr3,j11 ...Z
r3,jwj
wj

(
S3j(Z1, ..., Zwj , T̄+1) ↔ ∃kRr2,h1h1

. . . R
r2,ht
ht

[S2h1
(Rh1

, T̄ ) ∧
. . . ∧ S2ht(Rht , T̄ ) ∧ γ̂(Z1, ..., Zwj , T̄ )]

)
. Also, in the second of the two sub for-

mulas with the big conjunctions immediately before β, we must change the big
conjunction from

∧
0≤i≤l3 to

∧
0≤i≤l3,i6=j . Up to this point, we have built the

first formula for χ(q, a, α, b, q′,m, γ,R), which corresponds to the case where



the tape head is not in the first position. To build the second formula, which
corresponds to the case where the tape head is in the first position, we need
to do only the following changes in the first formula: we replace “∀kX̄” by
“∃kX̄”, “(P̄ ≤ X̄)” by “(P̄ > X̄)”, and “Hq′(P̄−1, T̄+1)” by “Hq′(P̄ , T̄+1)”.
A final note for this sub formula is that, in order to be able to move all the
SOω quantifiers to the prefix of ϕM for it to be a Σ2,ω

1 formula, we must have
one set of second order variables {P̄ , P̄−1, P̄

′, T̄+1, T̄
′, T̄ , X̄, Vj , Z0, ..., Zl2 , Z01

, ..., Z0w0 , ..., Zl31, ..., Zl3wl3} for each sub formula χ(q, a, α, b, q′,m, γ,R). As for
the variables Rh1 , . . . , Rht and Rh′

1
, . . . , Rh′

t′
, technically, we must also rename

each to have the sets that we need, which implies also the renaming of the re-
spective symbols in all the formulas γ ∈ Φ and α ∈ Ω. The important point is
that this is possible, because the definition of M is finite.

7): Finally, a formula stating that at some point, M is in an accepting final
state: ∃kP̄ T̄

(
H2ck
qm (P̄ , T̄ )

)
.

By the construction of ϕM , we can see that M accepts a given σ-structure I iff
there are relations closed under equivalence of FOk-types of tuples as required by
the TOω quantifiers in the prefix of ϕM , which assigned to the relation variables
O, T0, T1, Tb, Hq0 , . . . ,Hqm , S30, . . . ,S3l3 , S20, . . . ,S2l2 , satisfy ψ. 2

Theorem 2. Σ2,ω
1 ⊆ NTIME3,r(2

c·(sizek)). That is, every class of relational

structures definable in Σ2,ω
1 is in NEXPTIME3,r.

Proof. For a relational vocabulary σ, let ϕ be a Σ2,ω
1 [σ] sentence of the form

∃k3,1X τ11 . . . ∃k3,sX τss (ψ), where ψ is a Σ1,ω
t formula, for some t ≥ 1, with atomic

TOω formulas formed with the TOω variables X1, . . . ,Xs. To simplify the pre-
sentation we assume w.l.o.g. that for 1 ≤ i ≤ s the type of the relation Xi is
τi = (r3,i, ..., r3,i) of cardinality r3,i, with r3,i ≤ k3,i.

Let the Σ1,ω
t formula ψ be of the form ∃k2,11Y r2,1111 . . . ∃k2,1l1Y r2,1l11l1

∀k2,21Y r2,2121

. . . ∀k2,2l2Y r2,2l22l2
. . . Qk2,t1Y

r2,t1
t1 . . . Qk2,tltY

r2,tlt
tlt

(φ), where the quantifiers Qk2,t1 ,

. . . , Qk2,tlt are ∀k2,t1 , . . . ,∀k2,tlt , if t is even, or ∃k2,t1 , . . . ,∃k2,tlt , if t is odd, φ
is an FO formula in the vocabulary σ ∪ {Y r2,1111 , . . . , Y

r2,tlt
tlt

}, with atomic TOω

formulas, and r2,11 ≤ k2,11, . . ., r2,tlt ≤ k2,tlt , respectively. We build a 3-NRM
Mϕ which accepts a given σ structure I iff I |= ϕ. It is known that for every σ,
and every k ≥ 1, a formula γ(x̄, ȳ) with k′′ ≥ 2k variables of the fixpoint logic
(FO+LFP ) can be built s. t. on any σ structure J, γ defines a pre-order �k in
the set of k-tuples of J, whose induced equivalence relation is ≡k (see T.11.20 in
[Lib,04]). On the other hand, it is known that (FO + LFP ) captures relational
polynomial time Pr ([AVV,97]). Hence, an RM M�k of some arity k′ ≥ 2k can
be built, that constructs, on input J, the pre-order �k in J, in time polynomial in
sizek′(J). We define the arity of Mϕ as k = max ({k′3,1, . . . , k′3,s, k′2,11, . . . , k

′
2,tlt
}),

where the k′ij ’s are the arities of the RM ’s M�k3,1 , . . ., M�k2,tlt
, respectively.

Let I be the input structure. Mϕ works as follows:
1): Mϕ simulates the RM ’s M�k3,1 , . . ., M�k2,tlt

, to build the pre-orders

�k3,1 , . . ., �k2,tlt , respectively. Mϕ builds those pre-orders in time polynomial in
sizek′3,1(I), . . . , sizek′2,tlt

(I), respectively. As all these arities are ≤ k (see above),



that time is also polynomial in sizek(I) (see [FT,08]). 2): With those pre-orders
Mϕ computes the sizes sizek3,1(I), . . ., sizek2,tlt (I) in time polynomial in sizek(I),
by using the corresponding pre-orders as clocks, as in [FT,08] (recall that those
pre-orders induce total orders in the equivalence classes of the corresponding
equivalence relations ≡k3,1 , . . ., ≡k2,tlt ). 3): Mϕ guesses the TOω relations
Sτ11 , . . . ,Sτss , as interpretations of the TOω variables X τ11 , . . . ,X τss , respectively.
Each Sτii is a set of r3,i-tuples of r3,i-ary (SOω) relations closed under ≡k3,i .
Then, to guess Sτii we use three kinds of bit strings as follows: a) each bit string
b3Rr3,i of size sizek3,i(I) represents one of the possible r3,i-ary (SOω) relations
on I, closed under ≡k3,i ; note that each bit represents one equivalence class in
≡k3,i ; b) each bit string b2

R̄r3,i
of size r3,i · sizek3,i(I) represents one of the pos-

sible r3,i-tuples of r3,i-ary (SOω) relations on I, closed under ≡k3,i ; c) each bit

string b1Sτii
of size 2r3,i·sizek3,i (I) represents one of the possible sets of r3,i-tuples

of r3,i-ary (SOω) relations on I, closed under ≡k3,i , i.e., one of the possible TOω

relations on I of type τi, closed under ≡k3,i . For all those strings we use the total
orders induced by �k3,i in the equivalence classes of ≡k3,i . Then, Mϕ guesses
each TOω relation Sτii by first guessing the bit string b1Sτii

, and then, by stepping

in each equivalence class in ≡k3,i and choosing the class iff the corresponding bit
is 1. This is done for every possible r3,i-tuple of r3,i-ary (SOω) relations closed

under ≡k3,i . Note that this is done in time 2c·sizek3,i (I), and hence also in time

2c·sizek(I), since k3,i ≤ k (see above), for some constant c. As before, we use the
total orders induced by �k3,i in ≡k3,i as clocks, in the process of building the re-
lations Sτii , so as to be able to guess each one of the possible such TOω relations.
The details on how to do that are similar to the strategy used in [FT,08] to prove
Σ1,ω

1 ⊆ NTIMEr((sizek)c). 4): Regarding the SOω variables quantified in the
Σ1,ω
t formula ψ, to interpret each of them we generate all the possible SOω

relations of the corresponding arity and closed under the corresponding equiva-
lence class, by stepping in the classes according to the corresponding pre-order.
Note that we can afford to do that because for each variable Y

r2,ij
ij the number

of such relations is bounded by 2d·sizek2,ij (I), and hence also by 2d·sizek(I), since
k2,ij ≤ k (see above), for some constant d that depends on the arity. Then, for
each SOω variable we will require that either for all the generated relations, or
for at least one of them, depending on the corresponding quantifier being ∀ or ∃,
respectively, the formula φ is true. Note that as φ is an FO formula with atomic
TOω formulas, it can be used in the finite control of Mϕ, and hence is evaluated
in one step.

Then, Mϕ accepts I iff I |= ϕ, and works in NEXPTIME3,r. 2

5 Conclusions

It is well known that RM’s with no time restrictions can compute exactly the
class of (recursive) queries that are expressible in the infinitary logic with finitely
many variables Lω∞ω (see [Tur,06], among other sources). This logic extends FO
with conjunctions and disjunctions of sets of formulas of arbitrary (infinite) car-



dinality, while restricting the number of variables in each (infinitary) formula
to be finite. This is a very important logic in Descriptive Complexity, in which
among other properties, equivalence is characterized by pebble (Ehrenfeucht-
Fraissee) games, and on ordered dbi’s it can express all computable queries (see
[Lib,04], among others). We are currently working on a simulation of the 3-NRM
with a standard (i.e., a second order) NRM, aiming to prove that the logic Σ2,ω

1

is included in Lω∞ω. Also, and more generally, we aim to characterize all the
fragments Σ2,ω

j of TOω with third order relational complexity classes. Beyond
the natural theoretical relevance in creating and studying new logics as com-
putation models, and thus getting information on new aspects of the problems
that can be expressed in them, one important application to Complexity Theory
is the separation of NP complete problems (or NEXPTIME complete, etc) that
are not distinguished by classical computational complexity techniques. As an
example of this, in [Daw,98] it was shown that two particular NP complete prob-
lems are expressible in Σ1,ω

1 , and that 3-colorability is not. On the other hand,
in [GFT,12] it was shown that a certain NP complete problem is expressible in

the existential fragment Σ1,F
1 of another logic (denoted as SOF and introduced

in [GT,10]), and that that problem is not expressible in Lω∞ω, and hence neither
in Σ1,ω

1 , since Σ1,ω
1 ⊂ Lω∞ω.
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